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Abstract. Using a recently developed reconstruction method for photoacoustic tomography (PAT) valid for a planar
measurement geometry parallel to a layered medium, we investigate the effects of shear wave propagation in the
solid layer upon the ability to estimate Fourier components of the object. We examine this ability as a function of
the thickness of the layer supporting shear waves as well as of the incidence angle of the field in the planewave
representation. Examples are used to demonstrate the importance of accounting for shear waves in transcranial
PAT. Error measures are introduced to quantify the error found when omitting shear waves from the forward
model in PAT. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.6.061215]
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1 Introduction
Photoacoustic tomography (PAT) is a noninvasive biomedical
imaging technique, basedon thephotoacoustic effect,whichcom-
bines the optical absorption contrast of tissuewith the high spatial
resolution of ultrasound imaging techniques.1–4 In PAT, the target
is illuminated with a short optical pulse and an acoustic pressure
signal is generated via the thermoacoustic effect.2,3 Wide-band
ultrasonic transducers are used to measure the pressure signal
at a number of locations outside the object and the measured
data serve as the input to numerical image reconstruction algo-
rithms that estimate the total absorbed optical energy density.
The utility of PAT has been demonstrated in a number of in
vivo studies of biological structure and function5–7 and in facili-
tating a number of medically relevant diagnostic tasks.2,8–13

Functional imaging of mouse brains has been successfully
demonstrated with PAT.5,6 For larger animals with thicker skulls,
PAT has been demonstrated to provide qualitatively useful
images of brain structures;14–17 however, the transmission of
ultrasonic waves through the skull bone(s) induces strong
changes to the photoacoustic signal through the processes of
absorption, strong reflections, and longitudinal-to-shear mode
conversion. These effects can result in distortions and degraded
spatial resolution in the reconstructed images. Time-reversal
algorithms for PAT have been shown to compensate for density
variations, dispersion and absorption,18 but they do not account
for media that support shear wave propagation.

Under the assumption that the to-be-imaged object is em-
bedded in a planar, layered medium, the effects of absorption,
dispersion, and shear-mode conversion can be compensated
for using a recently derived PAT reconstruction formula.19 The
reconstruction formula, which is based on the angular spectrum
representation of the photoacoustic field, estimates the Fourier
components of the absorbed optical energy density. In this

paper, the PAT reconstruction formula valid for planar, layered
media is used to evaluate the role of modeling shear waves in
PAT. Specifically, the transmission function for a three layer sys-
tem when shear waves are modeled is compared to the transmis-
sion function for a three layer system for a system that does not
compensate for shear waves. Comparisons are made based on the
incident angle of the field in the planewave representation aswell
as on the thickness of the solid layer. Object-independent error
functions are introduced to quantify the importance of modeling
shear waves for PAT in this geometry. We show that, when shear
waves are omitted from the imaging model, a large number of
Fourier components of the object will be mis-estimated.

2 Background
The assumed geometry of our system is shown in Fig. 1. The to-
be-imaged object is contained in layer 2, characterized by speed
of sound c2 and density ρ2, where both are consistent with bio-
logical tissue (e.g., a fluid). The photoacoustic signal is detected
in layer 0, on the plane z ¼ 0, characterized by thickness d0,
speed of sound c0, and density ρ0. Layer 1 is assumed to be
a solid, thus supporting shear waves, with thickness d1. The
solid is assumed to be dispersive and absorptive for both long-
itudinal and shear waves.

In PAT, the measured acoustic pressure is used to infer the
absorbed optical energy density, denoted by AðrÞ. The space-
frequency domain representation, p̃ðr;ωÞ, of the acoustic field
is related to the space-time representation, pðr; tÞ, by a Fourier
transform, viz

p̃ðr;ωÞ ¼
Z
∞
dt pðr; tÞeiωt; (1)

where ω denotes the temporal frequency, i ≡
ffiffiffiffiffiffi
−1

p
, and

r ¼ ðx; y; zÞ. The pressure field away from the acoustic source
can be expressed as
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p̃ðr;ωÞ ¼ iωΓHðωÞ
ZZZ

V
d3r 0Gðr; r 0;ωÞAðr 0Þ; (2)

where Gðr; r 0;ωÞ is an appropriate Green function that accounts
for the detection system and appropriate boundary conditions, Γ
is the Grueneisen parameter, HðωÞ is the temporal Fourier trans-
form of the exciting optical pulse’s temporal profile, and AðrÞ is
the absorbed optical energy density. In Cartesian coordinates,
AðrÞ ≡ Aðx; y; zÞ. The Green function has been previously
expressed for planar detection in a homogeneous medium20

and for planar detection in a layered medium.19,21

Let p̄ðkx; ky;ωÞ denote the two-dimensional (2-D) spatial
Fourier transform of the pressure data p̃ðx; y; z;ωÞ evaluated
on the measurement plane z ¼ 0:

p̄ðkx; ky;ωÞ ¼
ZZ

∞
dxdy p̃ðx; y; z ¼ 0;ωÞe−iðkxxþkyyÞ: (3)

