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Supplementary Materials 

Continuous Data Time Gaps 

The selected week of continuous data from the NCEDC contained 7 time gaps, with the longest 

time gap around 14 minutes in duration. We stitched together the time series data, and placed 

uncorrelated white Gaussian noise in the time gaps, scaled by the mean and standard deviation of 

1000 data samples on either end of the time gap. We confirmed that FAST did not detect any 

spurious events in or near the time gaps filled with synthetic noise. 

Detection on Synthetic Data 

We performed a synthetic test to compare objectively the detection performance of FAST against 

a reference autocorrelation code. Our synthetic data consisted of scaled-down earthquake 

waveforms inserted at known times into noisy seismic data (7, 8), which provides ground truth. 

We extracted broadband noise from the N-S component of CCOB (Figure S11A) during the first 

12 hours of 2011-01-09. To simulate a repeating earthquake signal that FAST and 

autocorrelation should detect, we took a 10-second catalog earthquake waveform at 553-563 s 

(Figure S11B) in the CCOB data, multiplied it by a scaling factor c, and inserted it 24 different 

times into the noisy data. We also added a non-repeating earthquake signal, which we do not 

expect either algorithm to detect, by taking a different 10-second earthquake waveform (Figure 

S11C), scaling it by the same factor c, and planting it once into the noisy data. 

We define the snr for the synthetic data as the ratio of the signal power to the noise 

power: 
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where the signal amplitude Asignal and noise amplitude Anoise are root-mean-squared (rms) values 



  

calculated from 10-second time windows (a1, a2, … , an), with n = 200 samples (for 20 sps data): 

     

Arms = 1

n
a1

2 + a2
2 +�+ an

2( )     (10) 

To compute Asignal, we used the 10-second catalog earthquake waveform at 553-563 s, scaled by 

the factor c. For Anoise, we computed the average of the Arms values for 10-second time windows 

at the 24 times in the noisy data, prior to inserting the repeating earthquake signal. 

Since we have ground truth for the synthetic data, we can quantify detection errors made 

by autocorrelation and FAST as we adjust their detection thresholds. At one particular threshold, 

classifications are correct when the algorithm detects an event where one truly was planted (true 

positive: TP), or fails to detect an event where one was not planted (true negative: TN). 

Classification errors occur when we falsely detect an event where one was not planted (false 

positive: FP), or we fail to detect an event where one actually was planted (false negative: FN). 

Precision is the fraction of identified detections that are true event detections (44): 

Precision = TP

TP + FP
    (11) 

and recall is the fraction of true events that were correctly identified as event detections (44): 

Recall = TP

TP + FN
     (12) 

Changing the detection threshold results in different values for TP and FP, which can be used to 

trace out a curve called the precision-recall curve. Figure S12 shows hypothetical precision- 

recall curves from three different algorithms. With perfect performance, where both FP and FN 

are zero, precision and recall are equal to one, at the upper right corner; however, there usually is 

a trade-off between these metrics, depending on the detection threshold. If the threshold is too 

low, recall will be high since we do not miss any events, but precision will be low since there 



  

will be an increase in false detections. But if the threshold is too high, precision will be high 

since false detections are rejected, but recall may be low since we may also fail to detect actual 

events. We should set the threshold to the best compromise for the particular application. 

Figure S13 displays synthetic test detection results, where the repeating earthquake 

signal was scaled by three different factors c: 0.05, 0.03, 0.01, with associated snr values from 

Eq. 9 and 10. We show synthetic data with planted, scaled waveforms and detection results as 

precision-recall curves for both autocorrelation and FAST. Table 1 contains FAST parameter 

values that we used, and Table S1 displays parameters for the reference autocorrelation code. 

These are the same values used for detection in real data, except here we varied event detection 

thresholds to compute precision-recall curves; these thresholds are in units of CC for 

autocorrelation and FAST similarity for FAST. For c = 0.05 (snr = 7.37), both autocorrelation 

and FAST achieve perfect precision and recall (Figure S13B), finding all 24 planted events 

without any false positives. For c = 0.03 (snr = 2.65), autocorrelation still has perfect precision 

and recall, but FAST starts to trade off precision against recall (Figure S13D). For c = 0.01 (snr 

= 0.29), neither autocorrelation nor FAST detect any of the planted waveforms (Figure S13F). 

As expected, neither autocorrelation nor FAST detected the non-repeating planted waveform. 

