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Abstract. As a window on the microcirculation, human cuticle capillaries provide rich information about the
microvasculature, such as its morphology, density, dimensions, or even blood flow speed. Many imaging tech-
nologies have been employed to image human cuticle microvasculature. However, almost none of these tech-
niques can noninvasively observe the process of oxygen release from single red blood cells (RBCs), an
observation which can be used to study healthy tissue functionalities or to diagnose, stage, or monitor diseases.
For the first time, we adapted single-cell resolution photoacoustic (PA) microscopy (PA flowoxigraphy) to image
cuticle capillaries and quantified multiple functional parameters. Our results show more oxygen release in the
curved cuticle tip region than in other regions of a cuticle capillary loop, associated with a low of RBC flow speed
in the tip region. Further analysis suggests that in addition to the RBC flow speed, other factors, such as the drop
of the partial oxygen pressure in the tip region, drive RBCs to release more oxygen in the tip region.© 2016Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.5.056004]
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1 Introduction
The microcirculation comprises microvascular networks of arte-
rioles, capillaries, and venules, which are fundamental for
thermoregulation and for transporting nutrients and gases to
maintain the metabolism of cells.1 However, under disease
states, such as severe hemorrhage, cardiogenic shock, sepsis,1,2

and systemic scleroderma,3–5 the associated dysfunction of the
microcirculation may cause heterogeneous hypoxia, impairing
cell functioning in tissues and even causing multiple organ
failures.1,2 In other cases, hypertension and diabetes mellitus
can cause microvascular complications, such as microvessel rar-
efaction and retinopathy, respectively.6,7 Tumors will often
induce angiogenesis of the microvascular system in their
microenvironment.8 To better understand the fundamental
mechanisms of these diseases, diagnose them in early stages,
and evaluate the effectiveness of various therapies, it is essential
to develop tools to monitor important microvascular parameters
of blood perfusion. These parameters include function capillary
density (which is defined as the total length of capillaries per-
fused by RBCs per observed area in units of cm−1),1 total hemo-
globin concentration (CHb), the oxygen saturation of blood
(sO2), the directional derivative of sO2 along the blood flow
direction (DsO2), and the speed of blood flow (vHb).

9

Primary medical imaging modalities, such as single-photon
emission computed tomography, functional magnetic resonant
imaging, positron emission tomography, ultrasonography, and
diffuse optical tomography, have been used for years to image
cardiovascular or cerebral blood flow.10–14 Additionally, con-
trast-enhanced ultrasonography, which detects nonlinear oscilla-
tion of microbubbles (only a few microns in size) under low

mechanical index conditions, has been applied to imaging
blood perfusion around focal liver lesions and the renal
cortex.15–17 Even though these techniques are the best we have
to date to image blood flows in organs deep in the body, they
are limited by their millimeter-size resolution. Thus, these modal-
ities are not efficient in monitoring microcirculation, which in
general contains vessels smaller than 100 μm.1

As an alternative, the cutaneous and sublingual microcircula-
tions have been proposed as a representative model for visceral
microcirculation, because they are accessible by optical-based im-
aging techniques, which provide higher resolution than most
other imaging modalities.18–20 Patients with chronic diseases
such as hypertension, renal disease, and coronary artery disease
have been observed to have distinct cutaneous microvascular
parameters.6,21,22 Monitoring cutaneous microvascular function-
ing provides valuable information for evaluating peripheral
microvascular diseases, such as Raynaud’s disease and peripheral
arterial disease.4,23,24 To this end, optical scattering-based tech-
niques such as laser Doppler imaging,22,25 near-infrared spectros-
copy,26,27 and reflectance spectroscopy28,29 are used to detect
scattered light from tissues. Over a submillimeter sampling vol-
ume, laser Doppler imaging can measure the average speed of
flow, and near-infrared spectroscopy and reflectance spectroscopy
can measure both the average flow speed and the oxygen satu-
ration. On the wide-field scale, nailfold videomicroscopy,4,30,31

orthogonal polarization spectral imaging,32,33 sidestream dark
field imaging,34 and optical coherent tomography35,36 can provide
wide-field information about function capillary density and the
speed of flow, with lateral resolutions ranging from submicrons
to around 15 μm, which covers from the thinnest capillaries to the
wider arterioles and venules. The imaging depth can go as deep as
400 μm for nailfold videomicroscopy and around 1 to 3 mm for
optical-based techniques. Combined with an endoscope, these*Address all correspondence to: Lihong V. Wang, E-mail: LV.Wang@outlook
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modalities can image the gastric or intestinal microcirculation
with a tolerable compromise of image quality. However, none
of these imaging modalities can provide sO2 and vHb information
at the same time.

