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Supplementary Materials

Continuous Data Time Gaps

The selected week of continuous data from the NCED@ained 7 time gaps, with the longest
time gap around 14 minutes in duration. We stitctoggbther the time series data, and placed
uncorrelated white Gaussian noise in the time gsqaed by the mean and standard deviation of
1000 data samples on either end of the time gapcddérmed that FAST did not detect any

spurious events in or near the time gaps filledh witnthetic noise.
Detection on Synthetic Data

We performed a synthetic test to compare objegtitred detection performance of FAST against
a reference autocorrelation code. Our syntheti@ dainsisted of scaled-down earthquake
waveforms inserted at known times into noisy seisdata ¢, 8), which provides ground truth.
We extracted broadband noise from the N-S companfe@GCOB Eigure S11A) during the first
12 hours of 2011-01-09. To simulate a repeatingthgaeke signal that FAST and
autocorrelation should detect, we took a 10-seamtdlog earthquake waveform at 553-563 s
(Figure S11B) in the CCOB data, multiplied it by a scalingtfarcc, and inserted it 24 different
times into the noisy data. We also added a nonatepe earthquake signal, which we do not
expect either algorithm to detect, by taking aeté#ht 10-second earthquake wavefoFig(re
S11C), scaling it by the same factgrand planting it once into the noisy data.

We define thesnr for the synthetic data as the ratio of the signahgr to the noise

power:

T :[:9@] 9)

where the signal amplitud&g.a and noise amplitud@nis are root-mean-squared (rms) values

noise



calculated from 10-second time windoves, @y, ... , an), with n = 200 samples (for 20 sps data):

A= (e 4 4] a0

To computeAsgna, We used the 10-second catalog earthquake waveibb83-563 s, scaled by
the factorc. For Aise, We computed the average of #gs values for 10-second time windows
at the 24 times in the noisy data, prior to insgrthe repeating earthquake signal.

Since we have ground truth for the synthetic dagcan quantify detection errors made
by autocorrelation and FAST as we adjust theirctite thresholds. At one particular threshold,
classifications are correct when the algorithm cistan event where one truly was planted (true
positive: TP), or fails to detect an event wheree amas not planted (true negative: TN).
Classification errors occur when we falsely det@ttevent where one was not planted (false
positive: FP), or we fail to detect an event whame actually was planted (false negative: FN).

Precision is the fraction of identified detectidhat are true event detectiordgl):

Precision =P (11)
TP+FP

and recall is the fraction of true events that wameectly identified as event detectiodg)

Reca”:L
TP+FN

(12)
Changing the detection threshold results in differalues for TP and FP, which can be used to
trace out a curve called the precision-recall cuRigure S12 shows hypothetical precision-
recall curves from three different algorithms. Wjtterfect performance, where both FP and FN
are zero, precision and recall are equal to ontheatipper right corner; however, there usually is

a trade-off between these metrics, depending ordétection threshold. If the threshold is too

low, recall will be high since we do not miss amemts, but precision will be low since there



will be an increase in false detections. But if theeshold is too high, precision will be high
since false detections are rejected, but recall bealow since we may also fail to detect actual
events. We should set the threshold to the bespamise for the particular application.

Figure S13 displays synthetic test detection results, whée repeating earthquake
signal was scaled by three different factar.05, 0.03, 0.01, with associatsa values from
Eg. 9 and 10. We show synthetic data with plansed]ed waveforms and detection results as
precision-recall curves for both autocorrelatiord &AST. Table 1 contains FAST parameter
values that we used, afichble S1 displays parameters for the reference autocoiwalatode.
These are the same values used for detection linlaém except here we varied event detection
thresholds to compute precision-recall curves; éhdsresholds are in units of CC for
autocorrelation and FAST similarity for FAST. For= 0.05 énr = 7.37), both autocorrelation
and FAST achieve perfect precision and redaigre S13B), finding all 24 planted events
without any false positives. Far= 0.03 gnr = 2.65), autocorrelation still has perfect preaisio
and recall, but FAST starts to trade off precisagainst recallKigure S13D). Forc = 0.01 énr
= 0.29), neither autocorrelation nor FAST detect ahthe planted waveforms$-igure S13F).