We conclude from the synthetic test results that autocorrelation is a more sensitive detector than 

FAST for detecting low snr signals. But FAST performs on par with autocorrelation for 

moderate values of snr, with a significantly reduced computational cost. This is consistent with 

the fact that FAST makes approximations in both the feature extraction and similarity search 

steps, while autocorrelation performs a comprehensive, precise comparison. 

Reference Code: Autocorrelation 

Autocorrelation partitions the continuous data into N short overlapping time windows, and 



  

computes N(N-1)/2 normalized CC values between all possible window pairs using Eq. 1. Using 

a time window length of M = 200 samples (10 s), and τw = 2 samples (0.1 s) as the lag between 

adjacent time windows (Table S1), we found that N = 6,047,901, which is about 10 times greater 

than Nfp = 604,781. This factor of 10 difference is attributed to the use of a 1 s lag between FAST 

fingerprints, compared to a 0.1 s lag for autocorrelation. 

We use a “sliding window” implementation of autocorrelation that avoids redundant 

computation of the dot product in the CC (Eq. 1). The dot product can be broken up into three 

parts: two small boundary segments and one large interior segment, since there is a large amount 

of overlap between adjacent time windows. We compute the dot product for the next window 

pair by reusing the computation from the previous interior segment and adjusting for boundary 

segments. Our autocorrelation implementation is configured to run in parallel on up to 1000 

processors with the Message Passing Interface (MPI), although we report runtime results on 1 

processor for a fair comparison with FAST. 

Our autocorrelation code outputs only time window pairs with CC above an initial 

threshold, defined by βd, where we used β = 5 and d is the median absolute deviation (MAD) 

defined with the L1 matrix norm as: 
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where CC(
�
a,
�
b)  is the CC between windows 

�
a  and 

�
b  in Eq. 1. We assume a normal 

distribution of correlation coefficients for our large value of N from the central limit theorem, but 

use MAD as a detection statistic because it is more robust to outliers (8). 

Near-Repeat Exclusion of Similar Pairs 

A query fingerprint will always identify itself as a similar fingerprint in the database, but this 



  

match is trivial and of no interest to detection. Also, we are not interested in “near-repeat” pairs 

where a fingerprint is reported as similar to itself, but offset by a few time samples. Therefore, 

we use a “near-repeat exclusion” parameter, nr = 5, to avoid returning any fingerprint within nr 

samples of the search query fingerprint as a matching similar fingerprint. Since the fingerprint 

lag is 1 s, nr = 5 samples is equivalent to 5 seconds (Table 1). 

In the same way, we want to avoid autocorrelation output pairs that consist of a time 

window correlated with itself, so we use a “near-repeat exclusion” parameter, nr = 50, to avoid 

returning any time window within nr samples of the current window as a similar waveform. For a 

0.1 s time window lag, nr = 50 samples is equivalent to 5 seconds (Table S1). 

Postprocessing and Thresholding 

Post-processing and thresholding are required to convert a list of pairs of similar fingerprint 

times to a list of earthquake detection times. First, the list of pairs can have near-duplicate pairs 

with FAST similarity above the event detection threshold, when they really represent the same 

pair with slight time offsets (red squares in Figure S8). For example, Table S4 shows a list of 

near-duplicate pairs that actually represent a single pair, so we keep only the single pair with the 

highest similarity 0.57, and remove the rest of the pairs within 21 seconds of the times for the 

highest similarity pair (Table 1). 

After removing near-duplicate pairs, we create a list of event detection times. We sort the 

pairs in decreasing order of similarity, then add each event in the pair to the detection list. 

Sometimes we encounter a near-duplicate event: for example, pair (245266 s, 1335 s) has 

similarity 0.41, so we add both events to the detection list, then later we have pair (1332 s, 547 

s), with lower similarity 0.39. We classify the 1332 s event as a near-duplicate of the 1335 s 

event, since they are within 21 seconds of each other (Table 1), and we do not add the 1332 s 



  

event to the list. After removing near-duplicate events, we have a list of earthquakes detected by 

FAST; each event is defined by its time in the continuous data, and its FAST similarity. 

We apply these same methods to convert a list of pairs of similar time windows, output 

from autocorrelation, to a list of detection times with CC values. We use a 21-second window to 

eliminate near-duplicate pairs and events (Table 1, Table S1): the minimum time required for a 

10 s long fingerprint (Table 1) and a 10 s long autocorrelation window (Table S1) to avoid 

overlap. 

