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Abstract—Existing approaches to image reconstruction in pho-
toacoustic computed tomography (PACT)with acoustically hetero-
geneous media are limited to weakly varying media, are computa-
tionally burdensome, and/or cannot effectively mitigate the effects
of measurement data incompleteness and noise. In this work, we
develop and investigate a discrete imaging model for PACT that is
based on the exact photoacoustic (PA)wave equation and facilitates
the circumvention of these limitations. A key contribution of the
work is the establishment of a procedure to implement a matched
forward and backprojection operator pair associated with the dis-
crete imaging model, which permits application of a wide-range of
modern image reconstruction algorithms that can mitigate the ef-
fects of data incompleteness and noise. The forward and backpro-
jection operators are based on the k-space pseudospectral method
for computing numerical solutions to the PA wave equation in the
time domain. The developed reconstructionmethodology is investi-
gated by use of both computer-simulated and experimental PACT
measurement data.

Index Terms—Acoustic heterogeneity, iterative image recon-
struction, optoacoustic tomography, photoacoustic tomography,
thermoacoustic tomography.

I. INTRODUCTION

P HOTOACOUSTIC computed tomography (PACT), also
known as optoacoustic or thermoacoustic tomography, is

a rapidly emerging hybrid imaging modality that combines op-
tical image contrast with ultrasound detection. [1]–[4] In PACT,
the to-be-imaged object is illuminated with a pulsed optical
wavefield. Under conditions of thermal confinement [2], [5],
the absorption of the optical energy results in the generation of
acoustic wavefields via the thermoacoustic effect. These wave-
fields propagate out of the object and are measured by use of
wide-band ultrasonic transducers. From these measurements, a
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tomographic reconstruction algorithm is employed to obtain an
image that depicts the spatially variant absorbed optical energy
density distribution within the object, which will be denoted
by the function . Because the optical absorption proper-
ties of tissue are highly related to its hemoglobin concentration
and molecular constitution, PACT holds great potential for a
wide-range of anatomical, functional, and molecular imaging
tasks in preclinical and clinical medicine [3], [6]–[9].
The majority of currently available PACT reconstruction al-

gorithms are based on idealized imaging models that assume a
lossless and acoustically homogeneous medium. However, in
many applications of PACT these assumptions are violated and
the induced photoacoustic (PA) wavefields are scattered and ab-
sorbed as they propagate to the receiving transducers. In small
animal imaging applications of PACT, for example, the pres-
ence of bone and/or gas pockets can strongly perturb the pho-
toacoustic wavefield. Another example is transcranial PACT
brain imaging of primates [10], in which the PA wavefields can
be strongly aberrated and attenuated [11]–[13] by the skull. In
these and other biomedical applications of PACT, the recon-
structed images can contain significant distortions and artifacts
if the inhomogeneous acoustic properties of the object are not
accounted for in the reconstruction algorithm.
Several image reconstruction methods have been proposed to

compensate for weak variations in a medium’s speed-of-sound
(SOS) distribution [14]–[16]. These methods are based on ge-
ometrical acoustic approximations to the PA wave equation,
which stipulate that the PA wavefields propagate along well-de-
fined rays. For these ray-based propagation models to be valid,
variations in the SOS distribution must occur on length scales
that are large compared to the effective acoustic wavelength.
These assumptions can be violated in preclinical and clinical ap-
plications of PACT. To compensate for strong SOS variations, a
statistical approach has been proposed [17] to mitigate the arti-
facts in the reconstructed images caused by thewavefront distor-
tions by use of a priori information regarding the acoustic het-
erogeneities. However, this method neglected variations in the
medium’s mass density and the effects of acoustic attenuation.
A few works have reported the development of full-wave

PACT reconstruction algorithms that are based on solutions to
the exact PA wave equation [18]–[23]. While these methods
are grounded in accurate models of the imaging physics and
therefore have a broader domain of applicability than ray-based
methods, they also possess certain practical limitations. Finite
element methods (FEMs) have been applied for inverting the
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PA wave equation in both the time and temporal frequency do-
mains [18], [19]. However, a very large computational burden
accompanies these methods, which is especially problematic
for 3-D applications of PACT. Image reconstruction methods
based on time-reversal (TR) are mathematically exact in their
continuous forms in homogeneous media for the 3-D case [20].
While these methods possess significantly lower computational
burdens then FEM-based approaches, they possess other limita-
tions for use with practical PACT applications. For example, TR
methods are predicated upon the assumption that the measured
PA signals are densely sampled on a measurement surface that
encloses the object, which is seldom achievable in biomedical
applications of PACT. More recently, a Neumann series-based
reconstruction method has been reported [22], [23] for media
containing SOS variations that is based on a discretization of a
mathematically exact inversion formula. The robustness of the
method to practical sparse sampling of PA signals, however, has
not been established.
In this work, we develop and investigate a full-wave ap-