As expected, neither autocorrelation nor FAST deté¢he non-repeating planted waveform.
We conclude from the synthetic test results théda@urrelation is a more sensitive detector than
FAST for detecting lowsnr signals. But FAST performs on par with autocorielatfor
moderate values ahr, with a significantly reduced computational cdghis is consistent with
the fact that FAST makes approximations in both fdeure extraction and similarity search

steps, while autocorrelation performs a comprelvengrecise comparison.
Reference Code: Autocorrelation

Autocorrelation partitions the continuous data iMoshort overlapping time windows, and



computesN(N-1)/2 normalized CC values between all possibledain pairs using Eq. 1. Using
a time window length o = 200 samples (10 s), and = 2 samples (0.1 s) as the lag between
adjacent time windowsT@ble S1), we found thalN = 6,047,901, which is about 10 times greater
thanNs, = 604,781. This factor of 10 difference is atttdulito the use of a 1 s lag between FAST
fingerprints, compared to a 0.1 s lag for autodatian.

We use a “sliding window” implementation of automdation that avoids redundant
computation of the dot product in the CC (Eg. heTot product can be broken up into three
parts: two small boundary segments and one latgeion segment, since there is a large amount
of overlap between adjacent time windows. We comhé dot product for the next window
pair by reusing the computation from the previauegrior segment and adjusting for boundary
segments. Our autocorrelation implementation isfigared to run in parallel on up to 1000
processors with the Message Passing Interface (MRRough we report runtime results on 1
processor for a fair comparison with FAST.

Our autocorrelation code outputs only time windowirp with CC above an initial
threshold, defined byd, where we use@ = 5 andd is the median absolute deviation (MAD)
defined with the L1 matrix norm as:

1 1 N N .
d=—lccl, =57 2.2 /ccE b) (13

a=1 b=l
where CC(&,b) is the CC between windowd and b in Eg. 1. We assume a normal

distribution of correlation coefficients for ourrdge value oN from the central limit theorem, but

use MAD as a detection statistic because it is maast to outliersg).
Near-Repeat Exclusion of Similar Pairs

A query fingerprint will always identify itself ag similar fingerprint in the database, but this



match is trivial and of no interest to detectionsd@ we are not interested in “near-repeat” pairs
where a fingerprint is reported as similar to fisbut offset by a few time samples. Therefore,
we use a “near-repeat exclusion” parameiges 5, to avoid returning any fingerprint withim
samples of the search query fingerprint as a magckimilar fingerprint. Since the fingerprint
lag is 1 sn, =5 samples is equivalent to 5 seconds (Table 1).

In the same way, we want to avoid autocorrelatiatpat pairs that consist of a time
window correlated with itself, so we use a “negre& exclusion” parametar;, = 50, to avoid
returning any time window within, samples of the current window as a similar wavafdfor a

0.1 s time window lagy; = 50 samples is equivalent to 5 seconidab(e S1).
Postprocessing and Thresholding

Post-processing and thresholding are required twerd a list of pairs of similar fingerprint
times to a list of earthquake detection times.tFtre list of pairs can have near-duplicate pairs
with FAST similarity above the event detection 8ireld, when they really represent the same
pair with slight time offsets (red squaresHigure S8). For exampleTable $4 shows a list of
near-duplicate pairs that actually represent alsipgir, so we keep only the single pair with the
highest similarity 0.57, and remove the rest of pags within 21 seconds of the times for the
highest similarity pair (Table 1).

After removing near-duplicate pairs, we createstdf event detection times. We sort the
pairs in decreasing order of similarity, then addle event in the pair to the detection list.
Sometimes we encounter a near-duplicate eventetample, pair (245266 s, 1335 s) has
similarity 0.41, so we add both events to the deirdist, then later we have pair (1332 s, 547
S), with lower similarity 0.39. We classify the 133 event as a near-duplicate of the 1335 s

event, since they are within 21 seconds of eacbrdfhiable 1), and we do not add the 1332 s



event to the list. After removing near-duplicate events, we have a list of earthquakes detected by
FAST; each event is defined by its time in the continuous data, and its FAST similarity.

