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Abstract: Using a hand-held photoacoustic probe integrated with a clinical 
ultrasound array system, we successfully imaged objects deeply positioned 
in biological tissues. The optical contrasts were enhanced by methylene blue 
with a concentration of ~30 mM. The penetration depth reached ~5.2 cm in 
chicken breast tissue by using 650-nm wavelength, which is ~4.7 times the 
1/e optical penetration depth. This imaging depth was achieved using a laser 
fluence on the tissue surface of only 3 mJ/cm

2
, which is 1/7 of the American 

National Standards Institute (ANSI) safety limit (20 mJ/cm
2
). The noise 

equivalent sensitivity at this depth was ~11 mM. Further, after intradermal 
injection of methylene blue in a rat, a sentinel lymph node was easily 
detected in vivo, beneath a 2-cm thick layer of chicken breast. Also, blood 
located 3.5 cm deep in the rat was clearly imaged with intrinsic contrast. We 
have photoacoustically guided insertion of a needle into a rat sentinel lymph 
node with accumulated methylene blue. These results highlight the clinical 
potential of photoacoustic image-guided identification and needle biopsy of 
sentinel lymph nodes for axillary staging in breast cancer patients. 
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1. Introduction 

Optical imaging [1] has received great attention in biomedicine because of its rich contrast 
and nonionizing radiation. However, due to strong light scattering, pure optical imaging 
modalities suffer from either shallow penetration depth (e.g., confocal microscopy [2], two-
photon microscopy [3], and optical coherence tomography [4]) or poor spatial resolution (e.g., 
diffuse optical tomography (DOT) [5]). The maximum penetration depth of optical 
microscopy using ballistic or quasi-ballistic photons is typically limited to one optical 
transport mean free path (~1 mm). Using diffusive photons, DOT with model-based 
reconstruction is able to provide both optical scattering and absorption parameters, so the 
penetration depth is extended to a few centimeters. However, this technique struggles with 
poor spatial resolution, typically 1/5 of the imaging depth. This fundamental issue of light 
diffusion has hindered pure optical imaging techniques from achieving widespread clinical 
application. 

Photoacoustic (PA) imaging [1,6] has overcome the drawback of pure optical imaging by 
taking advantage of rich optical contrast and ultrasonic spatial resolution for deep imaging. It 
is capable of high-resolution structural, functional, and molecular imaging free from speckle 
artifacts. More importantly, because of its ultrasonic detection mechanism, the penetration 
depth and spatial resolution are scalable even beyond the optical transport mean free path in 
optically scattering media. Centimeter-scale imaging depths have been achieved. Oraevsky et 
al. demonstrated PA imaging in tissue mimicking phantoms and biological tissues at 
penetration depths exceeding 5 cm [7]. By enhancing the optical contrast with indocyanine 
green, Ku et al. photoacoustically imaged objects embedded at depths of greater than 5 cm in 
biological tissues [8]. 

Recently, PA imaging has been proposed as a noninvasive method of identifying sentinel 
lymph nodes and guiding fine needle aspiration or core needle biopsies. Sentinel lymph node 
biopsy (SLNB) is the emerging standard for axillary lymph node staging in clinically node-
negative breast cancer patients [9–11]. Axillary staging is critical in planning appropriate 
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treatment and estimating patient prognosis. The current SLNB technique requires injection of 
blue dyes and/or radioactive tracers, followed by surgical removal of sentinel nodes for 
pathological examination. Compared with the current surgical SLNB, the photoacoustically 
guided minimally invasive approach has the potential to significantly reduce the impact on 
patients. Song et al. imaged in vivo deeply positioned (>3 cm) rat sentinel lymph nodes 
(SLNs) stained with either methylene blue or gold nanocages [12–14]. We have previously 
reported in vivo PA and ultrasound (US) mapping of SLNs in rats using a clinical US array 
[15]. An US probe combined with a fiber-based light delivery system enabled hand-held 
scanning analogous to ultrasonography [16,17]. Further, this hand-held probe enabled 
photoacoustic image-guided needle insertion [17,18]. Combined US and PA imaging systems 
provide US imaging for locating lymph nodes and PA imaging for identifying which nodes 
are sentinel based on the accumulation of blue dye. US imaging alone cannot identify which 
lymph nodes are sentinel nodes. 

In this paper, we demonstrate deeply penetrating PA imaging using a hand-held PA/US 
probe with a modified clinical US array system. We successfully imaged a tube filled with 
methylene blue (~30 mM) at a depth of 5.2 cm in chicken breast tissues. This imaging depth 
was achieved using a light fluence on the tissue surface of only 3 mJ/cm

2
, 1/7 of the ANSI 

safety limit [19]. Further, we report noninvasive in vivo imaging of deeply positioned (~2 cm) 
methylene-blue-dyed SLNs and metal needles in rats. 

