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A B S T R A C T

In this work, graphene nanoribbons and nanoplatelets were investigated as contrast agents for

photoacoustic and thermoacoustic tomography (PAT and TAT). We show that oxidized single- and multi-

walled graphene oxide nanoribbons (O-SWGNRs, O-MWGNRs) exhibit approximately 5–10 fold signal

enhancement for PAT in comparison to blood at the wavelength of 755 nm, and approximately 10–28%

signal enhancement for TAT in comparison to deionized (DI) water at 3 GHz. Oxidized graphite

microparticles (O-GMPs) and exfoliated graphene oxide nanoplatelets (O-GNPs) show no significant

signal enhancement for PAT, and approximately 12–29% signal enhancement for TAT. These results

indicate that O-GNRs show promise as multi-modal PAT and TAT contrast agents, and that O-GNPs are

suitable contrast agents for TAT.

� 2013 The Authors. Published by Elsevier GmbH. All rights reserved.
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1. Introduction

Hybrid imaging modalities, such as photoacoustic (PA) tomog-
raphy (PAT) [1] and thermoacoustic (TA) tomography (TAT) [2],
have been developed for different applications. PAT/TAT combines
advantages of pure ultrasound and pure optical imaging/radio
frequency (rf), providing good spatial resolution, great penetration
depth, and high soft-tissue contrast. These imaging modalities are
based on detection of acoustic waves from an object that absorbs
electromagnetic (EM) energy (laser in PAT and microwave in TAT).
Endogenous molecules, such as hemoglobin, melanin, and water/
ion, can absorb EM energy, producing acoustic waves. High
resolution PAT and/or TAT enable functional brain imaging [3],
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breast cancer detection [4], melanoma detection [5], tumor
angiogenesis [6], and functional molecular imaging [2]. However,
in cases when endogenous molecules are insufficient, exogenous
contrast agents (CAs) are developed and administered. Contrast-
enhanced PAT has been applied in lymph node mapping [7],
multiscale imaging of tissue engineering scaffolds [8,9], and
molecular, cellular, and functional imaging [10,11]. A variety of CAs
for PAT have been reported, such as, carbon nanoparticles [7,12–
14], metallic nanoparticles [11,15–17], and organic dyes [18]. In
comparison to PAT, fewer reports have focused on development of
CAs for TAT. Superparamagnetic iron oxide nanoparticles, single-
and multi-walled carbon nanotubes (SWCNT and MWCNT), and
air-filled microbubbles have been investigated as CAs for TAT
[2,13,19,20].

In this work, we investigate efficacy of graphene nanoparticles,
prepared by two widely used methods ((1): longitudinal unzipping
method [21], (2): modified Hummer’s method of oxidation [22]) as
CAs for PAT and TAT. We compare PA and TA signal amplitudes of
oxidized single- and multi-walled graphene oxide nanoribbons (O-
SWGNRs and O-MWGNRs), and oxidized graphene nanoplatelets
(O-GNPs) to pristine SWCNTs, pristine MWCNTs, pristine graphite
microparticles (GMPs), and oxidized graphite microparticles (O-
GMP).

2. Results and discussions

O-SWGNRs, O-MWGNRs, and O-GNPs were synthesized as
reported previously [22,23]. Pristine SWCNTs, MWCNTs, and GMPs
 rights reserved.
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Fig. 1. Representative transmission electron microscopy images of (A) single-walled carbon nanotubes (SWCNTs), (B) multi-walled carbon nanotubes (MWCNTs), (C) oxidized

single-walled graphene nanoribbons (O-SWGNRs), (D) oxidized multi-walled graphene nanoribbons (O-MWGNRs), (F) oxidized graphite microparticles (O-GMP), and (G)

exfoliated graphene nanoplatelets (O-GNP). Image (E) is a scanning electron micrograph of pristine GMPs.
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were used as starting materials in the preparation of O-SWGNRs,
O-MWGNRs, and O-GNPs, respectively. O-GMPs are intermediate
product formed during the synthesis of O-GNPs. These nanoma-
terials were characterized by Raman spectroscopy and electron
microscopy (EM). Raman spectroscopic characterization of
SWCNTs, MWCNTs, O-SWGNRs, O-MWGNRs, GMPs, O-GMPs,
and O-GNPs has been reported previously [22,24–26]. Table 1
lists the size distribution of various nanomaterials. Fig. 1 shows
representative transmission EM (TEM) images of all nanomaterials
used in the study (scanning EM (SEM) for GMPs). SWCNTs (Fig. 1A)
and MWCNTs (Fig. 1B) were nanotubes of lengths �3–30 mm and
0.5–200 mm, and diameters �1–2 nm and �20–30 nm, respec-
tively. O-SWGNRs (Fig. 1C) and O-MWGNRs (Fig. 1D) possessed
lengths �0.5–1 mm and 0.5–1.5 mm, and diameters of �3–6 nm
and �60–90 nm, respectively, confirming complete unzipping of
SWCNTs and MWCNTs (p*diameter). Pristine GMPs were <45 mm
in size (Fig. 1E). O-GMPs (Fig. 1F) were loosely arranged sheets of a
few layered graphene (�8 sheets, size >1 mm) whereas O-GNPs
(Fig. 1G) had �2–4 graphene sheets and diameters of �5–15 nm.

