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Abstract. Extracting earthquake signals from continuous waveform
data recorded by networks of seismic sensors is a critical and challeng-
ing task in seismology. Earthquakes occur infrequently in long-duration
data and may produce weak signals, which are challenging to detect while
limiting the number of false discoveries. Earthquake detection based on
waveform similarity has demonstrated success in detecting weak signals
from small events, but existing techniques either require prior knowledge
of the event waveform or have poor scaling properties that limit use to
small data sets. In this paper, we describe ongoing research into the use
of similarity search for large-scale earthquake detection. We describe Fin-
gerprint and Similarity Thresholding (FAST), a new earthquake detec-
tion method that leverages locality-sensitive hashing to enable waveform-
similarity-based earthquake detection in long-duration continuous seis-
mic data. We demonstrate the detection capability of FAST and compare
different fingerprinting schemes by performing numerical experiments on
test data, with an emphasis on false alarm reduction.
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1 Introduction

Seismology is an observational science that relies on data collected from seismic
sensors to study and interpret processes within the earth. Earthquake detection,
the use of signal processing to identify seismic signals in continuous ground
motion measurements, is critical for enabling discoveries in the field. Modern
seismic networks include hundreds to thousands of sensors, each recording data
continuously. As the volume of available data grows, the seismology community
is increasingly recognizing the need to adopt state-of-the-art algorithms and
data-intensive computing techniques to process large seismic data sets.

There are a number of challenges and requirements for the earthquake detec-
tion problem. The events of interest, earthquakes, occur infrequently and their
signals are short in duration (seconds to tens of seconds). Therefore, earthquake
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detection requires processing months to years of data, most of which contains
only background signals, including local, persistent noise sources. A practical
earthquake detection system should be able to detect weak signals from small
earthquakes while controlling the false alarm rate; a large number of false detec-
tions could easily overwhelm true events, so maintaining high precision is critical
when processing large data sets. Small, low signal-to-noise events are hard to
detect and can often only be confidently distinguished from noise by identifying
coherent signals across an array of sensors. Sensor dropout and changes in sensor
array configuration are not uncommon, so we focus on network-based detection
approaches that detect independently on each channel as an initial step. This
paper will focus on the single-channel detection problem.

The STA/LTA algorithm [1], widely used for general earthquake detection,
identifies rapid increases in the signal energy to detect events with impulsive
wave arrivals. This approach is attractive because it can be easily applied in
near real-time to streaming data, but the simplicity of the detection statistic
does not take advantage of the shape of the recorded waveforms.

Earthquake waveforms contain valuable information for detection; it has been
widely observed that earthquakes originating at neighboring locations generate
similar waveforms at a fixed sensor (Fig. 1). In recent years, seismologists have
exploited waveform similarity, measured by the normalized cross-correlation, to
detect small earthquakes with weak signals similar to those of known template
events [6]. However, the performance of template matching is limited by the
quality and availability of template waveforms from earthquake catalogs, which
are known to be incomplete, especially for low magnitude events. We seek a
general similarity-based earthquake detector that can identify similar earthquake
waveforms without templates. Previous efforts toward that goal have proposed
a brute-force blind search for similar waveforms [5], but the quadratic scaling of
this approach makes it infeasible for large data sets.

In this paper we present on-going work to incorporate similarity search into
a modern, scalable earthquake detection pipeline. We have introduced a new
earthquake detection approach called Fingerprint and Similarity Thresholding
(FAST) [8] to detect earthquakes by identifying similar waveforms in continuous

Fig. 1. Similar earthquake waveforms recorded during five distinct events over a period
of years at a fixed sensor, station CCOB in Northern California
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seismic data. FAST is modeled after scalable content-based audio identifica-
tion systems [3]. Given continuous waveform data recorded by a single sensor,
we extract a binary waveform fingerprint for each short-duration time inter-
val. Then we perform an approximate similarity search using locality-sensitive
hashing (LSH) to identify similar waveforms, which are labeled as candidate
earthquakes. Below we describe our similarity-search-based approach for large-
scale earthquake detection and discuss strategies to lower the false alarm rate
and enable the detection of low signal-to-noise events.