proach to iterative image reconstruction in PACT with media
possessing inhomogeneous SOS and mass density distributions
as well as acoustic attenuation described by a frequency power
law. The primary contributions of the work are the establish-
ment of a discrete imaging model that is based on the exact
PA wave equation and a procedure to implement an associated
matched discrete forward and backprojection operator pair.
The availability of efficient numerical procedures to imple-
ment these operators permits a variety of modern iterative
reconstruction methods to be employed that can effectively
mitigate image artifacts due to data incompleteness, noise,
finite sampling, and modeling errors. Specifically, the k-space
pseudospectral method is adopted [21] for implementing the
forward operator and a numerical procedure for implementing
the exact adjoint of this operator is provided. The k-space
pseudospectral method possesses significant computational
advantages over real space finite-difference and finite-element
methods, as it allows fewer mesh points per wavelength and al-
lows larger time steps without reducing accuracy or introducing
instability [24]. An iterative image reconstruction algorithm
that seeks to minimize a total variation (TV)-regularized pe-
nalized least squares (PLS) cost function is implemented by
use of the developed projection operators and investigated
in computer-simulation and experimental studies of PACT in
inhomogeneous acoustic media. Also, the performance of this
algorithm is compared to that of an existing TR method.
The paper is organized as follows. In Section II, the salient

imaging physics and image reconstruction principles are briefly
reviewed. The explicit formulation of the discrete imaging
model is described in Section III. Section IV gives a description
of the numerical and experimental studies, which includes the
implementation of the forward and backprojection operators,
and the iterative reconstruction algorithm. The numerical and
experimental results are given in Section V. The paper con-
cludes with a summary and discussion in Section VI.

II. BACKGROUND

Below we review descriptions of photoacoustic wavefield
generation and propagation in their continuous and discrete

forms. The discrete description is based on the k-space
pseudospectral method [21], [24], [25]. We present the pseu-
dospectral k-space method by use of matrix notation, which
facilitates the establishment of a discrete PACT imaging model
in Section III. We also summarize a discrete formulation of
the image reconstruction problem for PACT in acoustically
inhomogeneous media. Unless otherwise indicated, lowercase
and uppercase symbols in bold font will denote vectors and
matrices, respectively.

A. Photoacoustic Wavefield Propagation: Continuous
Formulation

Let denote the thermoacoustically-induced pressure
wavefield at location and time . Additionally,
let denote the absorbed optical energy density within the
object, denote the dimensionless Grueneisen parameter,

denote the vector-valued
acoustic particle velocity, denote the medium’s SOS dis-
tribution, and and denote the distributions of the
medium’s acoustic and ambient densities, respectively. The ob-
ject function and all quantities that describe properties of
the medium are assumed to be represented by bounded func-
tions possessing compact supports.
In many applications, acoustic absorption is not negligible

[21], [26]–[29]. For a wide variety of lossy materials, including
biological tissues, the acoustic attenuation coefficient can be
described by a frequency power law of the form [30]

(1)

where is the temporal frequency in MHz, is the frequency-
independent attenuation coefficient in , and
is the power law exponent which is typically in the range of

0.9–2.0 in tissues [31].
In a heterogeneous lossy fluid medium in which the acoustic

absorption is described by the frequency power law, the propa-
gation of can be modeled by the following three coupled
equations [21], [32]:

(2)

(3)

(4)

subject to the initial conditions

(5)

where the quantities and describe the acoustic absorp-
tion and dispersion proportionality coefficients that are defined
as

(6)
Note that acoustic absorption and dispersion are modeled by
the second and third terms in the bracket, which employ two
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lossy derivative operators based on the fractional Laplacian to
separately account for the acoustic absorption and dispersion in
a way that is consistent with (1). When acoustic attenuation can
be neglected, and , and (4) reduces to

(7)

B. Photoacoustic Wavefield Propagation: Discrete
Formulation

The k-space pseudospectral method can be employed to
propagate a photoacoustic wavefield forward in space and
time by computing numerical solutions to the coupled equa-
tions described by (2)–(5). This method can be significantly
more computationally efficient than real space finite-element
and finite-difference methods because it employs the fast
Fourier transform (FFT) algorithm to compute the spatial
partial derivatives and possesses less restrictive spatial and
temporal sampling requirements. Applications of the k-space
pseudospectral method in studies of PACT can be found in
[10], [13], [21], [24].
The salient features of the k-space pseudospectral method

that will underlie the discrete PACT imaging model are de-
scribed below. Additional details regarding the application of
this method to PACT have been published by Treeby and Cox
in [21], [24]. Let specify the locations of the

vertices of a 3-D Cartesian grid, where de-
notes the number of vertices along the th dimension. Addition-
ally, let , , , denote discretized values
of the temporal coordinate , where and denote the sets
of non-negative integers and positive real numbers. The sam-
pled values of and , ,
2 or 3, corresponding to spatial locations on the 3-D Cartesian
grid will be described by the 3-D matrices and , respec-
tively, where the subscript indicates that these quantities de-
pend on the temporal sample index. Unless otherwise indicated,
the dimensions of all 3-D matrices will be . Lex-
icographically ordered vector representations of these matrices
will be denoted as

(8)

and

(9)

The sampled values of the ambient density and squared
SOS distribution will be represented as

(10)

and

(11)

where defines a diagonal 2-D matrix whose
diagonal entries starting in the upper left corner are .