Similarly, let Aðkx; ky; kzÞ denote the three-dimensional Fourier
transform of Aðx; y; zÞ:

Aðkx; ky; kzÞ ¼
ZZZ

∞
dxdydz Aðx; y; zÞe−iðkxxþkyyþkzzÞ: (4)

It has been shown19,20 that certain Fourier components of the
object can be estimated from the measured pressure via the
relation

Aðkx; ky; kð2Þz Þ ¼ −2kð2Þz

ωΓHðωÞTðkk;ωÞ
ρ2c2
ρ0c0

e−ik
ð0Þ
z d0 p̄ðkx; ky;ωÞ;

(5)

where kk ¼ ðkx; ky; 0ÞT ,

kðnÞz ðkk;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2∕c2n − k2x − k2y

q
; (6)

d0 is the distance between the detector and the last interface, and
Tðkk;ωÞ is the planewave amplitude transmission function
(ATF), which gives the relative amplitude and phase of the pla-
newave that exits the layered system at z ¼ 0 after insonification
by a unit-amplitude monochromatic planewave at frequency ω,
traveling in the direction parallel to ðkx; ky; kð2Þz ÞT and incident
on the layered medium from below. For measurement frequency
ωmax, the estimated values of A lie inside a sphere in k-space of
radius krad ¼ ωmax∕c2, known as Ewald’s sphere. The explicit
form for T is derived in the Appendix for the three layer
case. The function T captures the effects of dispersion, absorp-
tion, longitudinal-to-shear wave conversion, and the reflection
and transmission of acoustic waves at the interfaces at z ¼ z1
and z ¼ z2. Note that for a homogeneous medium and
object-to-detector distance, d, Tðkk;ωÞ ¼ expðikzdÞ for all kk
and ω. For a planar, layered medium, the transmission func-
tion T is a function only of the magnitude of kk. Without loss
of generality, kk is assumed to be of the form ðω sin θ∕c2; 0; 0ÞT

Fig. 1 A diagram of the layered system. Ultrasonic detection occurs in
the plane z ¼ 0. Layers 2 and 0 are assumed to be fluids, with densities
ρm and speed of sound cm. Layer 0 has thickness d0. Layer 1 is assumed
to be a solid, bone, with density ρ1, longitudinal speed of sound cl ,
shear speed of sound cs, thickness d1, and longitudinal and shear
absorption coefficients ᾱl and ᾱs. The dispersive speeds of sound
are referenced to 1 MHz. Layer 2 is assumed to be unbounded in
the negative z-direction.

Fig. 2 (a) The longitudinal speed of sound as a function of frequency, (b) for the solid layer and the shear speed of sound. The medium is assumed
to have known speeds of sound cl ¼ 2900 m∕ sec and cs ¼ 1450 m∕ sec at 1 MHz. The absorption coefficients are assumed to be
ᾱl ¼ 81:13 ðMrad∕ sec Þ−0.93 m−1 and ᾱs ¼ 162:3 ðMrad∕ sec Þ−0.93 m−1. The speeds of sound averaged across the measurement band are
c̄l ¼ 2785 m∕ sec and c̄l ¼ 1392 m∕ sec . At 1 MHz, αlðωÞ ¼ 170 Np∕m and αsðωÞ ¼ 341 Np∕m.
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throughout this paper. That is, the wavevector is assumed to lie
only in the x − z plane, and is incident on the solid layer at an
angle of θ.

Dispersion and absorption in the bone are both important
effects that must be modeled to develop an accurate imaging
model for transcranial PAT. For many tissues of interest, it is
known22 that the linear absorption coefficient, as a function
of temporal frequency, obeys a power law: αmðωÞ ¼ ᾱmjωjy.
For y ≠ 1, the dispersion relationship is given by23

1

cmðωÞ
¼ 1

c0m
þ αm tan

�
πy
2

�
ðωy−1 − ωy−1

0 Þ; (7)

where cmðωÞ is the speed of sound (longitudinal or shear) at
frequency ω, c0m is the known (measured) speed of sound at
reference frequency ω0, and m ¼ 0; 1; 2; s. Experimentally
estimated values of the linear absorption coefficient for longi-
tudinal waves in bone, αlðωÞ, range from 150 − 500 Np∕m
and the estimated values22,24–27 of y range from 0.8 to 1.3 at
ultrasound frequencies. In Fig. 2, the longitudinal and shear
speeds of sound are shown for y ¼ 0.93 with the longitudinal

speed of sound at 1 MHz assumed to be 2900 m∕ sec , the
shear speed of sound at 1 MHz assumed to be 1450 m∕ sec .