 

 

 

Figure S1: Illustration of comparison between many-to-many search methods for similar 

pairs of seismic events. Each grid square represents a pair of waveforms (or fingerprints) from 

two different times in the continuous data. Only upper triangular parts of these symmetric 

matrices are shown. (A) Autocorrelation requires comparing all possible pairs of waveforms 

(red, black) to find a tiny fraction of highly similar events (black). Most of the computational 

effort is wasted on dissimilar event pairs (red), where the number of pairs grows quadratically 

with the number of waveforms N. (B) FAST uses LSH to focus on a small number of candidate 

pairs (red, black) that are likely to be highly similar, in order to find seismic event pairs (black) 

while avoiding wasteful computation of dissimilar pairs (white). 

 

 



  

 
 
Figure S2: Twenty-second catalog earthquake waveforms, ordered by event time in 1 week 

of continuous data from CCOB.EHN (bandpass, 4 to 10 Hz). (A) FAST detected 21 (blue) 

out of 24 catalog events within the region of interest in Figure 2. (B) False negatives: FAST did 

not detect 3 (black) out of 24 catalog events in this data. Autocorrelation detected all 24 catalog 

events. 



  

 

 

Figure S3: Catalog events missed by FAST, detected by autocorrelation. (Left column) 

Autocorrelation found these 3 catalog events (blue) because their initial phase arrival matched 

that of another earthquake (red) with high CC above 0.9. (Right column) Five seconds later, the 

normalized waveforms of the catalog event (blue) and its matching earthquake (red) are not 



  

similar, with low CC values. 

 

 

 

Figure S4: Twenty-second new (uncataloged) earthquake waveforms detected by FAST, 

ordered by event time in 1 week of continuous data from CCOB.EHN (bandpass, 4 to 10 

Hz); FAST found a total of 68 new events. (A) FAST detected 43 new events that 

autocorrelation also found. (B) FAST detected 25 new events that were missed by 

autocorrelation. 



  

 

Figure S5: FAST detection errors. 20-second waveforms ordered by detection time in one 

week of continuous data from CCOB.EHN, bandpass 4-10 Hz. (A) False positives: FAST 

returned 12 detections (green), not found by autocorrelation, that we classified as false detections 

(noise) upon visual inspection. (B) False negatives: FAST missed 19 uncataloged events (black) 

found by autocorrelation, confirmed by visual inspection to be legitimate earthquakes, so these 

are missed detections. 

 



  

 

 

 

Figure S6: Example of uncataloged earthquake detected by FAST, missed by 

autocorrelation. New uncataloged event (11296 s, blue) was detected by FAST to be similar to 

a catalog event (988 s, red), but was not detected by autocorrelation. The overall waveform 

shapes are similar, but their alignment is not precise. 

 

 

 

 

 

 



  

 

 

 

Figure S7: Histogram of similar fingerprint pairs output from FAST. It is binned by FAST 

similarity, with bin size 0.04. The number of pairs in each bin is on a log scale, and near- 

duplicate pairs are included. For Nfp = 604,781 fingerprints, there are Nfp(Nfp - 1)/2 ~ 1.8 · 1011 

possible fingerprint pairs (red). FAST outputs 978,904 candidate pairs (blue, green) with 

similarity of at least the initial threshold of 0.04 (Table 1), which constitute only 0.0005% of the 

total number of possible pairs, although the database stores additional pairs in memory. After 

applying the higher event detection threshold of 0.19 (Table 1), 918 pairs remain (green). Further 

post-processing results in a list of 101 detections, consisting of 89 true events and 12 false 

detections. 
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Figure S8: Schematic illustration of FAST output as a similarity matrix for one channel of 

continuous seismic data. As in Figure S1, each square represents a pair of fingerprints (which 

can be mapped back to waveforms) from two different times (blue, green) in the continuous data. 

This symmetric matrix is very sparse, since LSH restricts our search to highly similar fingerprint 

pairs; black squares with high similarity indicate when similar waveforms occur. The FAST 

similarity metric is the fraction of hash tables containing each fingerprint pair in the same hash 

bucket. Further processing and thresholding, including removal of near-duplicate pairs (red 

squares), is required to obtain a list of event detection times. 

