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A technique to rapidly scan an optical focus inside a turbid medium is attractive for various

biomedical applications. Time-reversed ultrasonically encoded (TRUE) optical focusing has

previously demonstrated light focusing into a turbid medium, using both analog and digital devices.

Although the digital implementation can generate a focus with high energy, it has been time con-

suming to scan the TRUE focus inside a sample. Here, by sweeping the frequencies of both ultra-

sound and light, we demonstrate a multiplex recording of ultrasonically encoded wavefronts,

accelerating the generation of multiple TRUE foci. Using this technique, we obtained a 2-D image

of a fluorescent target centered inside a turbid sample having a thickness of 2.4 transport mean free

paths. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901955]

Fluorescence imaging is widely used to obtain biologi-

cal images by scanning an optical focus.1 However, due to

scattering, optical focusing using an ordinary lens is limited

to shallow depths of one transport mean free path, or 1 lt
0

(�1 mm in human skin),2 beyond which scattering both

reduces the amount of light arriving at the target and blurs

the resulting image.

One way to overcome this limitation is to use time-

reversed ultrasonically encoded (TRUE) focusing.3,4 In

TRUE focusing, a focused ultrasonic (US) pulse, applied

inside a turbid sample, frequency modulates (or encodes)

light within the acoustic volume. A phase-conjugated version

of the encoded wavefront is then generated, using either ana-

log or digital phase conjugate mirrors (PCMs).3–6 Digital

PCMs, consisting of a camera and a spatial light modulator

(SLM), are attractive for higher energy focusing.4–6 To re-

cord the encoded wavefront, a reference beam interferes

with the encoded light on the camera, causing the intensity

of the interferogram to beat at their difference frequency.6

The encoded wavefront is extracted from the beat, and then

its phase-conjugated version is reproduced using the SLM.

Upon back-propagation to the sample, the phase-conjugated

beam forms an optical focus at the original location of the

ultrasound volume.

It has been previously shown that TRUE focusing

improves the resolution, thereby allowing deep fluorescence

imaging beyond 1 lt
0 inside a scattering medium.4–6

However, one of the challenges of applying digital TRUE fo-

cusing for imaging was the long time (several seconds) taken

to generate a single optical focus.5,6 The low signal-to-noise

ratio (SNR) of the encoded-light detection typically man-

dates that multiple frames of interferograms be recorded and

averaged to obtain a single encoded wavefront.

Here, we propose a method called frequency-swept

TRUE focusing, which takes advantage of the multiple

recorded frames used for encoded-light detection to acceler-

ate TRUE focal scanning. By sweeping the frequency of

both the ultrasound and the light at the same time, we

achieve simultaneous recording of multiple wavefronts, cor-

responding to different positions along the acoustic axis,

without sacrificing SNR and using the same number of cam-

era frames. A similar concept was previously demonstrated

in Ref. 7, which used two US pulses of different frequencies

for wavefront recording. The use of two US pulses allowed

two TRUE foci to be generated from a single recording,

thereby reducing the recording time by half. Here, we show

that, by recording many more holograms in the same amount

of time, frequency-swept TRUE focusing increases the num-

ber of foci generated after a single recording stage.

Frequency sweeping was previously used in ultrasound-

modulated optical tomography to improve the acoustic axial

resolution.8 Here, we use a similar concept to obtain multiple

holograms within a single recording stage. As shown in Fig.

1(a), a frequency-swept US pulse is sent through the scatter-

ing sample. The US frequency at a point y along the acoustic

axis at time t is given by

fUSðy; tÞ ¼ aUS þ bðt� y=vUSÞ; (1)

where aUS is the initial US frequency, b is the rate at which

the frequency is swept, and vUS is the speed of sound within

the medium. After a brief delay (t0) to allow the ultrasound

to propagate, a laser beam then illuminates the sample, with

its optical frequency swept at the same rate. The optical fre-

quency at time t is given by

fLðtÞ ¼ aL þ bðt� t0Þ; (2)

where aL is the initial optical frequency. Inside the sample,

the US beam frequency modulates the diffusively propagat-

ing light. The down-modulated (i.e., encoded) light fre-

quency is given by

fEðyÞ ¼ fLðtÞ � fUSðy; tÞ ¼ ðaL � aUSÞ þ bðy� vUSt0Þ=vUS:

(3)

When the encoded light is mixed with a reference beam with

frequency fR ¼ aL � aUS, the frequency of the optical beat

observed by the camera is given bya)Electronic mail: lhwang@wustl.edu.
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fBðyÞ ¼ fEðyÞ � fR ¼ bðy� vUSt0Þ=vUS: (4)

As seen in Eq. (4), the optical beat is composed of multiple

frequencies, corresponding to different depths inside the

sample along the y axis. From the measured intensity varia-

tion along the time axis, Fourier decomposition allows us to

calculate the phases of the beats at each frequency, giving

the desired wavefronts. Thus, frequency-sweeping can be

used to record multiple wavefronts emanating from different

locations at once, and to generate TRUE foci at multiple

locations.