In the k-space pseudospectral method, the 1-D discrete spatial
derivatives of the sampled fields with respect to the th dimen-
sion ( , 2, or 3) are computed in the Fourier domain as

(12)

and

(13)

where , the superscript “Mat” indicates that the 1-D
discrete derivative operator acts on a 3-D matrix, and

denote the 3-D forward and inverse discrete Fourier trans-
forms (DFTs), and denotes Hadamard product. The elements
of the 3-D matrix ( , 2,3) are given by

(14)

where ( , 2, 3), and denotes the length
of the spatial grid in the th dimension.
The 3-D matrix is the k-space

operator, where , is the minimum
of , is a 3-D matrix defined as

(15)

and the sinc function and square root function are both element-
wise operations.
Consider the operators and that are defined as

(16)

and

(17)

It will prove convenient to introduce the matrices
and that act on the vector representations of the matrices
and , respectively. Specifically, and are defined

such that and are lexicographically ordered vector
representations of the matrices and , respec-
tively. In terms of these quantities, the discretized forms of (2),
(3), and (4) can be expressed as

(18)

(19)

where is an vector whose elements are defined to be
zero for , and

(20)
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The quantities and in (20) represent the ab-
sorption and dispersion terms in the equation of state. They are
defined as lexicographically ordered vector representations of

and , which are defined in analogy to
(4) as

(21)

(22)

where is the 3-D matrix form of , and and are
defined as

(23)

(24)

and and are powers of that are computed on an
element-wise basis.

C. The Image Reconstruction Problem

Here, for simplicity, we neglect the acousto-electrical im-
pulse response (EIR) of the ultrasonic transducers and assume
each transducer is point-like. However, a description of how to
incorporate the transducer responses in the developed imaging
model is provided in Appendix A. With these assumptions,
we can define as
the measured pressure wavefield data at time

, where is the total number of time
steps and denotes the positions of the
ultrasonic transducers that reside outside the support of the

object. The PACT image reconstruction problem we address
is to obtain an estimate of or, equivalently, , from
knowledge of , , , , ,
and . The development of image reconstruction methods for
addressing this problem is an active area of research [10],
[20], [22], [24], [33]. Note that the acoustic parameters of the
medium can be estimated by use of adjunct ultrasound tomog-
raphy image data [34]–[36] and are assumed to be known.
The effects of errors in these quantities on the accuracy of the
reconstructed PACT image will be investigated in Section IV.
The discrete form of the imaging model for PACT can be

expressed generally as

(25)

where the vector

...
(26)

represents the measured pressure data corresponding to all
transducer locations and temporal samples, and the
vector is the discrete representation of the sought after
initial pressure distribution within the object (i.e., (9) with

). The matrix represents the discrete
imaging operator, also referred to as the system matrix.

The image reconstruction task is to determine an estimate of
from knowledge of the measured data . This can be accom-

plished by computing an appropriately regularized inversion of
(25). When iterative methods are employed to achieve this by
minimizing a penalized least squares cost function [37], the ac-
tion of the operators and its adjoint must be computed.
Methods for implementing these operators are described below.

III. EXPLICIT FORMULATION OF DISCRETE IMAGING MODEL

The k-space pseudospectral method for numerically solving
the photoacoustic wave equation described in Section II-B will
be employed to implement the action of the system matrix .
In this section, we provide an explicit matrix representation of
that will subsequently be employed to determine .
Equations (18)–(20) can be described by a singlematrix equa-

tion to determine the updated wavefield variables after a time
step as

(27)

where is a
vector containing all the wavefield variables at the time step

. The propagator matrix is defined as

(28)

where ( , 2, 3), ,
, is the identity

matrix, and is the zero matrix. Recall that was
defined below (17).
The wavefield quantities can be propagated forward in time

from to as

...
...

(29)

where the matrices
are defined in terms of as

...
. . .

...

(30)

with residing between the th to th
rows and the th to th columns of .



HUANG et al.: FULL-WAVE ITERATIVE IMAGE RECONSTRUCTION IN PHOTOACOUSTIC TOMOGRAPHY 1101

From the equation of state in (7) and initial conditions (5), the
vector can be computed from the initial pres-
sure distribution as

...
(31)

where

(32)

(33)

and is the initial pressure distribution as defined by (9) with
.

