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Effects of Different Imaging Models on Least-Squares
Image Reconstruction Accuracy in Photoacoustic
Tomography
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Abstract—In the classic formulation of photoacoustic tomog-
raphy (PAT), two distinct descriptions of the imaging model have
been employed for developing reconstruction algorithms. We
demonstrate that the numerical and statistical properties of un-
weighted least-squares reconstruction algorithms associated with
each imaging model are generally very different. Specifically, some
PAT reconstruction algorithms, including many of the iterative
algorithms previously explored, do not work directly with the
raw measured pressure wavefields, but rather with an integrated
data function that is obtained by temporally integrating the
photoacoustic wavefield. The integration modifies the statistical
distribution of the data, introducing statistical correlations among
samples. This change is highly significant for iterative algorithms,
many of which explicitly or implicitly seek to minimize a statis-
tical cost function. In this work, we demonstrate that iterative
reconstruction by least-squares minimization yields better reso-
lution-noise tradeoffs when working with the raw pressure data
than with the integrated data commonly employed. In addition,
we demonstrate that the raw-data based approach is less sensitive
to certain deterministic errors, such as dc offset errors.

Index Terms—Iterative image reconstruction, optoacoustic
tomography, photoacoustic tomography, thermoacoustic tomog-
raphy.

1. INTRODUCTION

HOTOACOUSTIC tomography (PAT), also known as
P optoacoustic tomography, is an emerging soft-tissue
imaging modality that has great potential for a wide range of
biomedical imaging applications. It can be viewed as a hybrid
imaging modality in the sense that it utilizes an optical contrast
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mechanism combined with ultrasonic detection principles,
thereby combining the advantages of optical and ultrasonic
imaging while circumventing their primary limitations. The
goal of PAT is to reconstruct the distribution of an object’s
absorbed optical energy density from measurements of pres-
sure wavefields that are induced via the thermoacoustic effect
[1]-[3]. Because the optical absorption characteristics of tissue
vary strongly with hemoglobin content, knowledge of the
absorbed optical energy distribution can yield both structural
and functional information [4]-[7]. Moreover, when employed
with targeted probes or optical contrast agents, PAT has the
potential to facilitate high-resolution molecular imaging [8],
[9] of deep structures, which cannot be achieved easily with
pure optical methods. Accordingly, PAT may facilitate a variety
of important human and animal imaging studies, and is being
developed actively by numerous research groups worldwide.

Photoacoustic tomography is a computed imaging modality
and utilizes an image reconstruction algorithm to form an es-
timate of the absorbed optical energy distribution from knowl-
edge of the measured photoacoustic wavefields. A variety of an-
alytic image reconstruction algorithms have been developed for
3-D PAT assuming canonical measurement apertures [10]-[14].
All known analytic reconstruction algorithms that are mathe-
matically exact and numerically stable require complete knowl-
edge of the photoacoustic wavefield on a measurement aperture
that either encloses the entire object or extends to the infinity.
In many potential applications of PAT, such as breast imaging,
it may not be convenient, or possible, to acquire such measure-
ment data. Because of this, iterative reconstruction algorithms
for PAT are being developed actively [15]-[19] that provide the
opportunity for accurate image reconstruction from incomplete
measurement data. Iterative reconstruction algorithms, such as
those based on least squares objective functions, also allow for
ready modeling of physical nonidealities in the data such as
those introduced by acoustic inhomogeneity and attenuation.
Overall, while they also generally demand a larger computa-
tional burden than analytic algorithms, iterative reconstruction
algorithms offer greater flexibility regarding the choice of mea-
surement aperture, permit utilization of more accurate imaging
models, and provide the opportunity for accurate image recon-
struction from incomplete measurement data.

Some PAT reconstruction algorithms, including many of the
iterative algorithms previously explored, do not work directly
with the raw measured pressure wavefields, but rather with an
integrated data function, obtained by temporally integrating the
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Fig. 1. Imaging geometry of PAT. In the 3-D case, the measurement aperture
is a 2-D surface.

photoacoustic wavefield. For the case of an acoustically homo-
geneous object, the integrated data function is related to the op-
tical energy distribution via a spherical Radon transform [20],
[21]. For ideal data containing no noise or other inconsisten-
cies, this integration step is of little consequence. However, in
the presence of noise, the integration modifies the statistical dis-
tribution of the data, introducing statistical correlations among
samples. This change is highly significant for iterative algo-
rithms, many of which explicitly or implicitly seek to minimize
a statistical cost function.