Our implementation of frequency-swept TRUE focusing

is illustrated schematically in Fig. 1(b). The output of a

3.5 W continuous-wave laser (Verdi V-10, Coherent) was

split into two beams: a vertically polarized sample beam (S)

and a horizontally polarized reference beam (R). An

acousto-optic modulator (AOM1) was used to sweep the S

beam frequency. Because the spatial mode of S (i.e., the op-

tical speckle pattern inside the scattering sample) must not

change during the recording time, AOM1 was in a double-

pass configuration to avoid angular deflection.9 After

AOM1, a spatial filter, comprised of a 25-lm pinhole and a

confocal lens pair, ensured that the optical mode was

unchanged while S illuminated the scattering sample. To

demonstrate the proof-of-concept, we used a sample consist-

ing of a thin fluorescent sheet suspended in a clear gelatin

medium (water:gelatin¼ 90:10 wt. %) placed between two

ground-glass diffusers, as shown in Fig. 2(a). To make the

fluorescent sheet, we dispersed quantum dots (QD, Ocean

Nanotech, QSA-600-2) in a gelatin solution. A frequency-

swept US beam modulated the diffusively propagating light

inside the sample. R was frequency-shifted by þ120 MHz

by AOM2, and was then expanded to fill the aperture of the

SLM. The two beams were then recombined using a beams-

plitter before being directed to the digital PCM, as indicated

by the dotted block in Fig. 1(b). In the digital PCM, a mirror

was placed at the symmetrical plane to the SLM (PLUTO,

Holoeye) about a polarizing beamsplitter (PB). R and the dif-

fuse light from the sample formed interferograms on the mir-

ror, which was imaged by a CMOS camera (pco.Edge, PCO)

to capture the diffuse wavefront. The polarization of R was

tuned by using a half-wave plate, so that a small portion was

reflected by the PB to generate the interferogram. The SLM

and the CMOS camera were 1:1 pixel matched. The SLM

curvature was measured using a Michelson interferometer,

and was corrected for in the experiment.10

During the recording stage, a focused US transducer

(Olympus NDT, V324-SU) emitted 800-ns US pulses repeat-

edly every 30 ls into the sample. The focal length of the US

transducer was 14 mm. When the US pulse reached the focal

zone of the transducer, AOM1 and AOM2 (AOM-802AF1,

IntraAction) were turned on simultaneously to generate 1 ls

optical pulses of S and R. The US frequency was swept from

12.5 to 37.5 MHz throughout the recording time of 2.84 s.

The sweep rate was therefore b¼ 8.80 MHz/s. The frequency

of S was also swept from þ132.5 to þ157.5 MHz at the

same rate as the ultrasound. After propagating through the

sample, S interfered with R at the CMOS camera in the digi-

tal PCM. The camera exposure time was 31 ms, therefore

each interferogram was integrated over 1034 optical pulses.

At a frame rate of 22.5 Hz, 64 interferograms were captured.

To obtain the wavefronts, the argument of the spectral den-

sity at the beat frequencies, measured at each CMOS pixel,

was extracted by discrete Fourier transformation (DFT). The

measured power spectrum, averaged over the CMOS pixels

after a single recording stage, is shown in Fig. 2(b). As

expected, when the frequency-swept ultrasound was turned

on, we observed a broadband signal increase over the base-

line case without ultrasound.

In the readout stage, as soon as the SLM displayed the

phase-conjugated wavefront, R was turned on to read out

the displayed wavefront. To observe the propagation of the

FIG. 2. Observation of multiple TRUE foci generated after a single record-

ing stage. (a) Schematic illustration of the sample configuration. (b)

Encoded signal spectrum after a single recording stage. (c) Fluorescent pat-

tern excited using a flat phase pattern on SLM. (d)–(f) Fluorescent patterns

excited showing the generated TRUE foci by using phase maps from differ-

ent encoded-frequency components, which are indicated in Fig. 2(b).