In general, the transducer locations at which the PA data
are recorded will not coincide with the vertices of the Cartesian
grid at which the values of the propagated field quantities are
computed. The measured PA data can be related to the com-
puted field quantities via an interpolation operation as

...
(34)

where

...
...

. . .
...

(35)

Here, , where is a
row vector in which all elements are zeros except

the four corresponding to acoustic pressure at four grid nodes
that are nearest to the transducer location .

In other words, these four entries are interpolation coefficients
to compute the acoustic pressure at the th transducer, and
their values are given by the barycentric coordinates of
with respect to , which are determined by
Delaunay triangulation [38].
By use of (29), (31), and (34), one obtains

(36)

Finally, upon comparison of this result to (25), the sought-after
explicit form of the system matrix is identified as

(37)

Commonly employed iterative image reconstruction methods
involve use of a backprojection matrix that corresponds to
the adjoint of the system matrix. Since contains real-valued
elements in our case, is equivalent to the transpose .
According to (37), the explicit form of is given by

(38)

The implementations of and are described in
Section IV-A. Note that, although the descriptions of
and above are based on the 3-D PA wave equation, the
two-dimensional formulation is contained as a special case.

IV. DESCRIPTIONS OF NUMERICAL AND
EXPERIMENTAL STUDIES

Numerical studies were conducted to demonstrate the effec-
tiveness and robustness of the proposed discrete imaging model
in studies of iterative image reconstruction from incomplete
data sets in 2-D and 3-D PACT. Specifically, the system matrix
and its adjoint, as formulated in Section III, were employed with
an iterative image reconstruction algorithm that was designed
to minimize a PLS cost function that contained a total variation
(TV) penalty term. The performance of the reconstruction al-
gorithm was compared to an existing TR-based reconstruction
algorithm.

A. Implementation of the Forward and Backprojection
Operators

The k-space pseudospectral method for numerically solving
the photoacoustic wave equation has been implemented in the
MATLAB k-Wave toolbox [39]. This toolbox was employed
to compute the action of . To prevent acoustic waves from
leaving one side of the grid and re-entering on the opposite side,
an anisotropic absorbing boundary condition called a perfectly
matched layer (PML) was employed to enclose the computa-
tional grids. The performance of the PML was dependent on
both the size and attenuation of the layer. A PML thickness of
10 grid points, together with a PML absorption coefficient of 2
nepers per meter, were found to be sufficient to reduce boundary
reflection and transmission for normally incident waves [40],
[41] and were employed in this study. To accurately and stably
model wave propagation, the temporal and spatial steps were re-
lated by the Courant–Friedrichs–Lewy (CFL) number as [25],
[39]

(39)

where the is the minimum grid spacing, and a CFL
number of 0.3 typically provides a good compromise between
computation accuracy and speed [39], [40]. A more detailed
description of the implementation of the k-space pseudospectral
method can be found in [39] and [40].
The action of the backprojectionmatrix on themeasured pres-

sure data was implemented according to (38). It can be veri-
fied that can be computed as

(40)

(41)

(42)

Since and are both sparse matrices that can be stored and
transposed, and can be readily computed. Most of
block matrices in the propagator matrix are zero or identity
matrices. Therefore, to compute , we only need to com-
pute the actions of transposed nontrivial block matrices in .
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Fig. 1. The (a) blood vessel and (b) disc numerical phantoms employed to represent in the 2-D computer-simulation studies. Panel (c) is the overlapped image
with 3-D vessel phantom and skull, which is only used to show the relative position of the phantom to the skull.

To incorporate the PML boundary condition, both and
should be modified as described in [40].

B. Reconstruction Algorithms

By use of the proposed discrete imaging model and methods
for implementing and , a wide variety of iterative image
reconstruction algorithms can be employed for determining es-
timates of . In this work, we utilized an algorithm that sought
solutions of the optimization problem

(43)

where is the regularization parameter, and a non-negativity
constraint was employed. For the 3-D case, the TV-norm is de-
fined as

(44)

where denotes the th grid node, and , ,
are neighboring nodes before the th node along the

first, second and third dimension, respectively. The fast itera-
tive shrinkage/thresholding algorithm (FISTA) [42], [43] was
employed to solve (43), and its implementation is given in
Appendix B. The regularization parameter was empirically
selected to have a value of 0.001 and was fixed for all studies.
A TR image reconstruction algorithm based on the k-space

pseudospectral [21] method was also utilized in the studies de-
scribed below. The TR reconstruction algorithm solves the dis-
cretized acoustic (18)–(20) backward in time subject to initial
and boundary conditions as described in [21]. The parameters
of the PML boundary condition were the same with the ones
employed in our system matrix construction.
For both algorithms, images were reconstructed on a uniform

grid of 512 512 pixels with a pitch of 0.2 mm for the 2-D
simulation studies and on a grid with a pitch of
0.4 mm for the 3-D studies. All simulations were computed in
theMATLAB environment on a workstation that contained dual
hexa-core Intel Xeon E5645 CPUs and a NVIDIA Tesla C2075
GPU. The GPU was equiped with 448 1.15 GHz CUDA Cores

and 5 GB global memory. The Jacket toolbox [44] was em-
ployed to perform the computation of (18)–(20) and (40)–(42)
on the GPU.