In this work, we demonstrate that iterative reconstruction by
unweighted least-squares minimization yields better resolution-
noise tradeoffs when working with the raw pressure data than
with the integrated data. In addition, we demonstrate that the
raw-data based approach is less sensitive to certain determin-
istic errors, such as dc offset errors. Finally, we show that the
two approaches also have slightly different convergence prop-
erties. The concept of data-space preconditioning is employed
to analyze and explain these differences.

The remainder of the article is organized as follows. In
Section II, the PAT imaging models and iterative reconstruction
method employed in our studies are reviewed briefly. We
review the concept of data-space preconditioning in Section III,
and investigate the numerical properties of least-squares re-
construction algorithms associated with each imaging model.
Computer-simulation studies are presented in Section IV, which
are corroborated by experimental data studies in Section V.
Finally, the article concludes with a discussion and summary
of the work in Section VI.

II. BACKGROUND

A. PAT Imaging Models in Continuous Forms

A schematic of the PAT imaging geometry is shown in Fig. 1.
A short laser pulse is employed to irradiate an object and subse-
quently the optical energy is rapidly absorbed. The total energy
absorption depends on the optical properties of the tissue, which
generally vary with tissue type. For example, a highly vascu-
larized tumor typically absorbs more optical energy than sur-
rounding healthy tissue due to its elevated hemoglobin content.
The thermoacoustic effect results in the generation of a pressure
wavefield p(7, t) [1]-[3], where 7 € R? and  is the temporal co-
ordinate. The resulting pressure wavefield can be measured by
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use of wide-band ultrasonic transducers located on a measure-
ment aperture 2y C R3, which is a 2-D surface that partially
or completely surrounds the object. The coordinate 7y € ()
will denote a particular transducer location. Assuming the object
possesses homogeneous acoustic properties and the duration of
the irradiating optical pulse is negligible, the pressure wavefield
p(70, ) at transducer location 7 can be expressed as [2]

S(+— [Fo =7
- Ul ey d oo
P, 1) = /dg’rf(r)ﬁ%
v

ey

where the object function f() describes the spatially variant
absorbed optical energy density distribution of the object, 7 is
the isobaric volume expansion coefficient divided by the spe-
cific heat of the medium, cg is the (constant) speed-of-sound
in the object and background medium, and é(-) denotes the
1-D Dirac delta function. The object function is compactly sup-
ported, bounded and nonnegative, and the integration in (1) is
performed over its support volume V. Equation (1) represents a
canonical imaging model for PAT. The reconstruction problem
of PAT is to determine a suitable estimate of f(7) from knowl-
edge of temporally sampled values of the pressure wavefields
p(70,t) recorded at a finite number of locations on €2.!

The imaging model in (1) can be recast into a different but
mathematically equivalent form. Specifically, by acting ¢ fg dt’
on both sides of (1) one immediately obtains [20]

4 N[ 3z |70 — 71
) =—[d o(t—— 2
oot = 1 [@rsin (- 220)
v
where the data function g(7, t) is defined as
t
g(7o,t) = t/dt’p(ﬁ),t'). 3)
0

Note that the integrated data function g(7, t) represents a scaled
version of the acoustic velocity potential [22].

According to (3), knowledge of p(79,t) is equivalent to
knowledge of ¢(7o,t) (and vice versa), so g(7p,¢) can be
regarded as a measurable and therefore known quantity. Equa-
tion (2) is a spherical Radon transform that relates (7%, t) to
surface integrals of f(7) over a collection of concentric spheres
of radii ¢yt centered at the transducer location 7. Accordingly,
an estimate of f(7) can be obtained by use of a reconstruction
algorithm that seeks to invert the spherical Radon transform
[10], [11], [17], [23].

In the absence of data inconsistencies and finite sampling ef-
fects, the estimates of f(7) obtained by inverting the imaging
models in (1) and (2) would be identical. However, in prac-
tice when only sampled and noisy values of p(7, ), and conse-
quently of g(7%, t), are available, the estimates of f(7') obtained
by use of least-squares iterative reconstruction can possess dra-
matically different statistical properties and artifacts.

