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Abstract. The data acquisition speed in photoacoustic computed to-
mography �PACT� is limited by the laser repetition rate and the num-
ber of parallel ultrasound detecting channels. Reconstructing an im-
age with fewer measurements can effectively accelerate the data
acquisition and reduce the system cost. We adapt compressed sensing
�CS� for the reconstruction in PACT. CS-based PACT is implemented
as a nonlinear conjugate gradient descent algorithm and tested with
both phantom and in vivo experiments. © 2010 Society of Photo-Optical Instru-
mentation Engineers. �DOI: 10.1117/1.3381187�
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Introduction

he field of photoacoustic tomography �PAT� has been ex-
anding rapidly in the past few years.1 By combining strong
ptical absorption contrast and high ultrasonic resolution in a
ingle modality, PAT can achieve much better spatial reso-
ution at depths beyond the optical ballistic regime ��1 mm
n the skin� than the traditional optical modalities.2,3 In PAT,
iological tissues are usually irradiated by a pulsed laser. Ab-
orbed energy is converted heat, which is further converted to
pressure rise via thermoelastic expansion. The initial pres-

ure rise then propagates as ultrasonic waves, which are de-
ected by ultrasound sensors, and the received ultrasonic sig-
als are used to form an image. When the excitation laser is
eplaced by microwave or RF sources, the technique is called
hermoacoustic tomography �TAT�.4,5 Both PAT and TAT have
een used successfully in a variety of applications, including
igh-quality in vivo vascular structural imaging, hemody-
amic functional imaging,6,7 visualization of breast tumors,8,9

nd molecular imaging of biomarkers with exogenous con-
rast agents.10–12

PAT has been implemented in various forms, and each
orm has its own advantages and applications.1 In this paper,
e focus on photoacoustic computed tomography �PACT, or

imply PAT�, in which an array of unfocused ultrasonic trans-
ucers is placed outside the object, and an inverse algorithm
s used to reconstruct the image. Closed-form reconstruction
ormulas have been reported in both the frequency and time
omains for spherical, planar, and cylindrical detecting
eometries.13–20 However, a fundamental assumption of all
hese algorithms is that the spatial sampling of the detecting
perture is sufficient; otherwise, undersampling artifacts, such
s streaking artifacts or grating lobes, appear.

Reliable image reconstruction with sparse sampling of the
etecting aperture is desirable. In practical PAT systems, it is
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recommended1,21 to set the discrete spatial sampling period to
be two to five times smaller than the sensing aperture of the
detector. For a scanning PAT system, it may require hundreds
or even thousands of scanning steps to acquire an image, de-
pending on the sizes of both the detector and the detecting
aperture. Such scanning usually takes several minutes to com-
plete. To reach real-time imaging, PAT is implemented with
an array of ultrasonic transducers, where all or groups of the
array elements can detect photoacoustic signals simulta-
neously. However, the data acquisition speed is still limited by
the number of parallel data acquisition �DAQ� channels, and
employing a large number of DAQ channels greatly increases
the system cost. For example, for a fast 512-element ring
array PAT system with a 64-channel data acquisition
module,22 it takes 8 laser shots to collect data from all 512
elements. For direct 3-D reconstruction PAT applications,23,24

the data from a 2-D ultrasonic array is usually an extremely
sparse sampling of the detecting aperture. Moreover, channel
cross talk is also related to the space between neighboring
elements �kerf�, and an extensive spatial sampling may in-
crease the cross talk.

Imaging an object in PAT can be understood as sensing the
object in a certain domain. For example, with the Fourier-
shell identity,25 PAT can also be seen as detecting the spatial
frequencies of the object �sensing in the Fourier domain�.
Sparse spatial sampling of the detection aperture implies that
the spatial frequencies cannot be exactly determined. Tradi-
tional backprojection �BP� reconstruction methods16 recon-
struct the image of “minimal energy” under the observation
constraints. An improved reconstruction algorithm should be
able to “guess” these undetermined frequency components.
However, interpolation in the Fourier domain is a critical is-
sue and usually creates artifacts in reconstructed images.26

The recently developed compressed sensing �CS� theory27 en-
ables us to recover these unobserved components under cer-
tain conditions. The theory has been successfully applied in
MRI,28 where MRI images were able to be reconstructed from

1083-3668/2010/15�2�/021311/6/$25.00 © 2010 SPIE
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ignificantly undersampled K-space measurements. Reference
9 introduced the CS theory into the field of PAT, and the idea
as tested in phantoms using a circular scanning PAT system.

n this paper, we improve the speed of the reconstruction al-
orithm by adopting a nonlinear conjugate gradient descent
ethod and demonstrate the algorithm with both phantom and

nimal data, using various detecting geometries.