FIG. 1. Schematic illustration of the concept and implementation of

frequency-swept TRUE. (a) Multiplex wavefront sensing using frequency-

swept ultrasound and light. (b) Implementation of frequency-swept TRUE

focusing system. AOM, acousto-optic modulator; BS, beamsplitter; CMOS,

CMOS camera; DM, dichroic mirror; DPCM, digital phase-conjugate mir-

ror; F, color filter; HP, half-wave plate; IL, imaging lens; P, polarizer; PB,

polarizing beamsplitter; PD, photodiode; QP, quarter-wave plate; R, refer-

ence beam; S, sample beam; SLM, spatial light modulator; UT, ultrasonic

transducer.
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phase-conjugated light inside the sample, a CCD camera

imaged the fluorescent excitation on the QD sheet placed

between two diffusers. When a flat pattern was displayed on

the SLM, the imaged fluorescent excitation did not show a

focused beam (Fig. 2(c)), due to random scattering by the

ground glass. In contrast, for the frequency-swept TRUE, a

clear focused beam is seen, as shown in Figs. 2(d)–2(f). The

corresponding frequency values were 3.9 Hz, 5.6 Hz, and

7.4 Hz, respectively, as indicated in Fig. 2(b). We see that

the TRUE focus was translated vertically as the SLM

sequentially displayed phase-conjugated wavefronts calcu-

lated from the beat of different frequencies. Theoretically,

the acoustic-axial resolution dy is given by dy ¼ vUS=w,

where vUS is the acoustic speed in the sample medium and w
is the range of the frequency sweep. To see this, let us note

that dy is the acoustic propagation distance during the

frequency-sweep time across the frequency resolution df of

the DFT in the wavefront calculation, i.e., dy ¼ vUS � df=b.

Given the frequency sweep rate b and the total recording

time 1=df , we have w ¼ b=df . Therefore, dy ¼ vUS=w. In

our experiment, we chose w¼ 25 MHz, and vUS was quanti-

fied from the US pulse-echo signal to be 1.6 mm/ls, which

agrees with the reported value;11 therefore, we estimated dy
as 64 lm.

As a comparison, we also performed ordinary TRUE fo-

cusing (i.e., without frequency-sweep) using the same sam-

ple. We used single cycle US pulses at 25 MHz to match the

US pulse length to the theoretical axial resolution for

frequency-swept TRUE focusing. To minimize US pulse

propagation during the sample illumination, the S and R

pulse durations were set to 0.16 ls, the shortest times achiev-

able using the AOMs. The intensities of both S and R were

increased to match the camera exposure used in frequency-

swept TRUE focusing. The frequency difference of the R

and S beams was chosen so that the CMOS camera observed

a 5.6 Hz optical beat between R and the encoded light. The

CMOS camera again captured 64 frames of the interfero-

grams. Fig. 3(a) shows the averaged power spectra acquired

with and without the ultrasound, calculated in the same way

as for Fig. 2(b). Unlike in Fig. 2(b), the encoded signal was

observed only at the 5.6 Hz beat frequency. The measured

SNR of the encoded signal was 3.0, which was comparable

to the SNR of 2.7 observed at the same beat frequency in

Fig. 2(b). Note that without frequency sweeping, only a sin-

gle TRUE focus can be generated (Fig. 3(b)). These data

confirm that frequency-swept TRUE focusing is faster, as fo-

cusing at different locations using the ordinary method

would require the recording process to be repeated.

Moreover, the SNR of the recordings is similar for both

methods.

To experimentally quantify the resolution of frequency-

swept TRUE focusing, we measured the edge spread func-

tion of a TRUE focus centered inside a turbid sample having

a total thickness of 2 lt
0
, which is shown in Fig. 4(a). The tur-

bid medium was made by mixing intralipid into clear gel-

medium (water:gel:intralipid¼ 89:10:1 wt. %). We embed-

ded a rectangular fluorescent target at the mid-plane of the

sample, as shown in Fig. 4(b). To measure the edge spread

function, we used the representative spectral component at

5.6 Hz to form a TRUE focus, chosen because of its rela-

tively high encoded-signal level, as seen in Fig. 2(b). By

mechanically translating the sample in both x and y direc-

tions, we measured the fluorescent signal at each sample

position. A photodiode measured the excited fluorescence

from the sample, after passing through a dichroic mirror and

a long-pass filter as shown in Fig. 1(b). We subtracted the

fluorescent signal due to the background diffuse light, which

originated from incomplete phase conjugation due to the

limited number of SLM pixels. The background fluorescence

was measured using a phase map synthesized by alternat-

ingly adding 0 and p rad in 5� 5 blocks across the

phase-conjugated wavefront.5 The SLM displayed the

phase-conjugated wavefront for 100 ms, and subsequently

displayed the background phase map for 400 ms. The photo-

diode signal was band-pass filtered between 1 to 30 Hz, and

then amplified by five times (SR560, SRS). The signal was

averaged for 16 times using an oscilloscope.