IIn practice, the measured p(7,t) will generally need to be corrected for
degradation caused by the temporal and spatial filtering characteristics of the
ultrasonic transducer.
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B. PAT Imaging Models in Discrete Forms

In practice, p(7o,t) and g(7p,t) are discretized temporally
and measured at a finite number of receiver locations. The vec-
tors p,g € Y = RY will represent lexicographically ordered
representations of the sampled data functions, where the dimen-
sion N is defined by the product of the number of temporal
samples acquired at each transducer location and the number of
transducer locations. Because we will be focusing on iterative
reconstruction algorithms, we will also require a discrete repre-
sentation of the object function f(7). The vector f € X = RM
will denote a lexicographically ordered M -dimensional repre-
sentation of f(7). Hereafter, the vector spaces X and Y will be
referred to as the object- and data-spaces, respectively.

The discrete versions of the imaging models in (1) and (2)
can be expressed as

p=Prf “

and

g=Gf &)
where the operators P and G are N x M matrix representations
of the integral transformation in (1) and the spherical Radon
transform in (2), respectively, which map X — Y.

The operators P and G are related by a simple data transfor-
mation operator on Y

G=CP (6)
where C' is an N x N matrix representation of the weighted
integration operator in (3) that maps Y — Y. Alternatively, P
and G can be related as

P=DG (N
where D is a N x N matrix representation of the differentiation-
like operator (d/dt)(-/t) that maps Y — Y.

C. Statistical Considerations

For the sampled raw pressure data, in the presence of noise,
we have the following discrete imaging equations

p:Pf+np

where n,, is a vector of additive noise. The principal source of
noise in PAT is electronic noise in the transducer, with no corre-
lation from sample to sample, so n,, is well modeled as a multi-
variate Gaussian random vector with a diagonal covariance ma-
trix 1I,, = o021, where o2 is the variance in each sample and
I represents the identity matrix. A least-squares solution to the
image reconstruction problem working with the p data is given
by

fS = argminlp =PI ®
where the solution must typically be found iteratively due to the
large size of the matrices involved.
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For the sampled integrated pressure data, in the presence of
noise, we have the following discrete imaging equations:

g=Gf+n,

where n, is again vector of additive noise. Because the g data
is obtained by acting linearly on the measured p data, ng is
also a multivariate Gaussian random vector, with the covariance
matrix II, no longer diagonal, but given by I, = CTI,C”.
A least-squares solution to the image reconstruction problem
working with the g data is given by

i =argn1]jnllg—Gf||2- (€

As we will see in what follows, the properties of these two so-
lutions are quite different, with the p-based solution being gen-
erally superior. One way of seeing this is to note that the p-based
least-squares solution is in fact the maximum-likelihood solu-
tion for the statistical model governing p, while the g-based
least-squares solution is not the maximum-likelihood solution
for the statistical model governing g. The maximum-likelihood
solution for the statistical model governing g would correspond
to minimizing a weighted least-squares objective function with
the weights matrix given by the inverse of II,. It is not hard to
show that this would produce the same estimate as the p-based
least-squares solution.

D. Review of Object-Space Preconditioning Concepts in
Iterative Image Reconstruction

Consider a general discrete imaging equation of the form

y:Af+ny

where y € Y, f € X,and A € RY*M In PAT, y and A
would correspond to p and P or g and G, as described by the two
imaging models given above. A least-squares (LS) estimate f of
f can be obtained by iteratively inverting the system’s normal
equation

Hf=b (10)
where b = ATy, b € X,and H = AT A with AT denoting
the transpose of A. The operator H : X — X is known as the
Hessian matrix of the least-squares problems.

The goal of preconditioning is usually to improve the conver-
gence rate 9f iterative algorithms [24]-[26] that invert (10) to
determine f, or a modified version of (10) that yields a regular-
ized estimate [27]. To achieve this, (10) is modified by use of an
M x M matrix (preconditioner) as

MH f = Mb. (11)
Note that because M acts on the vector space X, the precon-
ditioning of the linear system has been performed in the ob-
Jject-space.
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Iterative algorithms that seek to invert (11) generally pos-
sesses different numerical properties than those that seek to in-
vert (10). By properly designing the preconditioner M [24], iter-
ative reconstruction algorithms for determining f may possess
improved convergence rates [28]. Existing preconditioners in-
clude the ideal inverse Hessian, diagonal, circulant and other ad
hoc matrices [24].