In this paper, we assumed a three-layer structure (see Fig. 1).
The bottom layer was assumed to be soft tissue, unbounded in
the −z direction, with speed of sound 1483 m∕ sec and density
1000 kg∕m3. The middle layer was assumed to be bone
(a solid), with longitudinal speed of sound of 2900 m∕s,
shear speed 1450 m∕ sec at 1 MHz and density 1900 kg∕m3.
Both shear and longitudinal waves were assumed to obey a
power law in the middle layer (bone) with y ¼ 0.93 and αlðωÞ ¼
170 Np∕m and αsðωÞ ¼ 341 Np∕m at 1 MHz. The choice of
y ¼ 0.93 falls within the reported ranges for power-law fitting.26

The choices of α1 and αs were chosen so that αl fell within the
range of reported absorption coefficients at 1 MHz and that the
dispersive speeds of sound (shear and longitudinal) grew at
similar rates. The top layer was assumed soft tissue, with
speed of sound 1520 m∕ sec and density 1100 kg∕m3. The
thickness of the solid layer was varied in the simulations.
The pressure wavefield was assumed to be recorded in a
layer that is matched to the top layer a distance d0 ¼ 1 mm

away from the tissue/bone edge.

Fig. 3 The magnitude of the ATFs, T̄lðθ;ωÞ (black dashes) and T̄sðθ;ωÞ (blue line), as a function of the thickness of the solid layer for planewaves at
ω ¼ 2π · 1.5 MHz at an incidence angle of (a) 1 deg, (b) 15 deg, (c) 30 deg, and (d) 45 deg.
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3 Transfer Function Analysis
The manner in which modeling shear waves in the PAT image
reconstruction algorithm affects image quality in transcranial
PAT is best understood by analyzing the ATF, Tðkk;ωÞ, in
Eq. (5). Let T̄ sðθ;ωÞ ¼ Tðω sinðθÞ∕c2;ωÞ denote the ATF for
the layered medium when shear waves are modeled in layer
1. Let T̄ lðθ;ωÞ ¼ Tðω sinðθÞ∕c2;ωÞ denote the ATF for the
layered medium when shear waves are not modeled in layer 1.

Plots of the magnitude and phase of T̄ s and T̄ l as a function
of the thickness of the solid layer are shown in Figs. 3 and 4,
with each panel representing a different incident planewave
angle. The assumed angular frequency is ω ¼ 2π · 1.5 MHz.
In Figs. 3(a) and 4(a), the incident planewave angle is 1 deg.
One notes that Ts and Tl are similar for all thicknesses. In
the limit that the thickness goes to zero, the magnitude of the
ATF tends toward 0.9401, the transmission coefficient for nor-
mal incidence for a two-layer medium with properties consistent
with layer 0 and layer 2. In Fig. 4(b)–4(d), the ATFs are shown
for an incident angle of 15, 30, and 45 deg, respectively. One
sees that Ts and Tl differ greatly as the incidence angle increases
for any thickness of the bone. For any incidence angle except
zero degrees (normal incidence), the propagation of shear waves

will have some effect on the transmission of acoustic energy
from layer 2 to layer 0, although that effect is best seen for larger
angles. Moreover, one notes that T̄ l at 30 and 45 deg falls off
rapidly with thickness.

Plots of the magnitude and phase of T̄ s and T̄ l as a function of
angle are shown in Figs. 5 and 6 for four different temporal
frequencies. In panel a of each figure, the assumed angular fre-
quency is ω ¼ 2π · 0.5 MHz. In panel b, ω ¼ 2π · 1.0 MHz, in
panel c, ω ¼ 2π · 1.5 MHz and in panel d, ω ¼ 2π · 2.0 MHz.
In all four panels, the thickness of the solid is assumed to be
2 mm. One notes that both the magnitude and phase of Tl
and Ts are nearly identical for angles less than 25 deg in panels
b, c, and d. Beyond that angle, the ATFs differ significantly. The
critical angle for the fluid-solid interface found at 1 MHz is
θc ¼ sin−1 1483

2900
¼ 30.75 deg , that is, acoustic planewaves inci-

dent on the interface at an angle greater than θc correspond to
non-propagating longitudinal waves in the solid layer. Note that,
due to the assumed dispersion relationship, the critical angle
decreases with increased frequency from 1 MHz. Physically,
for θ > θc, propagating shear waves generated at the fluid/
solid interface between layers 2 and 1, traveling at 1450 m∕ sec
at 1 MHz, transmit energy from one side of the solid to the

Fig. 4 The unwrapped phase of the ATFs, T̄lðθ;ωÞ (black dashes) and T̄sðθ;ωÞ (blue line), as a function of the thickness of the solid layer for planewaves
at ω ¼ 2π · 1.5 MHz at (a) an incidence angle of 1 deg, 15 deg, 30 deg, and (d) and 45 deg..
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other. The longitudinal waves are evanescent and decay rapidly
from the interface between layers 2 and 1. When shear waves are
not modeled, there is no mechanism for these high spatial fre-
quency waves to transmit from one fluid medium (layer 2) to the
other (layer 0). Accordingly, PAT reconstruction algorithms for
planar layered medium that do not account for the propagation
of shear waves will yield images with a inferior/lower lateral
spatial resolution than algorithms that account for shear
waves. These findings generalize beyond the choice of specific
system parameters chosen in this paper. Varying the values of αm
and y will only affect the rate at which the ATFs fall off as a
function of thickness in Fig. 3, but the relationship between
Ts and Tl will remain the same. Likewise, using different values
for the speeds of sound or densities in the solid and fluid layers
will change the critical angle, θc, but not the fact that Ts and Tl
are in good agreement when the incident angle is less than the
critical angle.