In recent years, optical resolution photoacoustic microscopy
(OR-PAM) has shown promise in in vivo microvascular imag-
ing, with its ability to provide wide-field, capillary-resolving,
and hemoglobin-sensitive images.37–43 Combined with the
flow speed imaging techniques reported previously,44–46

OR-PAM has been demonstrated as a powerful tool to acquire
such important parameters of the microcirculation as sO2,DsO2,
CHb, vHb, and the metabolic rate of oxygen in tissues.47,48 In this
study, we implemented dual-wavelength in vivo OR-PAM for
investigating oxygen release in cuticle capillaries. This is the
first time that oxygen release dynamics in human cuticle capil-
laries have been monitored. The correlation between oxygen
release and the speed of RBCs and between oxygen release
and the first-order time-derivative of sO2 have also been ana-
lyzed in a cuticle capillary. The spatial- and time-resolved infor-
mation acquired by OR-PAM may help in early-stage diagnosis
of perivascular diseases, such as Raynaud’s syndrome, and in
diagnosing heterogeneous microcirculation of interior organs.

2 Methods

2.1 Experimental Protocol

Nine healthy, consenting volunteers (with ages ranging from 23
to 30; seven males and two females) were recruited in this study.

For each volunteer, we imaged the cuticle capillaries in the
fourth finger (the ring finger) of the left hand.36 Before each
experiment, the volunteer rested in the temperature-controlled
laboratory (at 20°C) for 15 min to adapt to the environmental
temperature, since nailfold microcirculation is known to be sen-
sitive to the surrounding temperature. The imaged area was then
cleaned with alcohol swabs, and the hand was comfortably put
on a homemade hand mount, without occlusion of blood flow, as
shown in Fig. 1. During the data acquisition period, the photo-
acoustic (PA) scanning head was scanned over a single cuticle
capillary at a time for three-dimensional imaging, with a 10-Hz
C-scan rate (high-speed scanning mode) for about 40 s. At least
three cuticle capillaries were recorded for each volunteer. The
total experimental time spent on a volunteer was <1.5 h, includ-
ing rests every 20 min to prevent numbness of the extremities.
The human study was approved by the Institutional Review
Board of Washington University in St. Louis, and the pulse ener-
gies of the excitation lasers used in each experiment were within
the American National Standards Institute (ANSI) laser safety
limit (20 mJ · cm−2).

2.2 System Setup

In order to monitor the real-time microcirculation of a single
cuticle, dual-wavelength excitation at 532 nm (SPOT, Elforlight,
Northants, United Kingdom) and 559 nm (INNOSLAB,
Edgewave, Würselen, Germany) was implemented on a high-
speed voice-coil scanning PA microscope,49 shown in Fig. 1.
The two short-pulse (<10 ns) excitation beams, with a 10-μs

Fig. 1 Schematic of the single-cell OR-PAM system. BS, beam splitter; CG, coverglass; LSM, linear step
motor; PD, photodiode; PH, pin hole; PM, plastic membrane; UG, ultrasound gel; UT, ultrasound trans-
ducer; VC, voice coil motor; and WT, water.
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temporal delay between them, were first attenuated, combined, and
passed through an optical spatial filter made of a spherical lens and
a pinhole (50 μm in diameter; P50C, Thorlabs, Newton, New
Jersey); then they were guided into a customized photonic crystal
fiber (Thorlabs, Newton, New Jersey). The other end of the fiber
was connected to the scanning PA probe. The output beams from
the fiber were focused by a lens pair with a numerical aperture of
0.1 in water and were reflected by an acoustic-optical beam com-
biner made of two right-angle prisms sandwiching a coated alumi-
num layer on the hypotenuse faces. The emitted PA signals in the
reflection direction were collected by an acoustic lens and then
detected by a 50-MHz ultrasonic transducer (V214, Olympus
NDT, Pennsylvania). The received PA signals were amplified
(ZFL-500LNþ, Mini-circuits, New York), filtered, and then digi-
tized by a data acquisition (DAQ) system (ATS9350, Alazar Tech.
Inc., Quebec, Canada). The optical focusing and the bandwidth of
the transducer provided 3-μm lateral resolution and 15-μm axial
resolution, respectively. In order to compensate for variations of
the optical energy, pulse by pulse, a photodiode was set up
after the optical spatial filter. The laser pulse energy on the sample
surface was between 35 and 50 nJ in high-speed mode with the
laser repetition rate of 20 kHz.