III. DATA-SPACE PRECONDITIONING IN PAT

A. Data-Space Preconditioning Concepts

To simplify our discussion of data-space preconditioning, we
consider the LS image reconstruction problem. However, the
general concepts below are applicable to the penalized LS (PLS)
estimation problem considered subsequently.

A LS estimate of f as given by (8) corresponds to a solution
of the normal equation formed from (4)

G'D'DG f =G*'D"p
=H,

12)

where we have used (7). Alternatively, a different LS estimate
of f can be computed from the g data as given by (9) which
corresponds to a solution of the normal equation formed from
)
T T
= . 1

G'Gf=G Cp (13)

=H,

The Hessian matrices corresponding to normal equations in (12)
and (13) will be denoted as

H,=G"DTDG (14)

and

H,=G"G. (15)
Reconstruction algorithms that implement (8) and (9) (or later,
regularized versions of them) will be referred to as p-recon and
g-recon algorithms.

If we consider (12) to be the normal equation of the “stan-
dard” imaging model, then (13) can be interpreted as a precon-
ditioned version of it, or vice versa. However, the form of the
preconditioning is distinct from the conventional method of pre-
conditioning described by (11). Specifically, (12) and (13) differ
by operators that act on the data-space Y, whereas the precondi-
tioning operator M in (11) acts on the object-space X . Because
of this, we refer to (12) and (13), or equivalently, (4) and (5), as
a data-space preconditioned pair of imaging equations.

As described below, because the preconditioned Hessian H,
is different than the original Hessian H,,, p-recon and g-recon
reconstruction algorithms will have different intrinsic numerical
properties. Moreover, as reflected by the right-hand sides of (12)
and (13), data-space preconditioning also modifies the measured
data vector p. Consequently, as demonstrated in Section IV, the
erroneous components of p will generally be propagated differ-
ently by p-recon and g-recon algorithms, which can result in es-
timates f,, and f, that have very different artifacts and statistical
properties. The ability of data-space preconditioning to strongly
influence the physical and statistical characteristics of the recon-
structed image, as opposed to simply the convergence rate of the
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reconstruction algorithm, distinguishes it from commonly em-
ployed conventional object-space preconditioning methods.

B. Intrinsic Numerical Properties of Data-Space
Preconditioned Systems in PAT

To gain insights into certain intrinsic numerical properties of
p-recon and g-recon iterative reconstruction algorithms, we nu-
merically investigated the eigen-spectrum of the Hessian ma-
trices for the two imaging models.

In practice, penalized LS (PLS) estimates [27], [29] are typi-
cally computed to mitigate the effects of data noise. In this case,
apenalty term || K f||? is included in the right-hand sides of (8)
and (9), where the scalar 3 is a regularization parameter and K
is an M x M matrix that represents a high-pass filtering opera-
tion [see (22) and (23)]. The Hessians in (14) and (15) will then
take the forms

H; =G"G+pBK'K (16)

and

H]} =G"D"DG + BK"K (17)
where the superscript r denotes that the Hessians correspond to
the normal equations of the regularized problems.

We considered a canonical 2-D PAT imaging geometry corre-
sponding to a circular measurement aperture. We assume the fo-
cused transducer receives and integrates only acoustic pressure
signals transmitted from the imaging plane, where the 3-D PAT
imaging model given by (1) reduces to the 2-D circular mean
model. However, the conclusions below are relevant to other
measurement apertures and 3-D PAT imaging model, because
our data preconditioning takes place only in the time-dimension
that is independent of the dimension of the data-space or the
measurement aperture geometry. The sampling conditions, ge-
ometry parameters, and choice of K were the same as described
in Section IV-A. The eigenvalues of H; and H, were numeri-
cally computed and plotted in Figs. 2 and 3, corresponding to
the cases 3 = 0.01 and 5 = 0.05.