2 Our Approach: FAST Earthquake Detector

The Fingerprint and Similarity Thresholding earthquake detection method iden-
tifies earthquakes using an efficient blind search for similar waveforms. The two
key steps in the FAST detector are feature extraction and approximate similar-
ity search. Feature extraction maps each short-duration waveform segment into
a sparse binary fingerprint. The approximate similarity search, which employs
locality-sensitive hashing [2] for computational efficiency, identifies similar pairs
of fingerprints. Waveform segments corresponding to similar fingerprint pairs are
classified as candidate earthquake signals.

2.1 Data

FAST operates on single-channel, continuous, high frequency (up to 100Hz) data
recorded by seismometers that measure ground motion at fixed locations. The
data contain seismic signals embedded in background noise. We apply a 1–10Hz
bandpass filter and use a 10 s event window, corresponding to the predominant
frequencies and duration of seismic waves for small local earthquakes.

2.2 Feature Extraction

Earthquake waveforms are searched using sparse binary waveform fingerprints.
The feature extraction approach used in FAST is adapted from the Waveprint [3]
method for audio fingerprinting. Audio fingerprinting provides a good starting
point for the development of earthquake waveform fingerprints – there is struc-
tural similarity between the data and both applications require fingerprints that
are robust to small variations and additive noise. The feature extraction process
converts short-duration waveforms into sparse binary fingerprints (Fig. 2) and is
described in the following steps.

1. Spectrogram. We convert the time series data to the spectrogram, a time-
frequency representation computed with the short-time Fourier transform.

2. Spectral Images. We divide the spectrogram into short (10 second) overlap-
ping segments, and resize spectral images to fixed dimensions: 32 frequency
bins and 64 time bins. The spectral domain provides some shift invariance,
unlike the time domain where waveforms must be precisely aligned; this allows
a larger lag between adjacent intervals (1.0 vs. 0.05 s) and fewer fingerprints
total, but the trade-off is reduced detection sensitivity.



304 K. Bergen et al.

Fig. 2. Feature Extraction process in FAST: (A) continuous data, (B) spectrogram, (C)
spectral image, (D) discrete Haar wavelet transform, (E) adjusted wavelet coefficients,
(F) coefficient selection, (G) conversion to binary fingerprint

3. Haar Wavelet Transform. For each spectral image, we compute the two-
dimensional discrete Haar wavelet transform.

4. Coefficient Selection and Conversion to Binary. We select the K most
anomalous Haar coefficients (as described in Sect. 2.4) for each spectral image.
K is typically selected in the range of 200–800 (out of 2048). For the selected
coefficients, we retain only the sign value and set all other coefficients to zero.
We convert the sign values to binary using two bits per coefficient, resulting
in sparse binary fingerprints of dimension 4096 with K non-zeros.

2.3 Similarity Search

The computational efficiency of FAST comes from the use of locality-sensitive
hashing [2] to perform a fast approximate similarity search. The Jaccard simi-
larity coefficient quantifies the similarity between fingerprints. In the similarity
search step, hash signatures are generated using MinHash [4] to preserve the
Jaccard similarity, and LSH is used to identify fingerprints with similar signa-
tures. The use of MinHash and LSH provides a significant improvement over the
quadratic scaling of a brute-force all-to-all search. For instance, when applied
to one week of continuous data, FAST has demonstrated a factor 140 speed-up
over the brute-force search and detected 89 events compared with 24 events in
the earthquake catalog (see [8] for details).

2.4 Haar Coefficient Selection

The effectiveness of similarity search is highly dependent upon the data repre-
sentation. Fingerprints must be discriminative, that is similar waveforms map
to similar fingerprints under the Jaccard metric. The imbalanced data set poses
an additional challenge; the signals of interest, similar earthquake waveforms,
appear infrequently in data dominated by background noise. In our template-
free search, the potential for false detections is high because we search the full
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seismic data record for similar pairs of waveforms to identify weak earthquake
signals. Therefore we require fingerprints corresponding to background signals
to be mutually dissimilar, even in the presence of persistent noise sources, to
distinguish weak seismic signals while also limiting the number of false alarms.