Method
.1 Forward and Inverse Problems in PAT and Their

Numerical Implementations
n PAT, pulsed laser irradiation creates pressure rises as a
esult of thermoelastic expansion. These initial pressure rises
ropagate as photoacoustic waves, which can be detected by
ltrasonic sensors. Based on the pressure measurements

p�r� , t� at the detecting aperture, PAT tries to reconstruct the
mage of the initial pressure rise distribution p0�r��. The for-
ard and inverse problems in PAT express the reciprocal re-

ationship between p0�r�� and p�r� , t�. By solving the wave
quation, the forward problem, which predicts p�r� , t� by

p0�r��, can be derived as �assuming a delta pulse heating�:

p�r�,t� =
�

�t
� 1

4�c3t
� dr��p0�r�����t −

�r� − r���
c

�	 , �1�

here c is the speed of ultrasound, and r� is the position of the
ltrasonic sensor.2 Sometimes, the velocity potential ��r� , t�

0

t p�r� , t��dt� is employed to simplify Eq. �1�:

��r�,t� =
1

4�c3t
� dr��p0�r�����t −

�r� − r���
c

� .

The analytical inversion of Eq. �1� describes the inverse
roblem, which reconstructs p0�r�� with p�r� , t�:

p0�r�� =�
S0

��2p�r�0, t̄� − 2t̄�p�r�0, t̄�/�t̄��t̄=�r−r0�d�0/�0, �2�

here t̄=ct, S0 is the detecting aperture, and d�0 /�0 is the
olid-angle weighting factor.2

To numerically model the forward and inverse problems,
e need to properly discretize Eqs. �1� and �2�. We use a
ector x to represent p0�r��, where each element of x is the
verage value of initial pressure per unit volume. The size of
�Nx�Ny �Nz� depends on the field of view �FOV� and the

esired spatial resolution of the reconstructed image. We use a
ector y to denote the velocity potential ��r� , t� measured by
ll elements of the sensor array as a function of time. The size
f y is the number of detecting positions �L� times the number
f temporal samples at each position �M�. Then, the forward
roblem can be described as y=�x, where matrix � is the
rojection matrix. Similarly, the inverse problem can be writ-
en as x̄=�−1y, where �−1 represents the inverse process, and

is the reconstructed image.
� and �−1 are usually extremely large matrices �each con-

aining Nx�Ny �Nz�L�M data points�, even for 2-D re-
onstruction problems. For example, when reconstructing a
56�256 image with measurements from 512 detecting po-
itions, where each position has 1024 time points, both � and
ournal of Biomedical Optics 021311-
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�−1 contain 3.436�1010 data points ��256 GB if each point
is expressed in double-precision�, which makes direct matrix
operations computationally impractical. Reference 30 tried to
solve this problem by saving only nonzero elements of met-
rics � and �−1. For each detecting element i �i=1,2, . . . ,L�,
the forward and inverse operations are performed using a ma-
trix of the same size as x. Each element in this matrix stores
an index of the temporal sample �k=1,2, . . . ,M� of measure-
ment i, and this index indicates where the corresponding ele-
ment of x should be projected. As a result, the storage space
for both the forward and inverse operations for all elements is
reduced to Nx�Ny �Nz�L ��256 MB for the preceding ex-
ample�. To fully take advantage of parallel computing capa-
bility, the responses of all the elements can be calculated si-
multaneously.

2.2 Compressed Sensing for PAT
If the measurement is incomplete, matrix � is ill-conditioned,
and �−1 is obviously not an exact inversion of �. Intuitively,
an incomplete dataset usually leads to uncertainties in the re-
covery of the signals. In the case of PAT reconstruction with
insufficient measurements, the BP method usually generates
streaking artifacts or grating lobes. However, these uncertain-
ties can be eliminated by incorporating prior information,
such as sparsity constraints. The CS theory was rigorously
formulated to reconstruct images from incomplete datasets.
To make this possible, the CS theory relies on two principles:
sparsity, which pertains to the object of interest, and incoher-
ence, which pertains to the sensing modality. Moreover, a
nonlinear reconstruction is used to enforce both sparsity of the
image representation and consistency with the acquired data.