We have estimated that future in vivo preclinical safety (acute
toxicity) studies to establish the therapeutic dosages of graphene
would require their administration at a range of dosages; from
50 mg/kg upto possibly �500 mg/kg body weight of the small
animal [27]. If the graphene formulations are injected at a dose of
50 or 500 mg/kg body weight of a 250 g rat (total circulating blood
volume 12–13 ml), its steady state blood concentration after the
first pass would be �1 or 10 mg/ml, respectively. Thus, a median
concentration of 5 mg/ml was chosen for this study. Since



Fig. 2. (A) Photoacoustic spectral amplitudes of blood, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), oxidized single-walled

graphene nanoribbons (O-SWGNRs), oxidized multi-walled graphene nanoribbons (O-MWGNRs), micro-graphite flakes (GMPs), oxidized graphite microparticles (O-GMPs),

and exfoliated graphene nanoplatelets (O-GNPs). PA signal amplitudes are normalized to that of blood at 740 nm. (B) PA signal amplitude of O-SWGONRs at 0.03 mg/ml

concentration compared to background (1.2 mg/ml of DSPE-PEG solution).
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hemoglobin is a dominant optical absorber producing strong PA
signal in human tissue, efficacy of these nanomaterials was
compared with blood in the NIR wavelength window. Fig. 2A
shows PA signal amplitudes obtained from a tygon tube (I.D.
250 mm, O.D. 500 mm) filled with SWCNT, MWCNT, O-SWGNR, O-
MWGNR, micro-graphite flakes, O-GMP, O-GNP and lysed bovine
blood (905–250, Quad Five), respectively. The signals were
normalized to that for blood at 740 nm. At 755 nm excitation
wavelength, peak-to-peak PA signal amplitudes obtained from
micro-graphite flakes, O-GMPs, and O-GNPs were comparable to
that from blood alone. In contrast, those from SWCNTs, MWCNTs,
O-SWGNRs and O-MWGNRs were more than 5 times stronger than
that from blood, in which, O-SWGNRs showed �14 times stronger
signal. At 5 mg/ml concentration, PA signal intensities obtained
from gold nanoparticles were 3 times greater, and methylene blue
dye were similar, compared to blood [28,29]. We detected a very
high signal-to-noise ratio (SNR; ratio of the average signal to the
Table 1
Size distribution of various nanomaterials.

Nanomaterial 

Single-walled carbon nanotubes (SWCNTs) 

Multi-walled carbon nanotubes (MWCNTs) 

Oxidized single-walled graphene nanoribbons (O-SWGNRs) 

Oxidized multi-walled graphene nanoribbons (O-MWGNRs) 

Pristine graphite microparticles (GMPs) 

Oxidized graphite microparticles (O-GMPs) 

Oxidized graphene nanoplatelets (O-GNP) 
standard deviation of the background) of O-SWGNRs at 5 mg/ml.
The SNR was >170 and suggested that the concentration of the O-
SWGNRs can be as low as 0.03 mg/ml using PAT. At this low O-
SWGNR concentration, a 2-fold increase in PA signal was measured
compared to background (1.2 mg/ml DSPE-PEG in DI water)
(Fig. 2B). These results suggest that minimum detectable
concentration of O-SWGNRs will be comparable to other PA
contrast agents such as gold nanoparticles [17,30]. Furthermore,
the results showed that PA signal obtained from these nanoma-
terials exceeded inherent blood signal over the investigated NIR
bandwidth, suggesting their utility for in vivo imaging.

Water and ions are two well-known sources of microwave
absorbers in human tissue, and they generate strong TA signals.
Therefore, to show that nanomaterials can function as CAs for TAT,
we compared TA signal of nanomaterials to that of DI water. Fig. 3B
shows TA signals obtained from a low-density polyethylene (LDPE)
vial (I.D. = 6 mm and 1.5 cc volume) filled with DI water, SWCNTs,
Length Diameter

3–30 mm 1–2 nm

0.5–200 mm 20–30 nm

0.5–1 mm 3–6 nm

0.5–1.5 mm 60–90 nm

– <45 mm

– >1 mm

– 5–15 nm



Fig. 3. (A) Schematic depiction of the experimental setup for thermoacoustic signal measurements. (B) Thermoacoustic signal amplitudes of water, single-walled carbon

nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), oxidized single-walled graphene nanoribbons (O-SWGNRs), oxidized multi-walled graphene nanoribbons