C. Computer-Simulation Studies of 2-D PACT

Scanning geometries: Three different 2-D scanning geome-
tries were considered to investigate the robustness of the recon-
struction methods to different types and degrees of data incom-
pleteness. A “full-view” scanning geometry utilized 180 trans-
ducers that were evenly distributed on a circle of radius 40 mm.
A “few-view” scanning geometry utilized 60 transducers that
were equally distributed on the circle. Finally, a “limited-view”
scanning geometry utilized 90 transducers that were evenly lo-
cated on a semi-circle of radius 40 mm.
Numerical phantoms: The two numerical phantoms shown

in Fig. 1(a) and (b) were chosen to represent the initial pres-
sure distributions in the 2-D computer-simulation studies.
The blood vessel phantom shown in Fig. 1(a) was employed to
investigate the robustness of the reconstruction methods with
respect to different types and degrees of data incompleteness
mentioned above. The low contrast disc phantom displayed in
Fig. 1(b) was employed to investigate the robustness of the re-
construction methods with respect to errors in the SOS and den-
sity maps introduced below.
Measurement data: Assuming ideal point-like transducer and

neglecting the transducer EIR and acoustic attenuation, simu-
lated pressure data corresponding to the numerical phantoms
were computed at the transducer locations by use of the k-space
pseudospectral method for the three measurement geometries.
To avoid committing an “inverse crime” [45], a 1024 1024
grid with a pitch of 0.1 mm was employed in this computation.
A total of 20 000 temporal samples were computed at each trans-
ducer location with time step ns, all of which were em-
ployed by the TR image reconstruction method. However, only
the first 1500 temporal samples were employed by the iterative
reconstruction method. The same procedure was repeated for
noisy pressure data, where 3% (with respect to maximum value
of noiseless data) additive white Gaussian noise (AWGN) was
added to the simulated pressure data.
Investigation of systematic errors: The SOS and density maps

employed in the simulation studies were representative of a
monkey skull [10]. The dimensions of the skull were approx-
imately 7 cm 6 cm, and its thickness ranges from 2 to 4 mm.
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Fig. 2. Slice of the SOS (a) and density (b) map deduced from the X-ray CT
data of a monkey skull. Panel (c) and (d) display profiles of the SOS and density
maps along the “X”-axis indicated in Fig. 2, respectively. Red dashed lines are
the profiles of the assumed maps, whereas the blue solid lines are the profiles of
maps with errors.

Fig. 2(a) and (b) shows a transverse slice of the SOS and density
maps, which were used in the 2-D simulations.
Since errors in the estimated SOS and density maps are in-

evitable regardless in how they are determined, we investigated
the robustness of the reconstruction methods with respect to
the SOS and density map errors, which were generated in two
steps. First, 1.3% (with respect to maximum value) uncorrelated
Gaussian noise with mean value of 1.7% of the maximum value
was added to the SOS and density maps to simulate inaccuracy
of the SOS and density values. Subsequently, the maps were
shifted by 7 pixels (1.4 mm) to simulate a registration error.
Fig. 2(c) and (d) show profiles of the SOS and density maps
with those errors along the “X”-axis indicated by the arrows in
Fig. 2(a) and (b), respectively.

D. Computer-Simulation Studies of 3-D PACT

Because PACT is inherently a 3-Dmethod, we also conducted
3-D simulation studies to evaluate and compare the iterative re-
construction method and the TR method. As in the 2-D studies
described above, the 3-D SOS and density maps were repre-
sentative of a monkey skull. A 3-D blood vessel phantom was
positioned underneath the skull to mimic the blood vessels on
the cortex surface. To demonstrate this configuration, Fig. 1(c)
shows the overlapped images of the 3-D phantom and the skull.
The assumed scanning geometry was a hemispherical cap with
radius of 46mm, and 484 transducers were evenly distributed on
the hemispherical cap by use of the golden section spiral method
[46]. The pressure data were computed on a
grid with a pitch of 0.2 mm and a time step ns. The sim-
ulated pressure data were then contaminated with 3% AWGN.
The TR reconstruction method employed 2000 temporal sam-
ples at each transducer location, whereas the iterative method
employed 1000 samples.

Fig. 3. Photograph of the pencil leads held in agar and surrounded by an acrylic
cylindrical shell.