2.2.1 Sparsity of PAT images
Unlike ultrasound imaging and all other coherent imaging
technologies, PAT is devoid of speckle artifacts and sensitive
to boundaries because of its optical absorption contrast.31

Therefore, computing the finite difference �FD� of PAT im-
ages in the spatial domain sometimes directly results in a
sparse representation. When imaging objects with rich absorb-
ing structures such as blood vessels in the mouse brain cortex,
however, PAT images may not be sparse in the spatial domain.
In these cases, we need to project the images onto an appro-
priate basis set, such as the wavelet basis. Mathematically
speaking, if we use a vector x�Rn to represent an n-pixel
image and � to denote the wavelet basis set, then x can be
expanded as x=
i=1

n ai�i, where ai= �x ,�i� is the coefficient
sequence of x. Even when most of the image pixels have
nonzero values, the wavelet coefficients may provide a con-
cise representation of the original image: most coefficients are
small, and the relatively few large coefficients capture most of
the information. The speckle-free nature31 of PAT images fur-
ther reduces the number of significant transform coefficients.

2.2.2 Incoherence
Since the object x can be visually losslessly reconstructed
with only a few large transform coefficients, the problem of
sensing x is equivalent to capturing these large coefficients in
the representation domain �. The forward problem of PAT
can be seen as projecting the object x to the sensing basis set
�, and the measurements are the resulting coefficients. The
March/April 2010 � Vol. 15�2�2
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S theory requires the two basis sets � and � to be incoher-
nt, i.e., the sensing waveforms should have a dense represen-
ation in �. In other words, the undersampled sensing basis �
hould induce only incoherent artifacts that spread out and
ppear as random noise in �.

It is difficult to mathematically demonstrate that a physical
ystem satisfies the incoherence condition. The transform
oint-spread function �TPSF�28,29 was introduced to measure
ncoherence. Figure 1 illustrates the definition of TPSF in
AT. A wavelet transform is adopted as the sparsifying trans-
orm �, and we assume that a circular detecting aperture is
niformly sampled by multiple ultrasonic point sensors. The
’th transform coefficient ei in the domain � �Fig. 1�a�� is
ransformed to the image space �Fig. 1�b�� by the inverse
iscrete wavelet transform �IDWT�. Then, the measurements
re generated with the forward operator � and transformed
ack to the image space �Fig. 1�c�� with the inverse operator
−1. Last, the reconstructed image is again transformed to the

parse domain � �Fig. 1�d�� with the forward discrete wavelet
ransform �FDWT�. TPSF can be mathematically described as
PSF�i , j�=e

j
*��−1��*ei, and it measures the leakage of

nergy away from the i’th coefficient to other coefficients.
he CS theory requires us to properly choose � and � so that

hese interferences can be minimized and spread out in �.
eaders are referred to Reference 29 for a quantitative com-
arison of the TPSF maps for various � in PAT.

.2.3 Reconstruction method

f it satisfies the preceding two conditions, a sparse signal can
e accurately recovered from highly incomplete datasets by
olving a nonlinear convex optimization problem. We now
escribe in more detail the CS reconstruction method for PAT.
n the CS theory, the reconstruction of image x is obtained by
olving the following constrained optimization problem:

ig. 1 Illustration of the wavelet TPSF. �a� A wavelet coefficient of unit
ntensity; �b� IDWT of �a� in the image domain; �c� sensing �b� with 16
ltrasonic sensors and reconstructed with the BP method; and �d�
DWT of �c�.
ournal of Biomedical Optics 021311-
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min
x

��x�1 s.t. ��x − y�2 	 
 . �3�

Here, � and � are defined as earlier, y is the measured data,
and 
 is the parameter that controls the fidelity of the recon-
struction to y. The parameter 
 is usually set based on the
expected noise level. The object function in Eq. �3� is the l1
norm �defined as �x�1=
�xi��. The l1 norm is used here instead
of the l2 norm �defined as �x�2= �
�xi�2�1/2�, because the l2
norm penalizes large coefficients heavily, and leads to non-
sparsity. In the l1 norm, many small coefficients tend to carry
a much larger penalty than a few large coefficients; therefore,
small coefficients are suppressed and solutions are often
sparse. In Eq. �3�, minimizing the l1 norm of �x promotes
sparsity, and the constraint enforces data consistency.