4 Error Analysis
It is clear that the ATF when shear waves are accounted for
differs from the ATF when shear waves are not accounted
for. These differences will manifest when attempting to

image objects through a solid layer in two ways. Since shear
waves travel more slowly than longitudinal waves in the
solid layer, misestimating the time-of-flight of the pressure
field in the solid layer will lead to phase errors in the estimated
Fourier components of the object. Likewise, errors in the esti-
mated amplitude of the Fourier components of the object will
occur because of not accounting for longitudinal-to-shear
wave conversion and vice-versa at solid-fluid interfaces. Both
effects will lead to distortions in the image.

To better understand the way in which not accounting for
shear waves affects image fidelity, two error measures are
introduced that are object-independent:

Eaðkk;ωÞ ¼
jTlðkk;ωÞj − jTsðkk;ωÞj

jTsðkk;ωÞj
; (8)

Epðkk;ωÞ ¼ ∠Tsðkk;ωÞ −∠Tlðkk;ωÞ; (9)

where∠ denotes the argument of a complex number. Ea denotes
the estimated error in the amplitude of the Fourier component
of the object and Ep denotes the estimated error in the phase of
the Fourier component of the object. Note that Ea can be both

Fig. 5 The magnitude of the ATFs, T̄lðθ;ωÞ (black dashes) and T̄sðθ;ωÞ (blue lines), as a function of incident angle, for a bone layer with properties
d1 ¼ 3 mm and (a) ω ¼ 2π · 0.5 MHz, (b) ω ¼ 2π · 1.0 MHz, (c) ω ¼ 2π · 1.5 MHz, and (d) ω ¼ 2π · 2.0 MHz.
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positive and negative. The positive error occurs when the model
that omits shear waves overestimates the transmitted acoustic
energy at a specific frequency and angle [see, for example,
Fig. 5(a) from 10 to 25 deg]. The negative error occurs when
the model that omits shear waves underestimates the transmitted
acoustic energy, with a maximum negative error of −1 when the
ATF for the model that omits shear waves is zero.

In Figs. 7–10, the amplitude and phase errors are shown in
the kx − kz plane for four different thicknesses of the solid layer.
We assumed that the maximum measured frequency of the
acoustic field in each case was 7.5 MHz, setting the radius
of the Ewald measurement sphere at kmax ¼ 2π · 7.5 MHz∕
c2 ¼ 31; 776 m−1. Note that Ea approaches −1 when Tl is
near zero, i.e., the model that does not account for shear
waves predicts a null value for the transmission amplitude.

In Fig. 7, the amplitude and phase error are shown when
the solid layer is assumed to be 10 μm thick. One notes that
the amplitude and phase error are relatively insignificant for
small values of kx for all kz. However, larger errors exist for
both the amplitude and phase near the line kz ¼ 0, with the
size of the error growing for both amplitude and phase as kx
gets larger. In Fig. 8, the amplitude and phase error are

shown when the solid layer is assumed to be 100 μm thick.
Even for this relatively thin layer, the amplitude distortions
are already significant. The boundary between green and purple
in the amplitude plot or between light blue and purple in the
phase plot corresponds approximately to 28 deg, or near the cri-
tical angle, θc, for the fluid-solid interface. For larger incidence
angles, the amplitude errors near −1 and the phase errors
approach π.

In Fig. 9, the amplitude and phase error are shown when the
solid layer is assumed to be 1 mm thick, and in Fig. 10, the
amplitude and phase error are shown when the solid layer is
assumed to be 1 cm thick. In both cases, which are relevant
to primate brain imaging, one sees that the amplitude error is
near −1 for all incidence angles above θc. This severely limits
the ability of a non-shear wave based method for resolving large
transverse frequency components of the to-be-imaged object in a
planar detection geometry. In all figures, the maximum positive
error in amplitude was set to be 3. The large positive error
locations correspond to points at which Ts approaches 0 [see,
for example, Fig. 5(b) at 30 deg].