E. Studies Utilizing Experimental Data

Since the acoustic absorption and dispersion were modeled
by the system matrix, the iterative method can naturally com-
pensate for absorption and dispersion effects during reconstruc-
tion. To demonstrate the compensation for those effects, images
were reconstructed by use of the iterative method with experi-
mental data obtained from a well-characterized phantom object
that is displayed in Fig. 3. The phantom contained six optically
absorbing structures (pencil leads with diameter 1 mm) em-
bedded in agar. These structures were surrounded by an acrylic
cylinder, which represents the acoustic heterogeneities and ab-
sorption in the experiments. The cylinder had inner and outer
radii of 7.1 and 7.6 cm, respectively, and a height of 3 cm. The
density and SOS of the acrylic were measured and found to be
1200 and 3100 , and the estimated acoustic ab-
sorption parameters were found to be

and [13]. These values were assigned to the
annular region occupied by the acrylic in the 2-D SOS maps

, density map and attenuation coefficient , re-
spectively. The SOS value 1480 and density value 1000

of water were assigned elsewhere. Since we neglected
the relatively weak acoustic attenuation due to the water bath
and agar, was also set to zero elsewhere.
The experimental data were acquired from a cylindrically

focused ultrasound transducer that had a central frequency of
2.25 MHz with a bandwidth of 70% [47]. The transducer was
scanned along a circular trajectory of radius 95 mm, and 20 000
temporal samples were measured at each transducer location at
a sampling rate of 20 MHz. More details about the data acqui-
sition can be found in [13]. In this study, images were recon-
structed by use of PA signals recorded at 200, 100 (over 180 ),
and 50 transducer locations, which correspond to the full-view,
limited-view, and few-view scanning geometry, respectively.
The TR reconstruction method employed 20 000 temporal sam-
ples at each transducer location, while the iterative method em-
ployed 2000 samples. The reference images were also recon-
structed by use of the data obtained at 200 transducer loca-
tions when the acrylic cylinder was absent. Since the pencil
lead phantom is expected to generate quasi-cylindrical waves
and the morphology of the acoustic heterogeneity (the acrylic
shell) was a cylinder, the cylindrical wave propagation can be
approximated by the 2-D PA wave equation. Accordingly, we
employed a 2-D imaging model in the experimental study, and
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Fig. 4. Panels (a) and (c) are reconstructed images from noiseless data with
full-view scanning geometry by use of the TR method and iterative method,
respectively. Panels (b) and (d) are the corresponding profiles along the “Y”-axis
indicated in panel (a).

Fig. 5. Panels (a) and (c) are reconstructed images from the noisy pressure
data with 3% AWGN corresponding to the full-view scanning geometry by use
of the TR method and iterative method, respectively. Panels (b) and (d) are the
corresponding profiles.

all the reconstructions were performed on a grid of 512 512
pixels with a pitch of 0.5 mm. The effects of shear wave propa-
gation in the acrylic cylinder were neglected, whichwe expected
to be of second-order importance compared to wavefield pertur-
bations that arise from inhomogeneties in the SOS and density
distributions [48].

Fig. 6. Parts (a) and (c) are reconstructed images from the noisy pressure data
with 3% AWGN corresponding to the few-view scanning geometry by use of
the TR method and iterative method, respectively. Panels (b) and (d) are the
corresponding profiles.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Computer-Simulations Corresponding to Different
Scanning Geometries

The reconstructed images corresponding to the three scan-
ning geometries are displayed in Figs. 4–7. In each figure, the
results in the top row correspond to use of the TR reconstruc-
tion method, while the bottom row shows the corresponding re-
sults obtained by use of the iterative method. The profiles shown
in each figure are along the “Y”-axis indicated by the arrow in
Fig. 4(a). The red solid lines and blue dashed lines correspond to
profiles through the phantom and reconstructed images, respec-
tively. With the full-view scanning geometry, the TR method
and the iterative method both produce accurate reconstructed
images. However, with the few-view and the limited-view scan-
ning geometries, the images reconstructed from the iterative
method contain fewer artifacts and less noise than the TR re-
sults.1 Also, the values of the images reconstructed from the it-
erative method are much closer to the values of the phantom
than those produced by the TR method. The root mean square
error (RMSE) between the phantom and the reconstructed im-
ages were also computed. The RMSE of images reconstructed
by use of the TRmethod and the iterative method corresponding
to noisy pressure data with the full-view, few-view, and limited-
view scanning geometries are 0.011, 0.042, 0.081 and 0.003,
0.007, 0.008, respectively. The computational time of the TR
method was 1.7 min, while the iterative method took approxi-
mately 10 min to finish 20 iterations.

1With the limited view scanning geometry, we also implemented the iterated
TR method [49], which produced images with fewer artifacts than the ordinary
TR results, but the background was still not as clean as the iterative results.
Given the limited space, those results were not included in this article.
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Fig. 7. Panels (a) and (c) are reconstructed images from the noisy pressure data
with 3% AWGN corresponding to the limited-view scanning geometry by use
of the TR method and iterative method, respectively. Panels (b) and (d) are the
corresponding profiles.