These plots reveal that the condition numbers of the Hessian
matrices, i.e., the ratio between the highest and lowest eigen-
values are similar for both H; and H,,. This establishes that the
two Hessians have similar condition numbers. We also observed
that the eigenvalues of H,, are distributed similarly to those of
H . This suggests that the p-recon iterative algorithm will have
similar intrinsic numerical properties and hence similar conver-
gence rates as the g-recon algorithm. These assertions are vali-
dated in Fig. 4, where the two approaches do appear to converge
at similar rates once each reaches small normalized mean square
errors (NMSE) values, although g-recon appears to start closer
to the true image from its first iteration.

C. Propagation of Data Inconsistencies With Data-Space
Preconditioning

Data-space preconditioning can change the way in which data
inconsistencies are propagated into the final object estimate. The
pressure data p measured in practice can be expressed as

Pe=p+e (18)
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numerical phantom representing the object

where the erroneous component ¢ € Y of the measurement rep-
resents stochastic noise as well as deterministic measurement
errors caused by medium acoustic heterogeneity, constrained
access to measured pressure, finite detector aperture etc. With
consideration of this error, the normal equations (for the LS es-
timation problems) in (12) and (13) take the forms

GT'DTDGf =GTDTp+ GTDTe (19)
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and

GTGf =GTCp+ GTCe. (20)
The magnitudes of the terms GAT Ceand GT DT ¢ determine the
extent to which the estimates f,, and f, are perturbed from the
corresponding ideal LS estimates.

As a pertinent example of a deterministic data inconsistency,
consider the case where the pressure data p recorded at each
measurement location are contaminated only by unknown con-
stant (i.e., dc) offsets. This would occur, for example, if the ul-
trasound transducers employed in the PAT imager were not cal-
ibrated precisely but other measurement noises were negligible.
The magnitudes of the offsets for different transducers are gen-
erally distinct and are described by the components of e. Be-
cause the integration operator C' accumulates the errors but the
differentiation operator DT eliminates all dc offsets, we have

|GTCe| > |GTDTe| = 0. 1)
Therefore, as demonstrated in Section IV, when dc offsets
represent the predominant data inconsistency component, a
p-recon reconstruction algorithm that inverts (19) can produce
an image estimate possessing less severe artifacts and distor-
tions than produced by a g-recon reconstruction algorithm that
inverts (20).

IV. NUMERICAL INVESTIGATIONS OF RECONSTRUCTION
ALGORITHMS

Computer-simulation studies were conducted to investigate
and compare iterative g-recon and p-recon algorithms. Studies
that utilize experimental data are described subsequently in
Section V.

A. Simulation Data and Reconstruction Algorithms

Phantom and Simulation Data: The 2-D numerical phantom
shown in Fig. 4 was taken to represent the object function f(7).
It was comprised of uniform disks possessing different gray
levels, radii, and locations. The radius of the phantom was 1.0
(arbitrary units). Although we considered the 2-D problem for
computational convenience, our conclusions will be generally
applicable to 3-D PAT. A circular measurement aperture of ra-
dius 1.2 that enclosed the object was employed. At each of 240
uniformly spaced transducer locations 7y on the measurement
circle, simulated pressure data p(7o,t) were analytically com-
puted according to (1), from knowledge of f (7). For simplicity
we did not consider the band-pass characteristics of transducer
used in practice, however the conclusions from these simulation
studies and their theoretical values are not affected by this fact.
At each transducer location 300 temporal samples of p(7y,t)
were computed. Accordingly, the pressure vector p € Y was
a column vector of length 240 x 300. The noiseless integrated
data vector ¢ = Cp was computed by use of a discrete approx-
imation of (3).

Erroneous versions of the data sets were computed by in-
cluding stochastic or deterministic data errors. To model sto-
chastic measurement errors, the pressure data p was treated as
an uncorrelated zero-mean Gaussian random vector with dif-
ferent variance levels o as described below. Noisy versions of
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p were computed as realizations of this stochastic process. From
noisy versions of p, noisy data vectors g were computed. The ef-
fects of integration on the statistical properties of pressure data
were discussed in more detail in [15]. Additional sets of pres-
sure data p were generated that contained deterministic offsets
e(7), as would be produced by transducer dc shifts, whose mag-
nitudes are described below. From these versions of p, the cor-
responding data vectors g were computed.