The original feature extraction approach, following Waveprint, creates a com-
pact representation using Haar wavelets by retaining the coefficients that are
largest in magnitude. While this approach has been successfully applied in audio
fingerprinting, when it is applied to seismic data the resulting fingerprints provide
an inefficient representation; the largest magnitude coefficients often belong to
a subset of frequently selected coefficients, while the majority of the coefficients
are rarely selected. For instance, on a test data set with K = 400 selected coef-
ficients, 16% of the coefficients are “frequently selected” (i.e. active in at least
25% of fingerprints) while 50% are “rarely selected” (active in fewer than 1% of
fingerprints). This inefficiency impacts the performance of earthquake similarity
search by increasing the average similarity between “background” fingerprints,
thus making it more difficult to distinguish weak earthquake signals. Therefore
we adjust our approach to select coefficients that are more discriminative with
respect to background signals.

We select the Haar coefficients that the most discriminative or anomalous,
rather than those that are largest in magnitude. To achieve this, we compute
adjusted Haar coefficients by standardizing each coefficient based on its distri-
bution across the full, background-dominated data set. We model the unknown
coefficient distributions using simple statistics: with mean and standard devia-
tion (Z-score), or with the median and median absolute deviation (MAD). These
metrics allow us to choose coefficients that are not largest in magnitude, but
farthest on the tails of the distribution. Empirically, this approach suppresses
detections of persistent noise sources while maintaining high accuracy on earth-
quake signals (Fig. 3). We compare these fingerprinting schemes in Sect. 3.1.

Fig. 3. Comparison of fingerprinting schemes applied to background noise. The Jaccard
similarities between the fingerprints are: 0.266 (original), 0.117 (Z-score), and 0.040
(MAD).
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3 Experiments

We compare the performance of the fingerprinting schemes described in Sect. 2.4
and demonstrate their accuracy for earthquake waveforms, then demonstrate
the performance of FAST on a planted waveform test set in which earthquake
waveforms are embedded in recorded background signals at known times and
signal-to-noise ratio. All data used in the tests below were recorded at Northern
California Seismic Network station CCOB, and sample earthquake waveforms
were selected using the Northern California Earthquake Catalog.

3.1 Performance of Feature Extraction

We compare the three feature extraction schemes described in the previous
section: (1) original, (2) Z-score-, and (3) MAD-adjusted fingerprints.

We test two criteria to measure the quality of fingerprints for our earthquake
detection problem: fingerprint accuracy and baseline similarity. Accuracy is a
measure of the quality of the fingerprints of earthquake waveforms for similarity-
based detection under additive noise. Baseline similarity quantifies the similarity
between background fingerprints in the presence of persistent noise to estimate
false detection rates.

To assess accuracy, we compare the fingerprints of clean earthquake wave-
forms to low signal-to-noise versions of the same waveform embedded in noise:

accuracy(i, j) = jaccard
(
FP(x(i)), FP(αx(i) + n(j))

)
, (1)

where FP is the feature extraction operation, x(i) is the i-th earthquake wave-
form, n(j) is the j-th background waveform, and α is a scaling factor to control
the signal-to-noise ratio (SNR). We use waveforms from 300 known earthquakes
and embed each one in 10 noise segments at a low SNR ranging from 1.0 to 5.0.
To test the robustness of the fingerprints, the signals were bandpass filtered to
1–10Hz and include persistent noise in the 1.5–3.5Hz range. We directly com-
pute the Jaccard similarity between the clean and noisy fingerprints and report
the median for each feature extraction scheme in Table 1. The MAD-adjusted
fingerprints consistently have the highest accuracy.

Table 1. Median Jaccard similarity of clean and low-SNR earthquake waveforms

SNR Fingerprint accuracy

Original Z-score MAD

1.0 0.3093 0.3629 0.4760

2.0 0.5123 0.6736 0.7279

4.0 0.7354 0.8561 0.8735

The baseline similarity distribution is estimated from the Jaccard similarities
for 5000 pairs of background fingerprints:
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baseline(k, ℓ) = jaccard
(
FP(n(k)), FP(n(ℓ))

)
. (2)

The similarity between background fingerprints is substantially lower for MAD-
and Z-score adjusted fingerprints than for the original top magnitude finger-
prints, with median Jaccard similarities of 0.047, 0.071, and 0.185, respectively.