To demonstrate the manner by which the errors in the
ATFs due to neglecting shear waves can result in image artifacts,

Fig. 6 The unwrapped phase of the ATFs, T̄lðθ;ωÞ (black dashes) and T̄sðθ;ωÞ (blue lines), as a function of incident angle, for a bone layer with
properties d1 ¼ 3 mm and (a) ω ¼ 2π · 0.5 MHz, (b) ω ¼ 2π · 1.0 MHz, (c) ω ¼ 2π · 1.5 MHz, and (d) ω ¼ 2π · 2.0 MHz.
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computer-simulation studies were performed. Because the
layered medium problem is inherently 2-D, only 2-D simula-
tions were run. A numerical phantom representing the object,
AðrÞ, was considered that consisted of three uniform disks of
radii of 2, 3, and 4 mm, located within the bottom layer of
the structure with centers along the line x ¼ 0 [see Fig. 11(a)].
In these simulations, the solid layer was assumed to be the
top edge of the image (i.e., the solid layer begins at the line
z ¼ 25 mm). The disks were quasi-bandlimited by convolving
each with a two-dimensional Gaussian function of radius
400 μm. Uniform disks were employed in the simulations
because their 2-D Fourier transforms are known analytically,

and therefore the simulated pressure data could be computed
without numerical approximation. The object was assumed to
be embedded in a the same three-layer structure as was
described at the end of Sec. 2 (see Fig. 1) and was used in
generating the error maps in Figs. 7–10.

Simulated pressure data were computed by use of Tsðkk;ωÞ,
which properly modeled the effects of shear wave propagation
in the solid layer. From these data, images were reconstructed by
use of an inverse Fourier transform method that neglected shear
wave propagation and employed the transfer function Tlðkk;ωÞ.
A non-uniform sampling scheme in ω was assumed to avoid
interpolation-based errors in the reconstructed images. This

Fig. 7 The amplitude error, Ea, and the phase error, Ep, inside the Ewald measurement sphere, for a solid with thickness d ¼ 10 μm.

Fig. 8 The amplitude error, Ea, and the phase error, Ep, inside the Ewald measurement sphere, for a solid with thickness d ¼ 100 μm.
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prevented the confounding of model-mismatch errors (from
neglecting shear waves), with errors associated with the specific
reconstruction model used. For example, a Fourier-based in-
version scheme, such as the one found in Ref. 19 requires inter-
polation of the data in the kz-direction. Given that a known
subset of Fourier components are misestimated when neglecting
shear waves, inclusion of these data will result in an error that is
unrelated to the errors associated with the neglect of shear
waves. This assumption results in a reconstruction formula of
the form

Ansðx; zÞ ¼
1

ð2πÞ2
ZZ

dkxdkz Aðkx; kzÞ

×
Ts½kk;ωðkx; kzÞ�
Tl½kk;ωðkx; kzÞ�

eiðkxxþkzzÞ; (10)

where Ans ðx; yÞ is the reconstructed object and ωðkx; kzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
∕c is the non-uniform sampling the temporal fre-

quency domain. A discrete version of Eq. (10) was computed

Fig. 9 The amplitude error, Ea, and the phase error, Ep, inside the Ewald measurement sphere, for a solid with thickness d ¼ 1 mm. The maximum
positive error in amplitude was set to be 3 to improve the dynamic range in the image.

Fig. 10 The amplitude error, Ea, and the phase error, Ep, inside the Ewald measurement sphere, for a solid with thickness d ¼ 1 cm. The maximum
positive error in amplitude was set to be 3 to improve the dynamic range in the image.
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as a 2-D discrete Fourier transform via the fast Fourier transform
algorithm.

In Fig. 11(b), the reconstruction using Eq. (10) is shown for
the case when Ts and Tl correspond to the solid (bone) layer
being 100 μm thick. One notes that the reconstructed disks have
slight errors, most prominent near the left and right edges of
each disk. The reconstructions also contain distortions in the
background in the form of vertical ‘bands’. Both the errors in
the disks and the bands are a result of the errors in misestimating
the Fourier components along the line kz ¼ 0 as well as those
that correspond to waves incident at an angle larger than θc.

Figure 11(c) shows the reconstruction using Eq. (10) is
shown for the case when Ts and Tl correspond to the solid
(bone) layer being 1 mm thick. In this case, the minor distortions
along the right and left edges of the disks are much more pro-
nounced, resulting in what appear to be small objects near the
disks. Likewise, the vertical banding is significantly more pro-
nounced. One notes that these errors—associated with misesti-
mating components in the kz-direction—are more pronounced
because of the larger errors associated with the thicker bone
layer (see Figs. 8 and 9). In both Fig. 11(b) and 11(c), the hor-
izontal and near-horizontal boundaries of the disks are estimated
much better than the vertical boundaries. This is consistent with
the fact that neglecting shear waves results in very little error in
the Fourier components corresponding to propagating longitu-
dinal waves in the solid layer (i.e., waves incident at an angle
less than θc). One notes that previous studies in transcranial
PAT 14–17 did not possess these banding artifacts; however,
the measurement geometry was not planar in those studies,
which can result in different manifestations of the artifacts.