Reconstruction Algorithms: From the simulated p and g data
vectors, reconstruction algprithms were implemented for deter-
mining object estimates f. A regularized iterative p-recon re-
construction algorithm was implemented that determined an ob-
ject estimate fp as

fy = argmin |lp = PAIP + BIK I (22)
where K is a discrete implementation of the differential oper-
ator (0/0x) + (0/9dy). Similarly, a regularized iterative g-recon
reconstruction algorithm was implemented that determined an
object estimate f; as

fo= arg;ninllg—Gf||2+ﬂ||Kf||2~ (23)
The object f(7*) was described by a 256 x 256 matrix, corre-
sponding to a standard 2-D pixel basis representation, so the
lexicographically ordered f € X was of length 2562. The dis-
crete circular Radon transform G was implemented by numer-
ical integration, similar to the ray-driven technique used to sim-
ulate X-ray sinograms [30], specifically by dividing the corre-
sponding integration arc into equally spaced segments and then
summing up the values of the object function on each segment.
Providing the segment length (integration step) is small and data
samples are dense compared with the pixel size, this numer-
ical integration closely represents the corresponding analytical
circular Radon transform. A discrete form of operator P was
implemented by performing a simple finite difference after nu-
merical integration operator GG. Equations (22) and (23) were
solved by use of the Fletcher-Reeves version of conjugate gra-
dient (CG) algorithm [31] for different values of the regulariza-
tion parameter 3. The CG algorithms were terminated after 60
iterations, which ensured convergence as described below.

B. Results from Consistent Data

Object estimates fg and fp reconstructed from consistent
(perfect) data are shown in Fig. 5(a) and (b), and vertical profiles
through the centers of the images are superimposed in Fig. 5(c).
As expected, both estimates are very similar and accurately
represent the true object f. To compare the convergence rates
of the g-recon and p-recon algorithms, we examined NMSEs
of the reconstructed images versus iteration number of the CG
algorithm. The NMSE is defined as ||f — f&||/||f||, where fi
is the estimate in the kth iteration and f is true object. For the
case of 3 = 0.01, shown in Fig. 6, the p-recon algorithm started
off with a relatively higher NMSE but also initially converged
at a faster rate than the g-recon algorithm. After approximately
30 iterations both algorithms had approximately converged and
produced small NMSEs that did not change significantly with
additional iterations. In the studies below, we terminated the
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Fig. 6. NMSE versus iteration number for the g-recon (solid line) and p-recon
(dashed line) algorithms applied to consistent data.

CG algorithms at 60 iterations, which ensured convergence
when the data were erroneous and/or other values of 3 were
employed.

C. Results From Data Containing Random Inconsistencies

From ensembles of p and ¢ containing 400 noisy realiza-
tions, ensembles of noisy images were reconstructed by use of
the g-recon and p-recon algorithms, corresponding to different
choices of the regularization parameter 3. From each collection
of images, empirical estimates of the image standard deviation
(std) were computed within a 16 X 16 pixel region in the center
of reconstructed images corresponding to both reconstruction
algorithms. We quantified the resolution of reconstructed im-
ages by fitting the rising edge of a pre-chosen structure (we
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(solid line) and p-recon (dashed line) algorithms.

chose the central disk in this study) in the empirical mean im-
ages to an error function [32]. The image resolution was char-
acterized by the full-width at half-maximum (FWHM) value of
the fitted error function [32].

Resolution versus standard deviation curves were con-
structed by plotting the (resolution, std) pairs obtained for
different values of the regularization parameter § ranging
from 0.0 to 0.5. The curves for the p-recon and g-recon al-
gorithms are shown in Fig. 7, for the case where the data p
were contaminated by noise with level o = 0.01. This noise
level approximately corresponds to 3% of the peak value of the
noiseless p data. In order to display the two resolution-noise
curves in their common y-axis range, we truncated the p-recon
curve at FWHM = 0.75. When 8 = 0, which corresponds to
the upper left-most region of the figures, the p-recon algorithm
can achieve higher resolutions than the g-recon algorithm. In
their common resolution region, the resolution-std curve cor-
responding to the p-recon algorithm is everywhere lower than
the curve corresponding to the g-recon algorithm, indicating
that the p-recon algorithm will generally produce images with
lower noise levels at matched resolution as g-recon.