’In order to maintain high overall precision in an imbalanced data set,
we require both high accuracy for fingerprints and low baseline similarity to
limit false detections. We characterize the trade-off between false detections and
missed detections, specifically for the case of identifying low SNR earthquakes
similar to clear earthquake waveforms, using in a ROC curve (Fig. 4a). For a
given Jaccard similarity threshold, the true positive rate is defined as the rate
at which the accuracy exceeds this threshold, and the false positive rate is the
rate at which the baseline similarity exceeds the same threshold. We also con-
sider the more challenging and relevant case in which we seek to identify pairs
of similar low SNR earthquake waveforms, i.e. both instances of the waveform
include additive noise in a modified accuracy formula (Fig. 4b).

3.2 Detection Performance

To have a clear ground truth for measuring detection performance, we inject
real earthquake waveforms into a dataset consisting of 16 hours of recorded
background signal. Twelve pairs of known event waveforms are embedded in the
background at low SNR. We report the results for MAD-adjusted fingerprints
with K=400 non-zeros, and 100 hash tables with 4 hash functions per table in
the LSH search. The detection statistic is the fraction of hash tables in which
a fingerprint appears in the same hash bucket as its nearest neighbor. FAST
successfully identifies all 24 low SNR events with only 4 false detections (85.71%
precision). FAST has shown promising initial results on real earthquake sequence

Fig. 4. Trade-off between detection rate for weak signals (SNR 1.0) and false detections.
Multiple lines represent results for several different values of K.
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data, detecting previously unknown events with a manageable number of false
detections in months of continuous data.

4 Discussion

In this paper, we present an application of approximate similarity search with
LSH to the problem of earthquake detection in continuous seismic data. This
work represents a new direction for waveform-similarity-based earthquake detec-
tion that does not require prior knowledge of event waveforms and has suf-
ficient computational efficiency to allow for application to long-duration data
that would not be feasible using a brute-force search. Our initial experiments
with FAST demonstrate that this approach can successfully detect previously
unknown small earthquakes using blind similarity search. Furthermore, we have
demonstrated that modifications to audio fingerprinting methods based on the
empirical data distribution can improve accuracy on imbalanced data sets, which
contain relatively few pairs of moderate-to-high similarity. Scalable similarity
search has the potential to impact both the study of earthquakes and earth and
environmental monitoring more broadly. Imbalanced data sets appear in many
of these applications, such as acoustic recordings used for mining bioacoustic
soundscapes in ecological studies [7], and we believe the techniques developed
for FAST can be applied in these domains.

Acknowledgments. This research was supported by NSF grant EAR-1551462 and
by the Southern California Earthquake Center (contribution no. 6325). Waveform data,
metadata, or data products for this study were accessed through the Northern Califor-
nia Earthquake Data Center, doi:10.7932/NCEDC. We thank Ossian O’Reilly for his
assistance with the hashing techniques used in this work.

References

1. Allen, R.: Automatic phase pickers: their present use and future prospects. Bull.
Seismol. Soc. Am. 72(6B), S225–S242 (1982)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008)

3. Baluja, S., Covell, M.: Waveprint: efficient wavelet-based audio fingerprinting. Pat-
tern Recogn. 41(11), 3467–3480 (2008)

4. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000)

5. Brown, J.R., Beroza, G.C., Shelly, D.R.: An autocorrelation method to detect low
frequency earthquakes within tremor. Geophys. Res. Lett. 35(16), L16305 (2008)

6. Gibbons, S.J., Ringdal, F.: The detection of low magnitude seismic events using
array-based waveform correlation. Geophys. J. Int. 165(1), 149–166 (2006)

7. Servick, K.: Eavesdropping on ecosystems. Science 343(6173), 834–837 (2014)
8. Yoon, C.E., O’Reilly, O., Bergen, K.J., Beroza, G.C.: Earthquake detection through

computationally efficient similarity search. Sci. Adv. 1(11) (2015)


	Scalable Similarity Search in Seismology: A New Approach to Large-Scale Earthquake Detection
	1 Introduction
	2 Our Approach: FAST Earthquake Detector
	2.1 Data
	2.2 Feature Extraction
	2.3 Similarity Search
	2.4 Haar Coefficient Selection

	3 Experiments
	3.1 Performance of Feature Extraction
	3.2 Detection Performance

	4 Discussion
	References