5 Summary and Discussion
In this work, a recently-introduced PAT image reconstruction
algorithm, for use when the optical absorber is embedded in
a layered medium that supports shear waves in some of the
layers, was employed to determine the role shear waves play
in PAT image formation. Using system parameters relevant to
transcranial PAT, it was shown that, when shear waves are
omitted from the imaging model, a smaller number of spatial
frequency components of the object can be estimated compared
to situations when shear waves are included. The spatial fre-
quency components that are no longer accurately able to be esti-
mated are components parallel to the layered medium and
consistent with planewave components incident beyond the cri-
tical angle of the solid-fluid interface. These mis-estimated
Fourier components result in distortions in the reconstructed

images. The strength of the distortions are directly related to
the thickness of the solid (bone) layer.

The Fourier-based reconstruction method for inverting pres-
sure data by disregarding shear waves in PAT imaging algo-
rithms is mathematically equivalent to standard time-reversal
(TR) and filtered backprojection (FBP) algorithms for PAT
when the object of interest is embedded in a layered medium
and acoustic detection is made on a continuous measurement
surface. Since standard formulations of TR and FBP algorithms
are insensitive to shear waves, images produced by these meth-
ods will exhibit the same systematic error as presented here. One
notes that the geometry and type of transducers used to approx-
imate a continuous measurement surface will also affect the sys-
tematic error introduced by not including shear waves.

The electrical and spatial impulse responses due to transduc-
tion and the finite size of each transducer, respectively, can be
modeled as filters.20,28 In the Fourier representation of the photo-
acoustic field presented in this work, the effects from the trans-
ducers would be modeled by a multiplicative factor in the
denominator of the right hand side of Eq. (5). The electrical
impulse response often serves to diminish very low temporal fre-
quency information, which corresponds to eliminating data from
the center of Ewald’s sphere. Depending on the size and shape,
the spatial pass-band of the transducer may diminish data from
Ewald’s sphere that correspond to high spatial frequencies, that
is, data for which the largest errors occur by not accounting for
shear waves. Much wider pass-bands in both spatial and tem-
poral frequencies occur when using planar, polymer-film
ultrasound sensors29 to acquire the photoacoustic signal.

For the reconstruction formula that compensates for shear
waves, estimates of A in the kz-direction are non-uniformly
sampled due to the relationship found in Eq. (6). To attain esti-
mates of AðrÞ from the non-uniformly sampled data, either inter-
polation of the data to a uniform grid in kz followed by an FFT is
required, or both steps can be performed at once using a non-
uniform FFT (NUFFT).30 In either case, the interpolation is per-
formed along vertical lines in the Ewald sphere. One notes that
the error maps shown in Figs. 7–10 exhibit errors that are non
uniform in the kz-direction.

There are a number of open problems that remain to be
addressed in regards to accounting for shear wave physics in
transcranial PAT. The manner in which neglecting shear
waves affects image quality when different image reconstruction
algorithms and non-planar imaging geometries are employed
has not been investigated systematically. The non-uniform
shape of the skull will certainly induce different types of

Fig. 11 (a) An image of the numerical phantom-three band-limited disks. (b) The reconstruction of those disks, found using Eq. (10), is shown when the
solid layer is assumed to be d ¼ 100 μm. (c) Reconstruction of those disks, found using Eq. (10), is shownwhen the solid layer is assumed to be d ¼ 1 mm.
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artifacts than the ‘bands’ presented in this work. The inter-
play between transducer placement/geometry and the errors
described in this manuscript associated with neglecting shear
waves is also an important topic of future investigation.

In some cases, the properties of the solid layer may not be
determined accurately. One notes that mis-estimation of the
acoustic absorption properties in the bone layer will affect
both the phase (through using the wrong dispersion model)
and the amplitude of the Fourier components of the object.
Methods for estimating the acoustic absorption properties of
bone that are sufficiently accurate to facilitate transcranial
PAT applications remains an ongoing research topic.

When the shear wave properties are not known, it may be
possible to develop an iterative reconstruction algorithm
which uses the error maps found in Sec. 4 to create reconstruc-
tions using only the ‘minimal error’ components of the mea-
sured data. One notes that the regions of the Ewald sphere
that possess minimal error are bounded by the critical angle
of the solid-fluid interface for longitudinal waves when the
solid layer is on the order of a millimeter or larger. That is,
the region of estimable Fourier components depends only on
the properties of the longitudinal waves in the medium. The
development of such an algorithm remains as future work.

Appendix
In this Appendix, we derive the ATF for a three layered system
in which the middle layer supports shear waves. The wavenum-
ber in each layer is defined

km ¼ ω

cmðωÞ
þ iαmωy; (11)

wherem ¼ 0; 1; 2; s labels the longitudinal modes in layers 0, 1
and 2 or the shear mode in layer 1. Neither dispersion or absorp-
tion is assumed in layers 0 and 2, so αm is set to zero for those
two layers. The Lamé coefficients, which describe the stiffness
of the medium, are defined in the solid layer by

λ1ðωÞ ¼ ρ

�
ω2

k21
− 2

ω2

k2s

�
; (12)

μ1ðωÞ ¼ ρ
ω2

k2s
; (13)

and in the two fluid layers (m ¼ 0; 2) by

λm ¼ ρmc2m; (14)