The measured edge-spread functions along the x and y
axes are shown in Figs. 4(c) and 4(d), respectively. The x
and y resolutions were quantified by fitting the measured

data to the standard error function. The measured x-resolu-

tion was 220 lm, which agrees well with the US-focal full-

width at half-maximum of 200 lm. On the other hand, we

observed a widened y-resolution of 100 lm, compared with

the theoretical value of 64 lm. The widening could be due to

the envelope of the beat signals, caused by the spectral

response of the US transducer and the S-beam intensity

change due to AOM1 as the frequency is swept, which

FIG. 3. TRUE focusing without frequency sweeping. (a) Encoded signal

spectrum after a single recording stage. (b) Fluorescent pattern excited by

using the phase map from the encoded signal.

FIG. 4. Resolution measurement of frequency-swept TRUE focusing. (a)

Sample configuration. (b) Schematic illustration of quantum-dot target

placed at imaging plane inside the sample. (c) Measured edge-spread func-

tion in x direction. (d) Measured edge-spread function in y direction.
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results in a broadening of each beat frequency component.

Error also is introduced in wavefront calculation because of

the frequency resolution of DFT. Nevertheless, we note that

frequency-swept TRUE focusing was still able to generate

optical foci with substantially improved resolution, over op-

tical focusing using an ordinary lens.

To further demonstrate the imaging capability of our

system, we replaced the sample with one containing five flu-

orescent targets embedded inside a turbid medium having a

total thickness of 2.4 lt
0
. A photograph of the fluorescent

objects, taken without the front turbid layer, is shown in Fig.

5(a). To obtain a 2-D image, we mechanically translated the

sample in the x direction and at each stop performed

frequency-swept TRUE focusing to scan an optical focus

along the y-axis. We used 23 phase patterns from a single re-

cording to scan the TRUE focus, corresponding to 23 pixels

along the y-axis in the resulting image. Adaptive background

subtraction was again used to measure the net fluorescent

signal due to a TRUE focus. The resulting fluorescent image

is shown in Fig. 5(b). We compared the image obtained

using our method with an image obtained by mechanically

scanning the sample while focusing light using an ordinary

lens, as shown in Fig. 5(c). The cross-sectional plots along

the dashed lines in Figs. 5(b) and 5(c) are shown in Fig. 5(d),

together with a curve fitted by low-passing it using the meas-

ured x-resolution. We see that our system resolved five fluo-

rescent targets, while optical focusing using an ordinary lens

did not.

In our experiment, the range of the frequency sweep,

and hence the resolution, was limited by both the spectral

response of the acousto-optic diffraction efficiency, and the

bandwidth of the US transducer. To sweep the optical fre-

quency over a wider range, frequency-tunable optical sour-

ces can be used, as in Ref. 8. Together with a US transducer

having a broader bandwidth, the acoustic-axial resolution of

TRUE focus could be further improved. Also, the resolution

can be improved by using higher frequency transducers,

which have smaller focal volumes.

Currently, the speed of wavefront acquisition is mainly

limited by the calculation time (several seconds) of the

Fourier spectra from many (�2� 106) camera pixels. By

using a faster computer or dedicated computation devices

(such as field-programmable gate arrays), we may accelerate

the wavefront-calculation time. Further, faster image sen-

sors, e.g., 500 fps for the used resolution of 1080� 1920,

can be used to accelerate the recording stage. By implement-

ing these improvements, we may potentially reduce the

wavefront acquisition time to less than 200 ms, which may

be applicable for in vivo biological imaging experiments.12

In summary, we have proposed and demonstrated

frequency-swept TRUE focusing, which allowed us to per-

form multiplexed wavefront sensing. By obtaining a y-axial

1-D image after a single recording stage, the system imaged

fluorescent targets embedded in a thick turbid medium.

Frequency-swept TRUE focusing is a promising step

towards speeding up the generation and scanning of a TRUE

focus inside a turbid medium, which is attractive for biologi-

cal imaging applications.
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FIG. 5. Fluorescent images acquired by frequency-swept TRUE focusing.

(a) Photo of fluorescent targets placed at the mid-plane of the sample, with-

out a front turbid medium. Scale bar, 1 mm. (b) Image obtained by the pro-

posed method. (c) Image obtained by displaying a flat phase pattern on the

SLM. (d) Line plots along the dashed lines in (b) and (c), presented together

with fitted curves.
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