We apply these same methods to convert a list of pairs of similar time windows, output
from autocorrelation, to a list of detection times with CC values. We use a 21-second window to
eliminate near-duplicate pairs and events (Table 1, Table S1): the minimum time required for a
10 s long fingerprint (Table 1) and a 10 s long autocorrelation window (Table S1) to avoid

overlap.
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Figure S1: lllustration of comparison between many-to-many search methods for similar
pairs of seismic events. Each grid square represents a pair of waveforms (or fingerprints) from
two different times in the continuous data. Only upper triangular parts of these symmetric
matrices are shown. (A) Autocorrelation requires comparing all possible pairs of waveforms
(red, black) to find a tiny fraction of highly similar events (black). Most of the computational
effort is wasted on dissimilar event pairs (red), where the number of pairs grows quadratically
with the number of waveforms N. (B) FAST uses LSH to focus on a small number of candidate
pairs (red, black) that are likely to be highly similar, in order to find seismic event pairs (black)
while avoiding wasteful computation of dissimilar pairs (white).
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Figure S2: Twenty-second catalog earthquake waveforms, ordered by event time in 1 week
of continuous data from CCOB.EHN (bandpass, 4 to 10 Hz). (A) FAST detected 21 (blue)
out of 24 catalog events within the region of interest in Figure 2. (B) False negatives: FAST did
not detect 3 (black) out of 24 catalog events in this data. Autocorrelation detected all 24 catalog
events.



Similar waveform pair

Similar waveform pair

A 0.6 w B 05 w
< — start 314070.05 s —— start 314075.05 s
) 0.4 —— start 444565.95 s —— Start 444570.95 s
O
B 0.2f
< (O] ()
b = B ¢ o A 3
m 2 2
O o S
g E-o2 £
=
o 04
o
IS -0.6
S CC=0.91045 CC=0.18481
-0.8 | | | | -0.5 I . | |
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
Similar waveform pair Similar waveform pair
" c 08 i i p 0.6 T T T
N ——start 336718.75 s — start 336723.75 s
- 0.6 04|
~ ——start 377465.15 s start 377470.15 s
N
N 0.2f
O
(22 [} L
- R 4
v ‘g s
E E E-02
|_
(@)} -
s 0.4
£ 04 0.6
U CC=0.91651 CC=-0.19879
—0.6 . w w w -0. s ‘ : :
0 2 4 6 8 10 0 8O 2 4 6 8 10
Time (s) Time (s)
Similar waveform pair Similar waveform pair
" E 1 : : : F 0.6 i i T
%) ——start 361730.15 s 04 ——start 361735.15 s
ﬁ 08 start 57585.65 s : — start 57590.65 s
Q 0.6 0.2}
O () ()
R T 04f 3 o
§ § 2o
g = 0.2f =2 -0.
|_
(@)} 0 -0.4
i)
S -0.2} -0.6¢
3 CC =0.92545 CC=-0.07191
-0.4 | | | | -0.8 I . | |
0 2 4 6 8 10 0 2 4 6 8 10

Time (s) Time (s)

Figure S3: Catalog events missed by FAST, detected by autocorrelation. (Left column)
Autocorrelation found these 3 catalog events (blue) because their initial phase arrival matched
that of another earthquake (red) with high CC above 0.9. (Right column) Five seconds later, the
normalized waveforms of the catalog event (blue) and its matching earthquake (red) are not



similar, with low CC values.