μm ¼ 0: (15)

At the boundary between solid and fluid layers, the following
boundary conditions apply to the acoustic field in terms of the
particle displacement:

ẑ · uðr;ωÞjz¼z−n ¼ ẑ · uðr;ωÞjz¼zþn ; (16)

σzzjz¼z−n ¼ σzzjz¼zþn ; (17)

σxzjz¼z−n ¼ 0; (18)

σyzjz¼z−n ¼ 0; (19)

where z−n refers to the side of the boundary in the solid layer and
it is assumed that the boundaries are all of the form z ¼ zn. The
σij denote stresses on the boundary, and take the form (in layer n)

σzz ¼ λn∇ · uþ 2μn
∂
∂z

uz; (20)

σxiz ¼ μn

�
∂
∂xi

uz þ
∂
∂z

uxi

�
; xi ¼ x; y: (21)

The particle displacement is found from the pressure by

ρω2uðr;ωÞ ¼ ∇pðr;ωÞ: (22)

Application of the above boundary conditions on the planes
z1 and z2 under the assumption of planewave insonification
result in six independent equations relating the pressure fields
in each layer. At the interface at z ¼ z2 the boundary equations
reduce to

λ2ðωÞk2½1þ Rðkk;ωÞ� ¼ f 1ðkk;ωÞ½Bðkk;ωÞ þ Cðkk;ωÞ�
þ f 2ðkk;ωÞ½Dðkk;ωÞ
þ Fðkk;ωÞ�; (23)

kð2Þz

k2
½1 − Rðkk;ωÞ� ¼

kð1Þz

k1
½Bðkk;ωÞ − Cðkk;ωÞ�

−
kk
ks

½Dðkk;ωÞ − Fðkk;ωÞ�; (24)

and

2kð2Þz

k2
½Bðkk;ωÞ − Cðkk;ωÞ�

þ f 3ðkk;ωÞ½Dðkk;ωÞ − Fðkk;ωÞ� ¼ 0; (25)

where

f 1ðkk;ωÞ ¼ λ1ðωÞk1 þ 2μ1ðωÞ
ðkð1Þz Þ2
k1

; (26)

f 2ðkk;ωÞ ¼ −2μ1ðωÞ
kðsÞz kk
ks

; (27)

f 3ðkk;ωÞ ¼
2ðkðsÞz Þ2 − k2s

kkks
: (28)

The term R represents the pressure wave reflected back into
layer 2 from the plane z ¼ z2, B and C represent the upward
and downward moving longitudinal waves generated in layer
1, and D and F represent the upward and downward moving
shear waves generated in layer 1 (see Fig. 12).

At the interface at z ¼ z1, the boundary conditions reduce to,

λ0ðωÞk0Tðkk;ωÞ ¼ f 1ðkk;ωÞ½Bðkk;ωÞeik
ð1Þ
z d1

þ Cðkk;ωÞe−ik
ð1Þ
z d1 �

þ f 2ðkk;ωÞ½Dðkk;ωÞeik
ðsÞ
z d1

þ Fðkk;ωÞe−ik
ðsÞ
z d1 �; (29)
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kð0Þz

k0
Tðkk;ωÞ¼

kð1Þz

k1
½Bðkk;ωÞeik

ð1Þ
z d1 −Cðkk;ωÞe−ik

ð1Þ
z d1 �

−
kk
ks
½Dðkk;ωÞeik

ðsÞ
z d1 −Fðkk;ωÞe−ik

ðsÞ
z d1 �; (30)

and

2kð2Þz

k2
½Bðkk;ωÞeik

ð1Þ
z d1 − Cðkk;ωÞe−ik

ð1Þ
z d1 � (31)

þf 3ðkk;ωÞ½Dðkk;ωÞeik
ðsÞ
z d1 − Fðkk;ωÞe−ik

ðsÞ
z d1 � ¼ 0: (32)

The term T represents the pressure field transmitted into layer 0
from the plane z ¼ z1. This system of six linear equations are
solved for each planewave component and temporal frequency
to evaluate T in Eq. (5).

Acknowledgments
RobertW. Schoonover andMarkA.Anastasio acknowledge sup-
port in part by NIH awards EB010049 and EB009715. Lihong V.
Wang acknowledge support by the NIH awards EB010049,
CA134539, EB000712, CA136398, and EB008085. L.V.W.
has a financial interest in Microphotoacoustics, Inc. and Endra,
Inc., which, however, did not support this work.

References
1. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys.

35(12), 5758–5767 (2008).
2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev.

Sci. Instrum. 77(4), 041101 (2006).
3. A.A.OraevskyandA.A.Karabutov, “Optoacoustic tomography,” inBio-

medical Photonics Handbook, T. Vo-Dinh, Ed.,CRC Press, Boca Raton,
FL (2003).

4. L. Wang, ed., Photoacoustic Imaging and Spectroscopy, CRC Press,
Boca Raton, FL (2009).

5. X. Wang et al., “Noninvasive laser-induced photoacoustic tomography
for structural and functional in vivo imaging of the brain,” Nat. Biotech-
nol. 21(7), 803–806 (2003).