Fig. 8. Panels (a) and (c) are reconstructed images with actual SOS and density
maps by use of the TRmethod and iterative method, respectively. Panels (b) and
(d) are the corresponding profiles along the “Y”-axis indicated in panel (a).

B. Simulation Results With Errors in SOS and Density Maps

Fig. 8 shows the images reconstructed from noisy pressure
data corresponding to the low contrast disc phantom in the case
where SOS and density maps have no error. The results corre-
sponding to TR and iterative image reconstruction algorithms
are shown in the top and bottom row, respectively. The RMSE
corresponding to the time-reversal and the iterative results are
0.026 and 0.007, respectively. These results suggest that the it-
erative algorithm can more effectively reduce the noise level in
the reconstructed images than the time-reversal algorithm.

Fig. 9. Panels (a) and (c) are reconstructed images with SOS and density maps
with errors by use of the TR method and iterative method, respectively. Panels
(b) and (d) are the corresponding profiles along the “Y”-axis indicated in panel
(a).

The images reconstructed by use of the SOS and density maps
with errors are shown in Fig. 9. The image produced by the
iterative method has cleaner background than the TR result,
and the RMSE corresponding to the TR and the iterative re-
sults are 0.086 and 0.034, respectively. The boundaries of the
disc phantoms also appear sharper in the image reconstructed
by the iterative method as compared to the TR result. This can
be attributed to the TV regularization employed in the iterative
method. These results suggest that appropriately regularized it-
erative reconstruction methods can be more robust to the errors
in the SOS and density maps than the TR method.

C. 3-D Simulation Results

The 3-D blood vessel phantom and the reconstructed im-
ages were visualized by the maximum intensity projection
(MIP) method. Fig. 10(a) shows the phantom image, and
Fig. 10(b) and (c) displays the images reconstructed by use of
the TR method and the iterative method, respectively. They
are all displayed in the same grey scale window. The RMSE
corresponding to the TR and the iterative results are 0.018
and 0.003, respectively. These results suggest that the iterative
method is robust to the data incompleteness and the noise in
the pressure data. The computational time of the TR method
was approximately 6 min, while the iterative method with 10
iterations required 110 min.

D. Experimental Results

The images reconstructed from the experimental data are
shown in Figs. 11–14. Fig. 11 shows the image reconstructed
with the full-view scanning geometry by use of the TR
method (top row) and the iterative method (bottom row).
Fig. 11(a) and (c) display the reference images produced
by each of the methods when the acrylic shell was absent.
Fig. 11(b) and (e) show the reconstructed images for the
case when the acrylic shell was present. The RMSE between
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Fig. 10. Maximum intensity projection renderings of the 3-D phantom (a), and the reconstructed 3-D images by use of the TR method (b) and the iterative method
(c).

Fig. 11. Panels (a) and (b) are reconstructed images by use of the TR method
from 200 views with acrylic shell absent and present, respectively. Panels (c)
and (d) are reconstructed images by use of the iterative method from 200 views
with acrylic shell absent and present, respectively.

Fig. 11(b) and (d) and the reference images Fig. 11(a) and (c)
are 0.003 and 0.002, respectively. Fig. 12(a) and (c) shows the
images reconstructed with the few-view scanning geometry
when the acrylic shell was present. The corresponding image
profiles are displayed in Fig. 12(b) and (d). The profiles of
Fig. 12(a) and (c) along the “Y”-axis were shown in Fig. 13,
which shows that the iterative method produced higher reso-
lution images than the TR method. This can be attritubed to
the TV regularization that mitigates model errors that arise,
for example, by neglecting the shear wave and finite trans-
ducer aperture effects. The RMSE between Fig. 12(b) and (d)
and their reference images are 0.005 and 0.002, respectively.
Fig. 14 displays the images reconstructed with the limited-view
scanning geometry when the acrylic shell was present. The
RMSE between Fig. 14(a) and (c) and their reference images
are 0.007 and 0.003, respectively. These results show that the
iterative algorithm can effectively compensate for the acoustic
attenuation and mitigate artifacts and distortions due to incom-
plete measurement data.

Fig. 12. Panels (a) and (c) are reconstructed images with data from 50 view
angles over 360 (acrylic shell present) by use of the TR method and itera-
tive method, respectively. Panels (b) and (d) are their corresponding profiles
(dashed blue lines), where red solid lines are the profiles of the reference im-
ages in Fig. 11 (a) and (c).

Fig. 13. Profiles of the reconstructed images in Fig. 12 along the “Y”-axis in-
dicated in Fig. 12(a).