A FAST new events, FAST new events, B FAST new events,
also in autocorrelation also in autocorrelation not in autocorrelation
377588 sttt 537379 b 524516 [+4-——-dfrems
B L
377458 il‘ 537113 -»—«—-——ww{wﬂ»«— 519785 *
506661 b -
377222 524185 r-rpossetrsafpomecneon
314782 504882 +
I 489761 + 490170 p—rrreeifpscir
e T N
282208 480714 N 489944 [rirmmmfpor—r s
@ 245266 - © 480125 o © 489805+ +
© 2] ©
-t MWM-—— h—t - "
s 237276 447450/ » 5 489737 t
g 218909 " £ 446430 | 2 489696 iy
S 191275 * S S 489675 ¥
£ £ 446371 [riveisstiptpimocisssnresoss £ 489645 n
t 159891 Ao t € b
S Q 4460714 S 444646 oM
2 1530671 Mbmauteoeammmsrmenns 2 o
= 0 " = 444715 i = 429006 v
g 15211 " £ 444559y £ 427201 porpe
152081 |t p
H . N S 442362tk § 403900 +
g 90729 presr-tk # B 429853 bt N © 352902 Lo
® 70510 1& ® o © 322949
° 2 411557 [ttt °
10317 ¥ = b= 189017 jms—sh
< gosg I < 395075 P < 188987 —— it
1806 » 380207 pos-mrttpimammicrs— 176074+ e
1726 } 379059 e~ :22:2: o
-qq«-——-—++*4«-—e—«
" 378137 ——————fhbkivn
1335 ™ 63713 st
- —— U "
1156 Y 378051 11296+ o
826w b Y (-7 A— e ——— 7790 bestcrete ot e
| | 1 | | |
0 10 20 0 10 20 0 10 20
Time (s) Time (s) Time (s)

Figure S4: Twenty-second new (uncataloged) earthquake waveforms detected by FAST,
ordered by event time in 1 week of continuous data from CCOB.EHN (bandpass, 4 to 10
Hz); FAST found a total of 68 new events. (A) FAST detected 43 new events that
autocorrelation also found. (B) FAST detected 25 new events that were missed by
autocorrelation.
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Figure S5: FAST detection errors. 20-second waveforms ordered by detection time in one
week of continuous data from CCOB.EHN, bandpass 4-10 Hz. (A) False positives: FAST
returned 12 detections (green), not found by autocorrelation, that we classified as false detections
(noise) upon visual inspection. (B) False negatives: FAST missed 19 uncataloged events (black)
found by autocorrelation, confirmed by visual inspection to be legitimate earthquakes, so these
are missed detections.
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Figure S6: Example of uncataloged earthquake detected by FAST, missed by
autocorrelation. New uncataloged event (11296 s, blue) was detected by FAST to be similar to
a catalog event (988 s, red), but was not detected by autocorrelation. The overall waveform

shapes are similar, but their alignment is not precise.



" Histogram of similar fingerprint pairs from FAST

10 T T T T I T
Bl Candidate Pairs
[ I Detected Pairs
10! Bl Total Pairs

Count
H
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Similarity: Fraction of hash tables with fingerprint pair

Figure S7: Histogram of similar fingerprint pairs output from FAST. It is binned by FAST
similarity, with bin size 0.04. The number of pairs in each bin is on a log scale, and near-
duplicate pairs are included. For Ni, = 604,781 fingerprints, there are Ngp(Ngp - 1)/2 ~ 1.8 - 10%
possible fingerprint pairs (red). FAST outputs 978,904 candidate pairs (blue, green) with
similarity of at least the initial threshold of 0.04 (Table 1), which constitute only 0.0005% of the
total number of possible pairs, although the database stores additional pairs in memory. After
applying the higher event detection threshold of 0.19 (Table 1), 918 pairs remain (green). Further
post-processing results in a list of 101 detections, consisting of 89 true events and 12 false
detections.
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Figure S8: Schematic illustration of FAST output as a similarity matrix for one channel of
continuous seismic data. As in Figure S1, each square represents a pair of fingerprints (which
can be mapped back to waveforms) from two different times (blue, green) in the continuous data.
This symmetric matrix is very sparse, since LSH restricts our search to highly similar fingerprint
pairs; black squares with high similarity indicate when similar waveforms occur. The FAST
similarity metric is the fraction of hash tables containing each fingerprint pair in the same hash
bucket. Further processing and thresholding, including removal of near-duplicate pairs (red
squares), is required to obtain a list of event detection times.
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Figure S9: CC and Jaccard similarity for two similar earthquakes. (A) Two similar
normalized earthquake waveforms, from 1266.95 s (blue) and 1629 s (red) in the CCOB.EHN
continuous data on 2011-01-08, have a high CC = 0.9808 (Eqg. 1), overlapping almost perfectly.
(B) Corresponding fingerprints of these waveforms also have high overlap, with a high Jaccard
similarity of 0.7544 (Eqg. 5). White: both fingerprints are 1; red: one fingerprint is 1 and the other
is 0; black: both fingerprints are 0. Here the Jaccard similarity J(A, B) equals the number of white
elements (where both fingerprints A and B are 1) divided by the number of white elements plus
the number of red elements (where either A or B is 1, but not both).
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Figure S10: Theoretical probability of a successful search as a function of Jaccard
similarity. We plot Eq. 7 while varying parameters r, b, v one at a time. Red curves (same in all
plots) indicate our choice of FAST parameters (Table 1): r =5, b = 100, and v = 19. (A) Modify
number of hash functions per table r, keep b = 100 and v = 19 constant. As r increases, the curve
shifts to the right, requiring higher Jaccard similarity for successful search. (B) Modify total
number of hash tables b, keep r =5 and v = 19 constant. As b increases, the curve moves to the
left: more hash tables enable finding fingerprint pairs with lower Jaccard similarity. (C) Modify
threshold for number of hash tables v with the pair in the same bucket, keep r =5 and b = 100
constant. As v increases, the curve moves to the right, with steeper slope: Jaccard similarity must
be higher for successful search, and there is a sharper cutoff for detections.