The algorithm is implemented with a nonlinear conjugate
gradient descent method,32 as detailed in Sec. 5. On a laptop
with a dual-core 2-GHz CPU and 3-GB memory, the calcu-
lations usually take less than 10 min using MATLAB 2008a.

3 Results and Discussions
3.1 Tissue-Mimicking Phantom Experiment
We first demonstrate the CS method using a tissue-mimicking
phantom experiment. Tissue phantoms were imaged by scan-
ning a virtual point detector in a setup similar to that of Ref.
33 The PA source contained three black human hair crosses
glued on top of optical fibers, with an interval between the
hair crosses of about 10 mm. Laser pulses with a repetition
rate of 10 Hz were diverged by a ground glass to achieve a
relatively uniform illumination. The virtual point detectors
evenly scanned the object along a horizontal circle, stopping
at 240 points, and the signals were averaged over 20 times at
each stop. The total data acquisition time was 8 min.

Figure 2 shows the reconstruction results with the BP
�Figs. 2�a�–2�d��, the CS �Figs. 2�e�, 2�f�, 4�g�, and 4�h��, and
the traditional iterative30 �IR� �Figs. 2�i�–2�l�� methods, with
240, 120, 80, and 60 tomographic angles. The images are
reconstructed with an FOV of 30 mm�15 mm. We can ob-
serve that the CS method is clearly superior to the BP and the
IR methods. This can be shown by extracting and comparing
lines from the reconstructed images �Fig. 2�m��. The interfer-
ence level has been reduced significantly with the CS recon-
struction. Moreover, as predicted by the theory, the CS
scheme is robust to inaccurate measurements, so the noise
level has also been suppressed. We took Fig. 2�e� as the gold
standard, and calculated the mean-square errors �MSEs� of all
other images from the standard, as shown in Fig. 2�n�. Using
the CS reconstruction method, we improved the data acquisi-
tion time in the circular scanning geometry by fourfold.

3.2 In Vivo Experiment
The first in vivo experiment was based on a custom-designed
512-element photoacoustic tomography array system.22 The
5-MHz piezocomposite transducer array was formed into a
complete circular aperture. With a 64-channel data acquisition
module, the system could provide full tomographic imaging at
up to 8 frames /s. We used this system to image mouse cor-
tical blood vessels. The images were reconstructed by the BP
�Figs. 3�a�–3�d�� and the CS �Figs. 3�e�–3�h�� algorithms,
with 512, 256, 171, and 128 detecting elements, respectively.
March/April 2010 � Vol. 15�2�3
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o achieve the optimal reconstruction results, we simulta-
eously used both the total variance �TV� and the wavelet as
parsifying transforms in the CS method. The undersampling
rtifacts appear in the outer region in Fig. 3�h�, which is a
atural result of the spatial variant PSF in PAT. Figure 3�i�
hows the images reconstructed with 128 tomographic angles
sing only the TV regularization, which promotes sharp
oundary features and suppresses small variances. Figure 3�j�
hows the images reconstructed using only the wavelet regu-
arization, and the image is “blurred.” Since 128 tomographic
ngles do not contain enough information to capture all the
mportant transform coefficients, the reconstruction artifacts
tarted to appear and some object features started to disappear.
he image reconstruction result with the CS method can be

urther improved if a more accurate system matrix is em-
loyed. For example, unlike the virtual point detectors used in
he phantom study, the detecting elements of the circular ul-

ig. 2 Tissue phantom imaging with a virtual point detector. �a� to
omographic angles. �e� to �h� Images reconstructed using the CS
econstructed using the traditional iterative reconstruction method with
h�, and �l�. �n� Comparison of the mean square errors of the three re
ournal of Biomedical Optics 021311-
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trasonic array system are not perfect point detectors. There-
fore, further improvements can be achieved by taking into
consideration of the limited detecting angles of the detecting
elements.25