VI. CONCLUSION AND DISCUSSION

We proposed and investigated a full-wave approach to
iterative image reconstruction in PACT with acoustically inho-
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Fig. 14. Panels (a) and (c) are reconstructed images with data from 100 view
angles over 180 (acrylic shell present) by use of the TR method and itera-
tive method, respectively. Panels (b) and (d) are their corresponding profiles
(dashed blue lines), where red solid lines are the profiles of the reference im-
ages in Fig. 11(a) and (c).

mogeneous lossy media. An explicit formulation of the discrete
imaging model based on the k-space pseudospectral method
was described, and the details of implementing the forward
and backprojection operators were provided. The matched op-
erator pair was employed in an iterative image reconstruction
algorithm that sought to minimize a TV-regularized PLS cost
function. The developed reconstruction methodology was in-
vestigated by use of both computer-simulated and experimental
PACT measurement data, and the results demonstrated that
the reconstruction methodology can effectively mitigate image
artifacts due to data incompleteness, noise, finite sampling, and
modeling errors. This suggests that the proposed image recon-
struction method has the potential to be adopted in preclinical
and clinical PACT applications.
There remain several important topics to further investigate

and validate the proposed iterative reconstruction method. It has
been shown [20], [23] that the performance of reconstruction
methods can be degraded when the SOS distribution satisfies a
trapping condition [20], [23]. Therefore, future studies may in-
clude the investigation of numerical properties of the proposed
image reconstruction method for cases in which the SOS distri-
bution satisfies the trapping condition. Also, because the signal
detectability is affected by the noise properties of an image re-
constructionmethod, investigation of statistical properties of the
iterative image reconstructionmethod is another important topic
for future studies. Moreover, the proposed image reconstruc-
tion method can be further validated through additional exper-
imental studies, and the quality of the produced images will be
assessed by use of objective and quantitative measures.

APPENDIX A
MODELING TRANSDUCER IMPULSE RESPONSES

An important feature of the proposed discrete PACT imaging
model is that the transducer’s impulse responses, including
the spatial impulse response (SIR) and the acousto-electrical
impulse response (EIR), can be readily incorporated into the
system matrix.
The SIR accounts for the averaging effect over the transducer

surface [50]–[52], which can be described as

(45)

where is the averaged pressure at time
over the surface of the th transducer, is the surface area
of the th transducer centered at .
In order to incorporate the SIR into the system matrix, we can

divide the transducer surface into small patches with equal
area that is much less than the acoustic wavelength, so the
integral in (45) can be approximated by summation as

(46)

or in the equivalent matrix form

(47)

where denotes the center of the th patch of the th trans-
ducer, is the patch area, is a

vector, denotes
the acoustic pressure at patches of th transducer at time .
Here for simplicity, we assume all the transducers are divided
into patches with equal area , and it is readily to extend
to general cases where th transducer is divided into patches
with area of .
Recalling the measured pressure data and defined for

point-like transducer, we can redefine as a vector
that represents the acoustic pressure at patches of transducers
with finite area at time as

... (48)

The corresponding can be redefine as a vector
denoting the measured pressure data corresponding to all trans-
ducer and temporal samples as

... (49)

The averaged pressure measured by all transducer and tem-
poral samples can be defined as the vector

... (50)
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where the vector

... (51)

According to (47), and can be related as

(52)

where the matrix

...
...

. . .
...

(53)

The EIR models the electrical response of the piezoelectric
transducer. With the assumption that the transducer is a linear
shift invariant system with respect to the input averaged pres-
sure time sequence, the output voltage signal is the convolution
result of the input and the EIR.
For simplicity, the transducers are assumed to process

identical EIR, and let be the discrete
samples of the EIR. The input averaged pressure time se-
quence of the th transducer can be defined as a vector

. Then the
output voltage signal of the th transducer can be expressed
as a vector

(54)

where denotes discrete linear convolution operation, which
can be constructed as a matrix multiplication by converting one
of the operands into the corresponding Toeplitz matrix.
The output voltage signals of all transducers

can then be computed as

(55)

where the matrix

... (56)

and is a Toeplitz-like matrix defined
as

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

(57)

By use of (36), (52), and (55), it is readily found that

(58)

and the corresponding systemmatrix that incorporates the trans-
ducer impulse responses is found to be

(59)

APPENDIX B
IMPLEMENTATION OF THE FISTA ALGORITHM FOR PACT

Equation (43) was solved iteratively whose pseudocodes are
provided in Algorithm 1, where “Lip” is the Lipschitz constant
of the operator [42].
Note that we extended the FISTA algorithm described in [42]

to 3-D. The function “F_Dnoise” in Algorithm 1-Line 3 solves
a de-noising problem defined as

(60)

where and

(61)

It has been demonstrated that (60) can be solved efficiently [42],
and the pseudocodes are provided in Algorithm 2.
The four operators , and in Algorithm 2

are defined as follows:
.

(62)

where we assume
.

(63)
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. If we denote the input and output matrices by
and respectively, we have

(64)

. If we
denote the input and output matrices by and ,
respectively, we have

(65)

where , , ,
and we assume

.
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