Noise section from CCOB.EHN 2011-01-09, 12 hours
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Figure S11: Synthetic data generation. (A) We extracted a noisy section of continuous data
from the first 12 hours of 2011-01-09 at station CCOB.EHN - notice the low amplitude scale. (B)
To simulate a repeating earthquake signal, we took a 10-second catalog earthquake waveform at
553-563 s, starting from 2011-01-08 00:00:00 in the CCOB.EHN data, multiplied it by a scaling
factor c, and inserted it 24 times into the noisy data, every 30 minutes starting at 900 s: 900 s,
2700s, ..., 42300 s. (C) We also added a non-repeating earthquake signal by taking a 10-second
earthquake waveform at 314075-314085 s, scaling it by the same factor c, and planting it once
into the noisy data at 19800 s.
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Figure S12: Hypothetical precision-recall curves from three different algorithms. Each
point along the curve represents a different detection threshold. Ideally, if there are no FP or FN
errors, both precision and recall would equal 1, so the curve would touch the upper-right corner.
But there usually is a trade-off between these metrics depending on the detection threshold. The
algorithm for the blue curve has the best detection performance since we can set a threshold such
that both precision and recall are close to 1. The algorithm for the green curve is not as good: we
can have high precision or high recall, but not both at the same time. The red curve displays the
worst performance: both precision and recall are low, regardless of threshold.
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Figure S13: Synthetic test results for three different scaling factors c: 0.05 (top), 0.03
(center), 0.01 (bottom), with snr values provided. We show synthetic data with planted, scaled
waveforms (left) and detection results as precision-recall curves (right) for both autocorrelation
(red) and FAST (blue), generated by setting detection thresholds in terms of CC and FAST
similarity, respectively. (A) For ¢ = 0.05, planted waveforms are visible at every 30 minutes in
the synthetic data; (B) both autocorrelation and FAST achieve perfect precision and recall,
finding all 24 planted events without any false positives. (C) For ¢ = 0.03, it is more difficult to
spot the planted waveforms; (D) here autocorrelation still has perfect precision and recall, but
FAST trades off precision against recall. (E) For ¢ = 0.01, planted waveforms are below the
noise level, and (F) both autocorrelation and FAST have poor detection performance.



Table S1: Autocorrelation input parameters. These were used for detection in synthetic data
(except the event detection CC threshold), and in one week of CCOB.EHN data.

Autocorrelation Parameter

Value

Time series window length

200 samples (10 s)

Time series window lag

2 samples (0.1 s)

Similarity search: near-repeat exclusion parameter

50 samples (5 s)

Scale factor g for MAD, for initial threshold 5

Event detection CC threshold 0.818
Near-duplicate pair and event elimination time window 21s
FAST and catalog comparison time window 19s

Table S2: NCSN catalog events. Double-difference catalog events between 2011-01-08
00:00:00 and 2011-01-15 00:00:00, in region of interest between 37.1°-37.4° N, and 121.8°-
121.5° W. “Catalog time” is time in seconds since 2011/01/08 00:00:00.