 

 

 

 



  

 

 

 

 

 

 

Figure S9: CC and Jaccard similarity for two similar earthquakes. (A) Two similar 

normalized earthquake waveforms, from 1266.95 s (blue) and 1629 s (red) in the CCOB.EHN 

continuous data on 2011-01-08, have a high CC = 0.9808 (Eq. 1), overlapping almost perfectly. 

(B) Corresponding fingerprints of these waveforms also have high overlap, with a high Jaccard 

similarity of 0.7544 (Eq. 5). White: both fingerprints are 1; red: one fingerprint is 1 and the other 

is 0; black: both fingerprints are 0. Here the Jaccard similarity J(A, B) equals the number of white 

elements (where both fingerprints A and B are 1) divided by the number of white elements plus 

the number of red elements (where either A or B is 1, but not both). 

 



  

 

Figure S10: Theoretical probability of a successful search as a function of Jaccard 

similarity. We plot Eq. 7 while varying parameters r, b, v one at a time. Red curves (same in all 

plots) indicate our choice of FAST parameters (Table 1): r = 5, b = 100, and v = 19. (A) Modify 

number of hash functions per table r, keep b = 100 and v = 19 constant. As r increases, the curve 

shifts to the right, requiring higher Jaccard similarity for successful search. (B) Modify total 

number of hash tables b, keep r = 5 and v = 19 constant. As b increases, the curve moves to the 

left: more hash tables enable finding fingerprint pairs with lower Jaccard similarity. (C) Modify 

threshold for number of hash tables v with the pair in the same bucket, keep r = 5 and b = 100 

constant. As v increases, the curve moves to the right, with steeper slope: Jaccard similarity must 

be higher for successful search, and there is a sharper cutoff for detections. 



  

 

 

 

Figure S11: Synthetic data generation. (A) We extracted a noisy section of continuous data 

from the first 12 hours of 2011-01-09 at station CCOB.EHN - notice the low amplitude scale. (B) 

To simulate a repeating earthquake signal, we took a 10-second catalog earthquake waveform at 

553-563 s, starting from 2011-01-08 00:00:00 in the CCOB.EHN data, multiplied it by a scaling 

factor c, and inserted it 24 times into the noisy data, every 30 minutes starting at 900 s: 900 s, 

2700s, ... , 42300 s. (C) We also added a non-repeating earthquake signal by taking a 10-second 

earthquake waveform at 314075-314085 s, scaling it by the same factor c, and planting it once 

into the noisy data at 19800 s. 

 

 

 

 



  

 

 

 

 

Figure S12: Hypothetical precision-recall curves from three different algorithms. Each 

point along the curve represents a different detection threshold. Ideally, if there are no FP or FN 

errors, both precision and recall would equal 1, so the curve would touch the upper-right corner. 

But there usually is a trade-off between these metrics depending on the detection threshold. The 

algorithm for the blue curve has the best detection performance since we can set a threshold such 

that both precision and recall are close to 1. The algorithm for the green curve is not as good: we 

can have high precision or high recall, but not both at the same time. The red curve displays the 

worst performance: both precision and recall are low, regardless of threshold. 

 

 

 

 



  

 

Figure S13: Synthetic test results for three different scaling factors c: 0.05 (top), 0.03 

(center), 0.01 (bottom), with snr values provided. We show synthetic data with planted, scaled 

waveforms (left) and detection results as precision-recall curves (right) for both autocorrelation 

(red) and FAST (blue), generated by setting detection thresholds in terms of CC and FAST 

similarity, respectively. (A) For c = 0.05, planted waveforms are visible at every 30 minutes in 

the synthetic data; (B) both autocorrelation and FAST achieve perfect precision and recall, 

finding all 24 planted events without any false positives. (C) For c = 0.03, it is more difficult to 

spot the planted waveforms; (D) here autocorrelation still has perfect precision and recall, but 

FAST trades off precision against recall. (E) For c = 0.01, planted waveforms are below the 

noise level, and (F) both autocorrelation and FAST have poor detection performance. 



  

Table S1: Autocorrelation input parameters. These were used for detection in synthetic data 

(except the event detection CC threshold), and in one week of CCOB.EHN data. 