2. Methods and Materials 

Figure 1 is a photograph of the integrated PA and US imaging system, modified from a 
clinical US array system (iU22, Philips Healthcare) [15]. The original channel board 
architecture of the US imaging system was modified to acquire raw per-channel PA and US 
data. Raw data was transferred to a data acquisition (DAQ) computer where post-processing 
was performed. The DAQ system controlled the laser firing and optical-wavelength tuning. 
PA images were processed using Fourier beam forming reconstruction [20], and displayed at 
~1 fps. Yet, the maximum data acquisition rate is 10 fps, limited by the current laser repetition 
rate. A linear array US probe with a nominal bandwidth of 4-8 MHz (L8-4, Philips 
Healthcare) was physically integrated with a bifurcated optical fiber bundle (CB18043, 
Fiberguide), forming a hand-held probe. A zoomed-in photograph of the hand-held probe is 
shown in Fig. 1. Laser pulses with a 6.5-ns pulse duration and 10-Hz repetition rate were 
generated from a tunable dye laser (NS, Sirah) pumped by a Q-switched Nd:YAG laser (PRO-
350-10, Newport). An optical wavelength of 650 nm, close to the peak optical absorption 
wavelength of methylene blue (667 nm), was utilized. Light fluence on the skin was ~3 
mJ/cm

2
 (total energy, 36 mJ; illumination area, ~12 cm

2
), well below the ANSI safety limit 

(20 mJ/cm
2
). We directly coupled the hand-held probe to tissue surfaces via US coupling gel. 

We increased the imaging depth by stacking layers of chicken breast tissue. An optically 
transparent plastic tube (7 mm in diameter × 25 mm in length) filled with ~30-mM methylene 
blue was embedded in chicken breast tissue. The position of the tube was confirmed using US 
imaging. Here, the hand-held probe was mechanically fixed to avoid motion artifacts. 

Institutional animal care and use committee approval (Washington University in St. Louis) 
was obtained. Sprague Dawley rats (~200 g) were initially anesthetized using a mixture of 
Ketamine (80 mg/kg) and Xylazine (8 mg/kg). For in vivo imaging, we also intentionally 
increased the imaging depth by placing ~2 cm thick chicken tissue atop the rat. After hair 
removal in the left axillary region of the rats, we acquired a control PA image before the 
injection of methylene blue. After intradermal injection of 0.1 ml of methylene blue (30 mM) 
into the left forepaw, a series of PA images were obtained to detect the methylene blue in the 
SLN. Many surgeons prefer methylene blue over isosulfan blue (the only FDA-approved dye 
for axillary SLNB) for SLNB as it is readily available, cost-effective, and anaphylaxis is rare 
[21]. Normal lymph nodes do not significantly absorb light at 650 nm, so only lymph nodes 
containing methylene blue are visible in PA images. Then, we photoacoustically tracked the 
insertion of a metal needle (18 gauge or 1.27 mm in diameter) in vivo. After all in vivo 
experiments, we visually confirmed the uptake of methylene blue in the excised lymph nodes. 
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Fig. 1. Photograph of an integrated photoacoustic (PA) and ultrasound (US) imaging system 
modified from a clinical US array system. 

3. Results and Discussion 

A transparent plastic tube filled with methylene blue was embedded in chicken breast tissues 
(Fig. 2a). The imaging depth was incremented by overlaying chicken breast tissue (Fig. 2b). 
The top and bottom surfaces of the tube were positioned at depths of 4.5 and 5.2 cm from the 
tissue surface, respectively. To improve the signal-to-noise ratios (SNRs), we averaged the PA 
signals 100 times. The PA image clearly delineates the top and bottom boundaries of the tube 
(Fig. 2c). Figure 2d, created by overlaying the PA and US images, shows both the tube 
structure (US) and the methylene blue (PA) in the tube. The previously reported penetration 
depth for 1/e decay in chicken breast tissue is ~1.1 cm at an optical wavelength of 650 nm 
[22], where the 1/e penetration depth at 785 nm in human breast measured ~0.89 cm [23]. 
Therefore, the 5.2-cm imaging depth is equivalent to ~4.7 times the 1/e optical penetration 
depth, corresponding to a 20-dB attenuation from the surface. Table 1 summaries the PA 
experimental results acquired from the top and bottom surfaces of the tube, including SNR, 
image contrast, noise equivalent sensitivity (NES), and axial resolution. The SNR was defined 
as the mean of PA signals obtained from the tube divided by the standard deviation of the 
background signals. The background signals were selected from adjacent regions at the same 
depth of the tube. The image contrast was defined as the ratio of the difference between the 
average PA signal measured from the tube and the average background signal to the average 
background signal. The NES was defined as the ratio of the concentration of methylene blue 
to the SNR. The axial resolution was calculated with the full width at half maximum (FWHM) 
of the 1D profile taken across each of the two tube boundaries. At the 5.2-cm deep bottom 
boundary, the SNR was ~2.7, the image contrast was ~60%, and the NES was ~11 mM. 
Because of the low SNR at this depth, it was difficult to estimate the axial resolution. The 
estimated axial resolution from the 1D profile acquired from the top boundary was ~400 µm, 
which was close to the theoretical axial resolution (~385 µm). Again, a laser fluence of only 3 
mJ/cm