6. S. Yang et al., “Functional imaging of cerebrovascular activities in small
animals using high-resolution photoacoustic tomography,” Med. Phys.
34(8), 3294–3301 (2007).

7. H. Brecht et al., “Whole-body three-dimensional optoacoustic tomogra-
phy system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).

8. V. Ntziachristos and D. Razansky, “Molecular imaging by means of
multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110(5),
2783–2794 (2010).

9. R. Kruger, D. Reinecke, and G. Kruger, “Thermoacoustic computed
tomography- technical considerations,” Med. Phys. 26(9), 1832–1837
(1999).

10. M. Haltmeier et al., “Thermoacoustic computed tomography with large
planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).

11. P. Ephrat et al., “Three-dimensional photoacoustic imaging by sparse-
array detection and iterative image reconstruction,” J. Biomed. Opt.
13(5), 054052 (2008).

12. B. T. Cox et al., “Two-dimensional quantitative photoacoustic image
reconstruction of absorption distributions in scattering media by use
of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).

13. K. Wang et al., “An imaging model incorporating ultrasonic transducer
properties for three-dimensional optoacoustic tomography,” IEEE T.
Med. Imaging 30(2), 203–14 (2011).

14. Y. Xu and L. Wang, “Rhesus monkey brain imaging through intact
skull with thermoacoustic tomography,” IEEE T. Ultrason. Ferr. 53(3),
542–548 (2006).

15. X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on
transcranial brain imaging with microwave-induced thermoacoustic
tomography,” Med. Phys. 35(7), 3205–3214 (2008).

16. X. Yang and L. V. Wang, “Monkey brain cortex imaging by photoacous-
tic tomography,” J. Biomed. Opt. 13(4), 044009 (2008).

17. L. Nie, Z. Guo, and L. Wang, “Photoacoustic tomography of monkey
brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7),
076005 (2011).

18. B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in
absorbing acoustic media using time reversal,” Inverse Probl. 26(11),
115003 (2010).

19. R. W. Schoonover and M. A. Anastasio, “Compensation of shear waves
in photoacoustic tomography with layered acoustic media,” J. Opt. Soc.
Am. A 28(10), 2091–2099 (2011).

20. Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruc-
tion for thermoacoustic tomography: I. planar geometry,” IEEE T. Med.
Imaging 21(7), 823–828 (2002).

21. R. W. Schoonover and M. A. Anastasio, “Image reconstruction in
photoacoustic tomography involving layered acoustic media,” J. Opt.
Soc. Am. A 28(6), 1114–1120 (2011).

22. P.Droin,G.Berger, andP.Laugier, “Velocitydispersionof acousticwaves
in cancellous bone,” IEEE T. Ultrason. Ferr. 45(3), 581–592 (1998).

23. K. Waters et al., “On the applicability of Kramers–Krönig relations for
ultrasonic attenuation obeying a frequency power law,” J. Acoust. Soc.
Am. 108(2), 556–563 (2000).

24. P. White, G. Clement, and K. Hynynen, “Local frequency dependence
in transcranial ultrasound transmission,” Phys. Med. Biol. 51(9),
2293–2305 (2006).

25. K. Waters and B. Hoffmeister, “Kramers-Kronig analysis of attenuation
and dispersion in trabecular bone,” J. Acoust. Soc. Am. 118(6),
3912–3920 (2005).

26. S. Chaffaı et al., “In vitro measurement of the frequency-dependent
attenuation in cancellous bone between 0.2 and 2 mhz,” J. Acoust.
Soc. Am. 108(3), 1281–1289 (2000).

27. S. Pichardo, V. Sin, and K. Hynynen, “Multi-frequency characterization
of the speed of sound and attenuation coefficient for longitudinal
transmission of freshly excised human skulls,” Phys. Med. Biol.
56(1), 219–250 (2011).

28. K. Wang et al., “An imaging model incorporating ultrasonic transducer
properties for three-dimensional optoacoustic tomography,” IEEE T.
Med. Imaging. 30(2), 203–214 (2011).

29. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength
photoacoustic scanner using a planar fabry-perot polymer film ultra-
sound sensor for high-resolution three-dimensional imaging of biologi-
cal tissues,” Appl. Opt. 47(4), 561–577 (2008).

30. R. Schulze et al., “On the use of frequency-domain reconstruction algo-
rithms for photoacoustic imaging,” J. Biomed. Opt. 16(8), 086002
(2011).

Fig. 12 A schematic of the planewave amplitudes in each layer for
an incident pressure wave Aðkk;ωÞ with temporal frequency ω and
transverse wavevector kk. The dashed blue lines represent upward-
and downward-traveling shear waves, and the solid black lines repre-
sent upward- and downward-traveling longitudinal waves. Note that
Aðkk;ωÞ ¼ 1 for the purposes of this paper.
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