During single cuticle capillary imaging, the PA probe
mounted on the voice-coil motor was driven to scan linearly
with 100 Hz (B-scan) frequency within a 250-μm range.
Combined with an additional linear translational stage (PLS-
85, PI miCos, Eschbach, Germany), the system was set to
repeatedly acquire 250 μm × 40 μm C-scan images at 10 Hz.
The lasers, photodiode, and DAQ system were synchronously
triggered at 20 kHz by a programmed field-programmable
gate array card (PCI-7830R, National Instruments, Austin,
Texas). This dual-wavelength high-speed PA microscopy has

been previously demonstrated for measuring sO2 and blood
flow speed in mouse capillaries.49

2.3 Principle of Oxygen Saturation of Blood
Measurement

After C-scan, images have been acquired with two wavelengths,
and the sO2 values can be calculated pixel-by-pixel according
to the method in Refs. 50, 51. In short, the PA amplitude P at
the i’th wavelength λi from a single pixel is related to the
molar extinction coefficients of deoxy- and oxy-hemoglobin
½εHbR × ðλiÞ; εðHbO2Þ × ðλiÞ�, the concentrations of deoxy- and
oxy-hemoglobin f½HbR�; ½HbO2�g, and the optical fluence F
as follows:
EQ-TARGET;temp:intralink-;sec2.3;326;600

PðλiÞ ∼ fεHbRðλiÞ½HbR�
þ εHbO2

ðλiÞ½HbO2�g · FðλiÞ:
In order to solve for [HbR] and ½HbO2�, two wavelengths are
selected to build up two independent equations. To calibrate
the sO2 calculation, the optical properties of the tissue should
be considered as well. We followed the same procedure as in
Ref. 50 to calibrate the system. To mimic the optical properties
of human tissue, the calibration was done in mouse experiments
at a depth similar to that of the cuticle capillaries in human tissue.

3 Results

3.1 Monitoring of Oxygen Saturation of Blood
Dynamics in Cuticles

Figures 2(a)–2(c) show a top view (C-scan) and a cross-sectional
view (B-scan) of the typical morphology of finger cuticle

Fig. 2 (a) Photograph of a finger with the imaged area boxed. (b) Wide-field PA image of cuticle capil-
laries shown with normalized PA amplitude. The insets show sO2 images of selected cuticles with differ-
ent color bars. (c) B-scan image of cuticle capillary loops. (d) Curvature along the cuticles (fitting: sum of
two Gaussians).
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capillary loops. The acquisition time of a C-scan image was 75 s.
The cuticle capillary loops angle toward the distal nail bed and
gradually toward the epidermis. Figure 2(d) shows the result of
using the curvature calculated from the C-scan images to quanti-
tatively describe the geometric profile at different positions along
the cuticles. The full width at half maximum distance is around
40 μm, which suggests that it is reasonable to define a region
�20 μm from the position with maximal curvature as the tip
region of a cuticle. It is also noticeable but not surprising to
observe that in most cases the tip positions (0 μm) coincide
with the uppermost ends of the cuticles in the B-scan images.
In Fig. 2(b), the insets also show pixel-by-pixel calculation of
sO2 distribution in different areas of the cuticle capillary network
with different color bars. The sO2 reduction across the tip of a
cuticle capillary is within 0.2. In high-speed scanning mode,
the flow and the sO2 of single RBCs can be resolved, as
shown in the snapshots in Fig. 3(a) and Video 1. Figure 3(b)
shows the results of time-averaging over all the frames of the
sO2 image. Around the cuticle tip (the most curved position
along the cuticle), an abrupt drop in sO2 can be observed.
Figure 3(c) shows sO2 versus s, where s denotes the displacement
along the central axis of a cuticle capillary loop (i.e., the trace of
the blood flow). The origin of s is coincident with the cuticle loop
tip, and the RBCs flow from the negative coordinates (the
upstream side of a cuticle vessel) to the positive coordinates
(the downstream side). The sO2 change with distance can be
revealed more clearly by plotting the derivative of sO2 with
respect to s, which is defined as DsO2 ≡ ∂ðsO2Þ∕∂s, as shown
in Fig. 3(d). The DsO2 values within ∼15 μm the cuticle loop
tips are approximately twice as high as those in regions 25 to

Fig. 3 (a) Selected time-lapse images of single-RBC sO2 (Video 1, MPEG, 207 KB) [URL: http://dx.doi.
org/10.1117/1.JBO.21.5.056004.1]. (b) Time-averaged images (∼10 s) of all time-lapse frames of sO2
imaging. (c) Time-averaged sO2 along the length of a cuticle capillary loop (i.e., a trace of the blood flow).
(d) Time-averaged directional derivative of sO2 along the length of the loops. (e) Statistics of (d): paired
Student’s t -test between the tip region (yellow) and the two side regions (green). NS: not significant
(P ¼ 0.48), ***P < 0.001, and n ¼ 21.