Figs. 8 and 9 contain images reconstructed from data con-
taining noise levels of & = 0.005 and ¢ = 0.05, which were
approximately 1.5% and 15% of the peak signal strength, re-
spectively. In both reconstructions, the parameters 3 in front of
the penalty term are chosen at matched resolution on the resolu-
tion-noise curves for the fairness of the comparison: 5 = 0.070
for p-recon and § = 0.001 for g-recon, both correspond to
resolution measure around FWHM = 1.35. One can visually
verify that the image produced by the p-recon algorithm pos-
sesses slightly lower noise level than the one produced by the
g-recon algorithm when the spatial resolutions of the two are
comparable.

One can also notice the apparent differences in the noise tex-
ture in images reconstructed from g-recon and p-recon. There
are visually obvious “lumpy” textures in the g-recon image due
to the noise correlation in the g data, which in turn propagates
through the reconstructing algorithm and forms the texture. A
systematic investigation of how differences in the noise textures
affect task-based measures of image quality (e.g., object de-
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Fig. 8. Images reconstructed from data containing low levels of Gaussian noise
(see text) by use of the (a) g-recon and (b) p-recon algorithms. (c) Vertical pro-
files through the center of subfigure (a) (solid line) and subfigure (b) (dashed
line).
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Fig. 9. Images reconstructed from data containing high levels of Gaussian
noise (see text) by use of the (a) g-recon and (b) p-recon algorithms. (c)
Vertical profiles through the center of subfigure (a) (solid line) and subfigure
(b) (dashed line).

tectability studies) is beyond the scope of this article, but in gen-
eral highly correlated noise tends to degrade signal detectability.
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Fig. 10. Images reconstructed from data containing deterministic DC offsets
(see text) by use of the (a) g-recon and (b) p-recon algorithms. (c) Vertical pro-
files through the center of subfigure (a) (solid line) and subfigure (b) (dashed
line).

D. Studies Employing Data Containing Deterministic
Inconsistencies

Additional data sets were generated that contained determin-
istic offsets in the pressure data p. For the case where the mag-
nitudes of the offsets were e = 0.0125, which corresponded
to approximately 4% of the peak signal strength, images recon-
structed by use of the g-recon and p-recon algorithms are dis-
played in Fig. 10(a) and (b). Profiles through the reconstructed
images are shown in Fig. 10(c). As predicted by our analysis,
when the data contain spatially uniform errors, e.g., as would be
produced by miscalibrated transducers, the image reconstructed
by use of the g-recon algorithm [Fig. 10(a)] contains severe dis-
tortions and ringing artifacts while the image obtained by use of
the p-recon algorithm [Fig. 10(b)] is not strongly affected by the
errors and closely resembles the true phantom. This is because
the dc errors are accumulated by the integration operation in the
g-recon algorithm, which introduces large errors into the input
data, while the error is annihilated by the differentiation oper-
ator in the p-recon algorithm. It is worth noting that because of
the band-pass-filtering effect of some transducers, experimental
data in certain implementations may not contain such large dc
errors as considered in this simulation study.

V. EXPERIMENTAL RESULTS

Images were reconstructed from experimental data sets ac-
quired previously in the Optical Imaging Laboratory at Wash-
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Fig. 11. Images reconstructed from experimental data corresponding to a phys-
ical phantom by use of the (a) g-recon and (b) p-recon algorithms.

ington University in St. Louis.2 The reconstructed image size
was 400 x 400 pixels, and the regularization parameters (3 in
the CG algorithms were manually chosen to yield reconstruc-
tions whose visual appearances were deemed to be closest to
the true object. The grey scale window of the reconstructed im-
ages was fixed at [—-0.1, 0.1].

The first data set corresponded to a tissue phantom that is
described in [33]. The data were acquired using a microwave
source instead of a laser and a 2-D circular measurement ge-
ometry that had a scanning radius Ry = 70 mm [33]. Pres-
sure signals were measured at 160 equally spaced positions on
the measurement circle, and each signal contained 2000 tem-
poral samples acquired at a 50 MHz sampling rate. The im-
ages in Figs. 11(a) and (b) were reconstructed by use of the
g-recon and p-recon algorithms. The image reconstructed by
use of the p-recon algorithm [Fig. 11(b)] possesses better visual
image quality, specifically higher spatial resolution. We verified
that the image reconstructed by use of the g-recon algorithm
[Fig. 11(a)] could not achieve comparable visual quality by use
of alternative 3 values.