2
 (1/7 ANSI safety limit) was used for these experiments. If the laser fluence is 

increased to 20 mJ/cm
2
 (the ANSI safety limit), the penetration depth can theoretically be 

extended to ~7.4 cm. 
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Fig. 2. Deeply penetrating PA imaging in biological tissues. Photographs of (a) the cross 
section of chicken breast tissue in which a transparent tube containing methylene blue (MB) is 
embedded and (b) the entire sample. (c) PA image of the tube containing MB. (d) Overlaid PA 
(pseudo color) and US (gray) image. The thresholded PA signals in the yellow dotted box in (c) 
were overlaid with the US image in (d). 

Table 1. Experimental results of deeply penetrating PA imaging in biological tissues. 

 Depth [cm] SNR Image contrast NESb [mM] FWHM [µm] 

Topa 4.5 7.5 3.4 4 ~400 

Bottoma 5.2 2.7 0.6 11 N/Ac 
aTop and bottom denote the top and bottom boundaries of the tube. 
bNES: Noise equivalent sensitivity. 
cDue to low SNR, it was difficult to estimate the FWHM from the bottom surface of the tube. 

To explore dual-modality PA and US mapping of deeply located SLNs (~2 cm) with 
methylene blue, we imaged the axillary region in a rat before and after methylene blue 
injection. Figure 3a shows a control PA B-scan image. Interestingly, two deeply positioned 
blood vessels at 3.2- and 3.5-cm depths are clearly seen in the control image with only 
intrinsic contrast. In addition, the posterior skin surface at a depth of 4.2 cm is clearly visible 
in the image as a result of unintentional staining with methylene blue. After methylene blue 
injection, the dye propagates through lymphatic vessels and accumulates in the sentinel node. 
We photoacoustically imaged the uptake of methylene blue in the SLN. Figure 3b shows the 
PA image of the methylene-blue-dyed SLN obtained at 10 minutes post-injection. The image 
contrast of the SLN enhanced by methylene blue accumulation was 14 ± 1.2. The overlaid PA 
and US images, as shown in Fig. 3c, provide both morphological information and functional 
information (i.e., methylene blue uptake in the SLN). Pseudo colors in Figs. 3a–3c shared the 
same dynamic range for comparison. The image SNR of the SLN stained with methylene blue 
at 2 cm is 21; those of two blood vessels at 3.2 and 3.5 cm are 18 and 14, respectively; and 
that of the skin stained with methylene blue at 4.2 cm is 11. No signal averaging has been 
applied to in vivo studies. The current imaging depths reached by this imaging system are 
compatible with the depths of axillary lymph nodes in humans (< ~3 cm), which highlights its 
potential clinical utility. 
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Fig. 3. In vivo deeply penetrating PA imaging. (a) Control PA image acquired before 
methylene blue injection. (b) PA image taken 10 minutes after methylene blue injection. (c) 
Overlaid post-injection PA (pseudo color) and US (gray scale) images. B, blood and SLN, 
sentinel lymph node. 

As shown in Fig. 4, in vivo PA imaging simultaneously detected both the methylene blue 
uptake in the SLN and the inserted 18 gauge needle. Unlike ultrasonography, no speckle 
artifacts are visible in the PA image [24]. The image contrast of the biopsy needle at a depth 
of 1.7 cm was ~18.2 ± 1.0. US imaging has a limited angular sensitivity for detecting a needle, 
as most of the incident acoustic energy is reflected away from the limited aperture US probe. 
In comparison, generated PA waves are approximately cylindrical. As a result, PA imaging 
offers an improved angular sensitivity compared with conventional US imaging. 

 

Fig. 4. In vivo PA guidance of a metal needle (18-gauge). SLN, sentinel lymph node. 

4. Conclusions 

We successfully imaged deeply positioned tubes (~5.2 cm) filled with methylene blue (~30 
mM) in biological tissues, using a hand-held PA and US imaging system. The laser fluence on 
the tissue surface was only 1/7 of the ANSI safety limit. Deeply positioned rat blood (3.5 cm) 
was visible in the PA image with intrinsic contrast from hemoglobin. In vivo PA mapping of 
rat SLNs at an imaging depth of ~2 cm was accomplished following intradermal injection of 
methylene blue. Moreover, needle insertion was photoacoustically guided in vivo with high 
contrast. PA and US image-guided SLN identification and needle biopsy comprise a 
promising potential alternative to current invasive axillary staging methods for breast cancer 
patients. 
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