(O-MWGNRs), micro-graphite flakes (GMPs), oxidized graphite microparticles (O-GMP), and exfoliated graphene nanoplatelets (O-GNP) at 3 GHz. TA signals are normalized

to that of water at 3 GHz. (C) TA signal amplitude of DSPE-PEG compared to DI water.
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MWCNTs, O-SWGNRs, O-MWGNRs, GMPs, O-GMPs, and O-GNPs,
respectively. The signal amplitudes were normalized to DI water.
Additionally, TA signal amplitude of DSPE-PEG was comparable to
DI water (Fig. 3C), and LDPE vial does not generate any measurable
TA signal [13]. At 3 GHz, the SNR of the nanomaterials was >170,
and the nanomaterials exhibited �10–28% TA signal enhancement
compared to DI water.
To the best of our knowledge, this is the first study exploring
and comparing efficacy of graphene nanoparticles prepared via

longitudinal ‘‘unzipping’’ method and Hummer’s method as CAs
for multimodal PAT and TAT. These results indicate that O-GNRs
could be used for multimodal PAT and TAT applications, and O-
GNPs are suitable CAs for TAT. Bulk of the work performed towards
developing CAs for PAT has been focused on metallic nanoparticles,
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organic dye molecules, and carbon nanotubes. In comparison to
those CAs, graphene possesses several benefits: (1) Compared to
carbon nanotubes, graphene possesses larger surface area, lower
aspect ratio, and better dispersibility in most biological media.
These properties are important, for most in vivo applications.
Furthermore, colloidal dispersions (with high stability and less
aggregation) of graphene sheets can be achieved without
impurities that may be harmful in biological systems [31,32].
(2) The sp2 bonded carbon sheets of graphene can be directly
functionalized for targeting and drug delivery [33]. For other PAT/
TAT CAs, such as gold nanoparticles and organic dye molecules, to
disperse and stabilize gold nanoparticles in solution or embed
organic dye molecules, functionalization is performed on the
biocompatible coating/capping agent. (3) O-GNPs and O-GNRs
have been reported as CAs for other whole-body imaging
applications such as magnetic resonance imaging [22] and nuclear
imaging [34]. Therefore, they can be developed as multimodal CAs
that provide complementary information at micro- to macro-
scopic length scales. (4) Graphene can be developed as ther-
agnostic (simultaneous therapy and diagnostics) agent combining
PAT/TAT molecular imaging and NIR-induced hyperthermia [33].
Due to these unique features, graphene may serve as a platform for
the design of multi-modal imaging and multi-therapeutic
approaches. Indeed, several in vitro and in vivo safety and efficacy
studies on these graphene nanoparticles have been reported for
various biomedical applications [23,35].

3. Materials and methods

3.1. Synthesis and characterization of nanomaterials

SWCNTs (Cheap Tubes Inc., VT, USA) and MWCNTs (Sigma
Aldrich, NY, USA) were used as received. O-SWGNRs, O-MWGNRs,
O-GMPs, and O-GNPs were synthesized and characterized as
reported previously [22–24]. All nanomaterials were dispersed at
5 mg/ml in DSPE-PEG for PA and TA measurements.

3.2. Photoacoustic (PA) imaging

A deep reflection-mode PA imaging system was used (Scheme 1
in Ref. [36]) for PA tests of graphene samples. A tunable Ti:sapphire
laser (LT-2211A; Lotis TII, Minsk, Belarus) pumped by a Q-switched
Nd:YAG (LS-2137; Lotis TII) laser was used for PA excitation (pulse
width: 5 ns, pulse repetition rate: 10 Hz). A 5-MHz central
frequency, spherically focused ultrasonic transducer (V308;
Panametrics-NDT, Waltham, MA, USA), low-noise amplifier
(5072PR; Panametrics-NDT), a digital oscilloscope (TDS 5054;
Tektronix, Beaverton, OR, USA) were used to acquire, amplify, and
record signals. The reported PA signal amplitudes have been
normalized for laser fluence at their corresponding wavelengths.

3.3. Thermoacoustic (TA) imaging

Fig. 3A is a schematic depiction of the experimental setup for TA
measurements. TA results were obtained from a TAT system with a
3.0-GHz microwave generator (pulse width = 0.6 ms, repetition
rate = 10 Hz) and a 20 dB amplifier. The pulses (average power
density = 4.5 mW/cm2, within safety standard) were guided
toward the target through a horn antenna (11 cm � 7 cm) [37].
A 1-MHz spherically focused transducer with a bandwidth of 70%
(V314, Panametrics, Olympus) was used to receive TA signals from
samples placed in a plastic tank filled with mineral oil for
ultrasound coupling. The received TA signals were amplified and
stored by a data-acquisition (DAQ) card (CS 14200; Gage Applied,
IL) [38]. The microwave generator simultaneously triggered data
acquisition.
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