Date Time Catalog | Latitude | Longitude Depth Magnitude | Magt | Event ID
Time (s) (km)

2011/01/08 | 00:09:13.92 553.92 37.28722 | -121.66277 6.318 1.17 Md | 71506870
2011/01/08 | 00:10:16.74 616.74 37.28678 | -121.66014 6.212 4.10 Mw | 71506865
2011/01/08 | 00:13:12.46 792.46 37.28462 | -121.66060 6.326 2.53 Md | 71506875
2011/01/08 | 00:16:33.87 993.87 37.28108 | -121.65750 6.367 0.84 Md | 71506885
2011/01/08 | 00:21:04.18 1264.18 | 37.28916 | -121.66484 6.251 2.04 Md | 71506890
2011/01/08 | 00:27:06.20 1626.20 | 37.28932 | -121.66433 6.491 0.89 Md | 71506895
2011/01/08 | 00:29:46.77 1786.77 | 37.29155 | -121.66685 6.212 1.12 Md | 71506900
2011/01/08 | 01:20:59.12 | 4859.12 | 37.28389 | -121.66020 6.272 2.09 Md | 71506910
2011/01/08 | 02:16:52.14 | 8212.14 | 37.24642 | -121.63261 5.026 1.22 Md | 71506925
2011/01/08 | 06:22:05.43 | 22925.43 | 37.29919 | -121.67361 6.342 1.46 Md | 71506995
2011/01/08 | 14:23:25.53 | 51805.53 | 37.29459 | -121.66943 6.230 0.97 Md | 71507125
2011/01/09 | 17:56:07.84 | 150967.84 | 37.26086 | -121.64450 4.372 0.93 Md | 71507625
2011/01/09 | 18:13:59.04 | 152039.04 | 37.12304 | -121.52761 7.144 3.06 ML | 71507630
2011/01/09 | 18:30:18.94 | 153018.94 | 37.12271 | -121.52776 7.071 2.96 ML | 71507640
2011/01/09 | 19:45:26.72 | 157526.72 | 37.29417 | -121.66914 6.250 0.85 Md | 71507675
2011/01/09 | 20:52:29.02 | 161549.02 | 37.29811 | -121.67268 6.342 1.20 Md | 71507705
2011/01/09 | 22:13:21.84 | 166401.84 | 37.12062 | -121.52636 7.079 1.47 Md | 71507720
2011/01/10 | 00:22:24.37 | 174144.37 | 37.12536 | -121.52899 7.123 1.86 Md | 71507750
2011/01/10 | 00:42:12.14 | 175332.14 | 37.12490 | -121.52881 7.086 1.66 Md | 71507765
2011/01/11 | 15:14:36.87 | 314076.87 | 37.27168 | -121.65401 3.504 0.89 Md | 71508480
2011/01/11 | 21:32:07.12 | 336727.12 | 37.28041 | -121.66122 3.535 0.92 Md | 71508655
2011/01/12 | 04:28:55.86 | 361735.86 | 37.13208 | -121.57879 5.070 1.47 Md | 71508765
2011/01/12 | 13:46:18.83 | 395178.83 | 37.29899 | -121.67331 6.358 1.06 Md | 71509005
2011/01/14 | 18:01:36.00 | 583296.00 | 37.29475 | -121.67558 2.701 2.02 Md | 71510000




Table S3: Scaling test days. Specific days of continuous data from CCOB.EHN used for the
memory and runtime scaling tests in Figure 4.

Data Duration Specific days (inclusive) of continuous data
1 day 2011-01-08

3 days 2011-01-08 to 2011-01-10

1 week (7 days) 2011-01-08 to 2011-01-14

2 weeks (14 days) 2011-01-08 to 2011-01-21

1 month (31 days) 2011-01-08 to 2011-02-07

3 months (90 days) 2011-01-01 to 2011-03-31

6 months (181 days) 2011-01-01 to 2011-06-30

Table S4: Example of near-duplicate fingerprint pairs detected by FAST, which represent
the same pair with slight time offsets. We keep only the single pair (395173, 161543) with the
highest similarity 0.57, and discard the rest.

Time 1 (s) Time 2 (s) Similarity
395170 161540 0.49
395171 161541 0.51
395172 161542 0.5
395173 161543 0.57
395174 161544 0.4
395175 161545 0.42