The second in vivo experiment demonstrates the capability
of the CS method with linear array detecting geometry. The
30-MHz broadband linear transducer array has a total of 48
elements of dimensions 82 �m�2 mm with 100-�m
pitch.34 The linear array is focused in the elevation direction
to perform cross-sectional �B-scan� imaging, and 3-D volume
imaging can be achieved by scanning the probe in the third
dimension. We scanned the upper dorsal region of a rat to
image the subcutaneous vasculature and acquired a total of
166 B-scan slices. Each B-scan image was reconstructed with
both the BP and the CS methods, and the Hilbert transform
was taken after the reconstruction. After processing all the

ges reconstructed using the BP method with 240, 120, 80, and 60
with 240, 120, 80, and 60 tomographic angles. �i� to �l� Images
20, 80, and 60 tomographic angles. �m� Lines extracted from �a�, �d�,
ction methods.
�d� Ima
method

240, 1
constru
March/April 2010 � Vol. 15�2�4
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-scans, the maximum amplitude projection �MAP� images
ere acquired through projecting the B-scans along the axial
irection. Figures 4�a� and 4�b� show MAP images recon-
tructed with the BP and the CS methods, respectively, and
ne typical B-scan was extracted as shown in Figs. 4�c� and
�d�. We observed a significantly reduced noise level with the
S reconstruction. To further demonstrate the ability of the
S method in reducing the undersampling artifacts, we ag-
ressively reconstruct the image with only 16 elements �1 /3
f total 48 elements� with both the BP and the CS method.

ig. 3 In vivo imaging of the mouse cortex with a circular ultrasonic
rray. �a� to �d� Images reconstructed using the BP method with 512,
56, 171, and 128 detecting elements. �e� to �h� Images reconstructed
sing the CS method with 512, 256, 171, and 128 detecting elements.
i� Images reconstructed using the CS method with 128 detecting el-
ments and with only the TV regularization. �j� Images reconstructed
sing the CS method with 128 detecting elements and with only the
avelet regularization.

ig. 4 In vivo imaging of the upper dorsal region of a rat with a linear
rray. �a� and �b� MAP images reconstructed using 48 elements with
he BP and the CS methods, respectively. �c� and �d� Typical B-scans
xtracted from �a� and �b�. �e� and �f� MAP images reconstructed using
6 elements with the BP and the CS methods, respectively. �g� and �h�
ypical B-scans extracted from �e� and �f�.
ournal of Biomedical Optics 021311-
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The results are shown in Figs. 4�e�–4�h�. With the BP recon-
structions, the extremely sparse linear array generates signifi-
cant grating lobe artifacts. By comparison, these undersam-
pling artifacts were effectively reduced with the CS
reconstruction.

4 Conclusions
Both the phantom and the in vivo results show that the CS
method can effectively reduce the undersampling artifacts. By
incorporating the CS theory in the PAT reconstruction, we can
effectively reduce the system cost, or cover a larger FOV with
the same number of measurements. Although the CS method
is demonstrated here only with 2-D problems, the generaliza-
tion to 3-D reconstructions is straightforward.

Appendix
In this section, we describe the reconstruction algorithm for
solving the constrained optimization problem in Eq. �3�,
which has been proved to be closely related to solving the
following convex unconstrained optimization problem:35

min
x

f�x� =
1

2
��x − y�2 + ���x�1, �4�

where � is a nonnegative regularization parameter, which de-
termines the trade-off between the data consistency and the
sparsity. In order for these two problems to be equivalent, 

and � must satisfy a special relationship. However, it is diffi-
cult to find analytical solutions if the matrix A=��* is not
orthogonal.35 Therefore, we solved a series of � to find a
suboptimal solution of the problem in Eq. �3�. The process is
described as follows:

1. Let �=0.05�ATy�
 Ref. 32, and solve problem �4� for x.
2. Check the condition ��x−y�2	
. If this condition

holds, we increase � to promote the sparsity ��x�1; otherwise,
we decrease � to enforce the data consistency ��x−y�2.

3. Problem �4� is solved again with the new �. Previously
solved x is used as the initial guess. By using this warm start-
ing technique,32 the current optimization process takes for
fewer numbers of iterations than the previous one.

4. Steps 2 and 3 are repeated multiple times.
The final solution is still only a suboptimal solution of Eq. �3�.
However, problem �4� can be solved with the conjugate gra-
dient descent method with backtracking line search method,28

which is computationally efficient to implement.
As mentioned in Sec. 2.1, the forward problem matrix � is

extremely large, and the direct matrix operation is computa-
tionally impractical. Therefore, the computations of both �
and its transpose �T were implemented as submodules.
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