The second data set corresponded to a photoacoustic tomog-
raphy imaging study of a mouse brain. As described in [34], the
data were acquired using an laser source and a 2D circular mea-
surement geometry that had a scanning radius Ry = 19.95 mm.
Measurements were taken at 240 equally spaced positions on
the scanning aperture and for each measurement position,
5000 pressure samples were received at a 100 MHz sampling
rate. The image reconstructed by use of the p-recon algorithm
[Fig. 12(b)] possesses sharper visual image resolution, with
comparable noise level as the image reconstructed by use of
the g-recon algorithm [Fig. 12(a)]. We verified that the visual
image quality of p-recon result could not be matched by use of
any alternative (3 values of g-recon.

A third data set corresponded to a thermoacoustic tomog-
raphy imaging study of a monkey brain [35]. As described in
[35], three needles were inserted in the brain. The measurement
geometry and number of transducer locations were the same as
described above for the first data set. At each transducer loca-
tion, the pressure signal was sampled at a 20 MHz rate. The
image reconstructed by use of the g-recon algorithm [Fig. 13(a)]
possesses better visual image quality, specifically lower noise
levels. We verified that the image reconstructed by use of the

2Department of Biomedical Engineering, Washington University at St. Louis,
Director: Prof. L. V. Wang, http://oilab.seas.wustl.edu.
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(2) (b)

Fig. 12. Images reconstructed from experimental data corresponding to a
mouse brain by use of the (a) g-recon and (b) p-recon algorithms.

®)

Fig. 13. Images reconstructed from experimental data corresponding to a pri-
mate brain by use of the (a) g-recon and (b) p-recon algorithms.

p-recon algorithm [Fig. 13(b)] could not achieve comparable vi-
sual quality by use of alternative (3 values. Due to acoustic het-
erogeneities, the measured data in this case are expected to be
highly inconsistent with respect to the assumed spherical Radon
transform imaging model. This example demonstrates that when
the data inconsistencies are not described by dc offsets or un-
correlated noise, the g-recon algorithm may produce more fa-
vorable image estimates than the p-recon algorithm in certain
applications.

VI. SUMMARY

Two distinct descriptions of the classic PAT imaging model
have been employed for developing reconstruction algorithms.
Both imaging models embody the same imaging physics and
are mathematically identical. However, the numerical and sta-
tistical properties of reconstruction algorithms associated with
each imaging model are generally very different, and have not
been investigated previously.

Certain PAT reconstruction algorithms, including many of
the iterative algorithms previously explored, do not work di-
rectly with the raw measured pressure wavefields, but rather
with an integrated data function, obtained by temporally inte-
grating the photoacoustic wavefield. The integration modifies
the statistical distribution of the data, introducing statistical cor-
relations among samples. This change is highly significant for
iterative algorithms, many of which explicitly or implicitly seek
to minimize a statistical cost function.

In this paper, we have demonstrated that iterative reconstruc-
tion by least-squares minimization yields better resolution-noise
tradeoffs when working with the raw pressure data than with the
integrated data commonly employed. In addition, we demon-
strated that the raw-data based approach is less sensitive to cer-
tain deterministic errors, such as dc offset errors.
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It is worth noting that the different results obtained when
using these two different imaging models is not an inherent
property of the models but rather the result of their interac-
tion with the unweighted least-squares objective function, which
is not invariant to general linear transformations of the input
data. As was mentioned, it can be shown that an objective func-
tion based on the use of a weighted least-squares data-agree-
ment term, with weighting matrix proportional to the inverse of
the data covariance matrix, is invariant to such transformations
and is the maximum-likelihood estimator for the Gaussian noise
models assumed here.

Although not investigated in this work, conventional object-
space preconditioning methods [24] can be employed with ei-
ther of the PAT imaging models and accelerated versions of the
p-recon and g-recon algorithms can be obtained. Because the
object-space preconditioning methods do not directly modify
the form of data inconsistencies, they typically will not change
the physical characteristics of the reconstructed image in a sig-
nificant way. This data-space preconditioning concept can be
readily generalized to other imaging modalities such as X-ray
CT and to other iterative algorithms [36]. The investigation of
alternative data-space preconditioning transformations for PAT
and other tomographic imaging modalities that can favorably
influence the physical and/or statistical properties of the recon-
structed image remains an interesting topic for future research.
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