Fig. 4 (a) Image for speed measurement. (b) Time-averaged RBC
flow speeds along the length of a cuticle loop. (c) Statistics of (b):
paired Student’s t -test between the tip region (yellow) and the two
side regions (green). NS: not significant (P ¼ 0.45), ***P < 0.001,
**P < 0.01, and n ¼ 18.
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40 μm away from the tip. The paired Student’s t-test between the
tip region (yellow) and two sides (green) validates that the cuticle
loop tips have significantly greater decreases in sO2 than the
sides do.

3.2 Measurement of Red Blood Cell Flow Speed

By mapping the length of a curved cuticle loop s into a
straight line l, Fig. 4(a) shows the method we used to measure
the speed of RBCs flowing in cuticle capillary loops.45 Based
on Fourier analysis of the frames of a specific segment of a
capillary loop acquired at different times, the longitudinal
flow speeds of different segments in a cuticle can be deter-
mined by vHb ¼ ðΔs∕ΔtÞ ¼ ðΔl∕ΔtÞ ¼ ðNt∕NlÞðΔFt∕ΔFlÞ.
Here, Nt and Nl are the sampled temporal and spatial lengths
and Ft and Fl are the temporal and spatial frequencies.
From Fig. 4(b), we can observe that the time-averaged
RBC flow speed within the region of 15 μm around the
cuticle tip is approximately one-third lower than that in the

regions between 25 to 40 μm away from the cuticle tip. A
paired Student’s t-test between the tip and side regions
shows a significantly lower RBC flow speed around the tip
region.

3.3 Measurement of Hemoglobin Flux in Red Blood
Cell Flow and Time Derivative of Oxygen
Saturation of Blood

As well as imaging sO2, we can also image the relative concen-
tration of hemoglobin (CHb) by summing the calculated images
for oxy- and deoxyhemoglobin. To calculate the time-averaged
hemoglobin flux, we assume that the concentration and the
speed are independent variables, which means that the time
average of the product of the two variables is approximately
equal to the product of the two time-averaged variables (in
case the variances of CHb and vHb are small), so we have
ΦHb ≈ CHb · vHb, where vHb is the time-averaged RBC flow
speed around x. Figures 5(a) and 5(c) show a nearly flat

Fig. 5 (a) Time-averaged relative flow rates along the length of cuticle capillary loops. (b) Statistics of (a):
paired Student’s t -test between the tip region (yellow) and the two side regions (green). NS: not signifi-
cant (up: P ¼ 0.24, left: P ¼ 0.10, right: P ¼ 0.40), n ¼ 13. (c) Time-averaging of hemoglobin concen-
tration along the direction of the length of cuticles. (d) Statistics of (c): paired Student’s t -test between the
tip region (yellow) and the two side regions (green). NS: not significant (up: P ¼ 0.33, left: P ¼ 0.45, right:
P ¼ 0.21), n ¼ 18. (e) Time-averaged values of dðsO2Þ∕dt along the length of cuticle capillary loops.
(f) Statistics of (e): paired Student’s t -test between the tip region (yellow) and the two side regions
(green). *P ¼ 0.03, NS: not significant (up: P ¼ 0.07, down: P ¼ 0.25), n ¼ 15.
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trend, and the paired t-tests shown in Figs. 5(b) and 5(d) suggest
that the hemoglobin flux in RBC flow is approximately the same
along the cuticle capillary loops: the flow of RBCs is conserved.
Under steady-state blood flow, ½dðsO2Þ∕dt� ¼ DsO2 · ðds∕dtÞ.
Similarly, we assume that bothDsO2 and ds∕dt are independent
variables; we have ½ dðsO2Þ∕dt� ≈ DsO2 · vHb. The total time
derivative of sO2 along cuticle capillary loops is shown in
Fig. 5(e). The p value between the upstream side and the tip
is 0.03, and the p value between the downstream side and
the tip is 0.07, according to the paired t-test shown in Fig. 5(f).