Autocorrelation Parameter Value 

Time series window length 200 samples (10 s) 

Time series window lag 2 samples (0.1 s) 

Similarity search: near-repeat exclusion parameter 50 samples (5 s) 

Scale factor β for MAD, for initial threshold 5 

Event detection CC threshold 0.818 

Near-duplicate pair and event elimination time window 21 s 

FAST and catalog comparison time window 19 s 

 

 

 

Table S2: NCSN catalog events. Double-difference catalog events between 2011-01-08 

00:00:00 and 2011-01-15 00:00:00, in region of interest between 37.1°-37.4° N, and 121.8°- 

121.5° W. “Catalog time” is time in seconds since 2011/01/08 00:00:00. 

Date Time Catalog 

Time (s) 

Latitude Longitude Depth 

(km) 

Magnitude Magt Event ID 

2011/01/08 00:09:13.92 553.92 37.28722 -121.66277 6.318 1.17 Md 71506870 

2011/01/08 00:10:16.74 616.74 37.28678 -121.66014 6.212 4.10 Mw 71506865 

2011/01/08 00:13:12.46 792.46 37.28462 -121.66060 6.326 2.53 Md 71506875 

2011/01/08 00:16:33.87 993.87 37.28108 -121.65750 6.367 0.84 Md 71506885 

2011/01/08 00:21:04.18 1264.18 37.28916 -121.66484 6.251 2.04 Md 71506890 

2011/01/08 00:27:06.20 1626.20 37.28932 -121.66433 6.491 0.89 Md 71506895 

2011/01/08 00:29:46.77 1786.77 37.29155 -121.66685 6.212 1.12 Md 71506900 

2011/01/08 01:20:59.12 4859.12 37.28389 -121.66020 6.272 2.09 Md 71506910 

2011/01/08 02:16:52.14 8212.14 37.24642 -121.63261 5.026 1.22 Md 71506925 

2011/01/08 06:22:05.43 22925.43 37.29919 -121.67361 6.342 1.46 Md 71506995 

2011/01/08 14:23:25.53 51805.53 37.29459 -121.66943 6.230 0.97 Md 71507125 

2011/01/09 17:56:07.84 150967.84 37.26086 -121.64450 4.372 0.93 Md 71507625 

2011/01/09 18:13:59.04 152039.04 37.12304 -121.52761 7.144 3.06 ML 71507630 

2011/01/09 18:30:18.94 153018.94 37.12271 -121.52776 7.071 2.96 ML 71507640 

2011/01/09 19:45:26.72 157526.72 37.29417 -121.66914 6.250 0.85 Md 71507675 

2011/01/09 20:52:29.02 161549.02 37.29811 -121.67268 6.342 1.20 Md 71507705 

2011/01/09 22:13:21.84 166401.84 37.12062 -121.52636 7.079 1.47 Md 71507720 

2011/01/10 00:22:24.37 174144.37 37.12536 -121.52899 7.123 1.86 Md 71507750 

2011/01/10 00:42:12.14 175332.14 37.12490 -121.52881 7.086 1.66 Md 71507765 

2011/01/11 15:14:36.87 314076.87 37.27168 -121.65401 3.504 0.89 Md 71508480 

2011/01/11 21:32:07.12 336727.12 37.28041 -121.66122 3.535 0.92 Md 71508655 

2011/01/12 04:28:55.86 361735.86 37.13208 -121.57879 5.070 1.47 Md 71508765 

2011/01/12 13:46:18.83 395178.83 37.29899 -121.67331 6.358 1.06 Md 71509005 

2011/01/14 18:01:36.00 583296.00 37.29475 -121.67558 2.701 2.02 Md 71510000 

 

 



  

Table S3: Scaling test days. Specific days of continuous data from CCOB.EHN used for the 

memory and runtime scaling tests in Figure 4. 

Data Duration Specific days (inclusive) of continuous data 

1 day 2011-01-08 

3 days 2011-01-08 to 2011-01-10 

1 week (7 days) 2011-01-08 to 2011-01-14 

2 weeks (14 days) 2011-01-08 to 2011-01-21 

1 month (31 days) 2011-01-08 to 2011-02-07 

3 months (90 days) 2011-01-01 to 2011-03-31 

6 months (181 days) 2011-01-01 to 2011-06-30 

 

 

Table S4: Example of near-duplicate fingerprint pairs detected by FAST, which represent 

the same pair with slight time offsets. We keep only the single pair (395173, 161543) with the 

highest similarity 0.57, and discard the rest. 

Time 1 (s) Time 2 (s) Similarity 

395170 161540 0.49 

395171 161541 0.51 

395172 161542 0.5 

395173 161543 0.57 

395174 161544 0.4 

395175 161545 0.42 

 