4 Discussion
In this study, we demonstrated the ability of single-cell resolution
OR-PAM to monitor the microcirculation in cuticle capillaries
with a temporal resolution of 0.1 s. Compared to nailfold video-
capillaroscopy and optical computed tomography,36 OR-PAM can
not only image the morphology, dimensions, and vessel density of
cuticle capillary loops, but also measure multiple hemodynamic
parameters, such as sO2, DsO2, CHb, and vHb. Monitoring these
functional parameters at the fundamental level of the physiology
of oxygen transport can potentially help biologists and physicians
to understand the mechanisms of oxygen transport in the skin and
to define clinical standards for early-stage diagnosis and evalu-
ation of perivascular diseases, such as Raynaud’s phenomenon
and systemic scleroderma, before the capillaries undergo observ-
able changes in morphology.

The time-averaged DsO2 results in Fig. 3(d) indicate that
RBCs release more oxygen in the tip region over a length
of around 30 μm then they do further down on the two
sides. A similar result has been mentioned in one previous
work, with no further investigation.52 It is interesting to
note that the 30-μm length is approximately equal to the length
of a capillary loop in the dermal papillae in the skin outside of
the cuticle area.53 Capillary loops in dermal papillae are exten-
sions of the subpapillary plexus in the reticular dermis, and
they are responsible for oxygen and nutrient transport to living
cells in the epidermis. Because nails are specialized structures
of the skin,54 cuticle capillaries and dermal capillaries should
be functionally similar parts of the capillary loop system
(except that cuticle capillaries extend toward the distal nail
bed), it will not be surprising to discover that the tip region
of a cuticle capillary releases more oxygen than the other
regions.

In Figs. 4(b) and 4(c), the RBC flow speed is reduced in the
tip region (around two-thirds of the speed in the side regions). In
blood rheology, RBC flow in capillaries is treated as a non-
Newtonian fluid because of the special viscoelasticity of eryth-
rocytes, which complicates the RBC flow in a capillary.55–57 The
reduced RBC flow speed may result from deformation of RBCs
and a consequent change of their viscoelasticity while passing
through the highly curved pathway of the tip region. Another
possibility is that RBCs partially accumulate in the tip region.
In order to test this hypothesis, we examined the hemoglobin
concentration and the hemoglobin flux along the cuticles.
Further, we used a paired t-test to compare the effects of the
straight part and the curved part of a cuticle on the hemoglobin
flow and concentration. To improve the statistical accuracy, we
excluded outlier data points that have large standard deviations
(>30%). It can be seen that this hypothesis is not supported by
the results in Figs. 5(a)–5(d), which show that both the flux of
hemoglobin and the time-averaged hemoglobin concentration
do not significantly differ between the side regions and the

tip. Therefore, RBC flow is shown to be conserved along a
cuticle capillary loop. The slower RBC flow in the tip region
seems to meet a functional demand which requires a longer
transit time of RBCs to release enough oxygen for metabolism.
To investigate the relation between DsO2 and RBC flow speed,
we calculated the time derivative of sO2 along cuticle capillary
loops. Without introducing physical cuffing and compression on
the arm imaged, and without any extra physiological stimula-
tion, we assumed that the RBC flow can be considered as in
a steady or quasi-steady state, which means ½dðsO2Þ∕dt� ¼
DsO2 ·ðds∕dtÞþ½∂ðsO2Þ∕∂t� ≈ DsO2 · ðds∕dtÞ.58 Figures 5(e)
and 5(f) show that RBCs release more oxygen per unit time
in the tip region than in the sides. Although the statistics are
not strongly significant (p > 0.01), this finding still suggests
that there are factors other than RBC flow speed, such as partial
oxygen pressure, that can drive RBCs to release more oxygen in
the tip region.

In this investigation, our single-cell resolution OR-PAM
system performed monitoring of several hemodynamic param-
eters on nine human volunteers. Cell-by-cell based statistics
also provided insights. In the future, OR-PAM promises to
help greatly in the early-stage diagnosis of perivascular dis-
eases and to illuminate more fundamental mechanisms in
hemodynamics.

5 Conclusion
In this paper, the cuticle microcirculations of healthy volunteers
were monitored by real-time single-cell resolution OR-PAM.
Hemodynamic parameters such as CHb, sO2, DsO2, vHb, and
relative blood flow rate were extracted from the images. A
drop in DsO2 and slower RBC flow were observed in the tip
region than in the side regions of a cuticle capillary loop.
The conserved blood flow rate in a cuticle capillary loop and
the drop in the time-derivative of sO2 in the tip region suggest
that the heterogeneity of the RBC flow speed over a cuticle
capillary loop is not the only factor that determines the hetero-
geneity of the oxygen release in the loop.
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