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Abstract. We have developed an automatic algorithm to detect the
skin profiles in the volumetric data acquired by photoacoustic micros-
copy for subcutaneous vasculature imaging. This algorithm analyzes
the relationship between amplitudes of photoacoustic signals gener-
ated from the skin surface and underlying blood vessels to achieve a
rough estimation of the skin profile. A better approximation of the skin
profile is then acquired after nonparametric smoothing and Gaussian
low-pass spatial filtering. An auto-fit scan mechanism is further devel-
oped based on the detected skin profile to achieve good ultrasonic
focusing on the subcutaneous vessel layer when the skin contour
variation is much larger than the ultrasonic focal zone. The impor-
tance of skin profile detection in calculating the maximum-amplitude-
projection images and significantly improving the image quality by
employing the auto-fit scan are demonstrated by in vivo experimental
results. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction

hotoacoustic microscopy �PAM�1–3 is a newly developed
hotoacoustic �PA� imaging4–6 technology that has significant
otential for various biomedical research and clinical applica-
ions. It is safe to animals and humans and has been used to
mage the subcutaneous microvasculature in rats and
umans,2,7 acute skin burns in swine,8 and skin melanoma
umors in mice9 with a 15-�m axial resolution, a 45-�m
ateral resolution, and a 3-mm maximum imaging depth.
unctional properties such as total hemoglobin concentration
nd hemoglobin oxygen saturation �sO2� also have been im-
ged in vivo in single blood vessels in rats.2,10 Based on its
igh optical absorption contrast and large maximum imaging
epth, PAM has great advantages over existing high-
esolution optical imaging modalities for imaging both the
natomy and functions of subcutaneous microvasculature.7

The system description and the image formation procedure
f PAM have been reported in detail elsewhere.2,3 Here, we
nly reiterate the definitions of the key elements in image
ormation and the calculation of the maximum-amplitude-
rojection �MAP� image.11–13 As shown in Fig. 1, the A-line is
one-dimensional �1-D�, depth-resolved image �along the z

xis� converted from the time-resolved PA signals recorded at
ach horizontal �along the x-y plane� position. The recording
uration of the PA signal is determined by the desired depth
ange along the z axis and the sound velocity in soft tissues
1.5 mm /�s�. A 1-D lateral scanning of the ultrasonic detec-
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tor along the x axis produces a two-dimensional �2-D� cross-
sectional image �referred to as a B-scan image�, and a com-
plete raster-scanning along the x-y plane produces the final
volumetric image.

Besides direct three-dimensional �3-D� visualization of the
volumetric image,7 a 2-D MAP visualization, which has been
widely used in radiological angiography, is usually adequate
if the depth information of vessels is less interesting. MAP
exploits the fact that within the volumetric data of vascula-
ture, the PA amplitudes generated from the vessels are much
higher than those from the surrounding tissues; thus, the struc-
ture of the vasculature can be well captured.2,9,10 MAP images
can be calculated by performing ray casting and searching for
the maximum amplitude on the ray line along an arbitrary
direction. In in vivo PAM imaging on small animals, the ma-
jor motion artifact is caused by animal breathing, which exists
primarily along the z axis, according to the design of the
animal holding.3 Thus, we only calculated MAP images along
the z axis to avoid motion artifacts �Fig. 1�.

By employing a dark-field illumination with a large illumi-
nation area,3 an overly strong PA signal from the skin surface
is avoided, which potentially overshadows the weaker PA sig-
nals generated from the subcutaneous vessels.1 However, due
to light scattering in the tissue, PA signals from the skin sur-
face are still detected, as shown in Fig. 2�a�. Moreover, be-
cause of the uneven distribution of pigments �such as mela-
nin� in the skin, the PA amplitudes generated from the skin
surface vary with horizontal positions. In some A-lines, the
PA amplitude from the skin signal can be much higher than
that from a vessel signal �Fig. 2�c��. If the MAP image is
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alculated directly, PA amplitudes from the skin surface rather
han those from the vessels are projected onto the final 2D
mage, resulting in errors in the visualization of the true mi-
rovasculature. Therefore, detecting the skin profile and sub-
equently removing the skin signals are necessary before

AP images are calculated.
The skin profile was detected manually in the early works

f PAM.1 First, several points on the skin surface were visu-
lly selected in multiple B-scan images, then a 2-D interpola-
ion through the selected points was applied to estimate the
kin profile. This manual operation is time-consuming, how-
ver, since the number of B-scan images often exceeds 200. If
pectral measurement is conducted, the same manual opera-
ion needs to be repeated for all the optical wavelengths. As a
esult, an automatic algorithm for detection is necessary.

Automatic skin profile detection is also important for im-
ging samples with large variations in skin contours. To
chieve high lateral resolution, PAM employs an ultrasonic
etector with a high center frequency �50 MHz� and a large
umerical aperture �0.44�,2,3 which results in a focal zone of
nly 0.3 mm. Lateral resolution is degraded at the out-of-
ocus region. Since the raster scanning is usually conducted
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Fig. 1 Image formation in PAM.

(a) (b)

(c)

0.5 1 1.5 2 2.5
-0.5

0

0.5

1

z axis [mm]

N
or
m
al
iz
ed
PA

am
pl
itu
de
[a
.u
.]

S

V

0.5 1 1.5 2 2.5
-0.5

0

0.5

1

z axis [mm]

N
or
m
al
iz
ed
PA

am
pl
itu
de
[a
.u
.]

S

V

0.5 1 1.5 2 2.5
-0.5

0

0.5

1

z axis [mm]

N
or
m
al
iz
ed
PA

am
pl
itu
de
[a
.u
.]

S V

0.5 1 1.5 2 2.5
-0.5

0

0.5

1

z axis [mm]

N
or
m
al
iz
ed
PA

am
pl
itu
de
[a
.u
.]

S V

S

0.5 1 1.5 2 2.5
-0.5

0

0.5

1

z axis [mm]

N
or
m
al
iz
ed
PA

am
pl
itu
de
[a
.u
.]

SS

0.5 1 1.5 2 2.5
-0.5

0

0.5

1

z axis [mm]

N
or
m
al
iz
ed
PA

am
pl
itu
de
[a
.u
.]

(d)

x axis [mm]

z
ax
is
[m
m
]

2 4 6 8 10

1

2

3

V

S

a cb

a b c

x axis [mm]

z
ax
is
[m
m
]

2 4 6 8 10

1

2

3

V

S

a cb

a b c

ig. 2 Relationship between the AS and AV in a typical in vivo B-scan
mage: �a� B-scan image, �b� an A-line where AS is comparable to AV,
c� an A-line where AS is stronger than AV, and �d� an A-line where AS
s weaker than AV �S: skin surface; V: vessel; 2nd: the second strongest
eak�.
ournal of Biomedical Optics 024050-
along the x-y plane at a fixed vertical coordinate �flat scan�
when the fluctuation of the skin contour is much larger than
the focal zone, vessels out of the focal region cannot be re-
solved correctly. Thus, further studies, such as the validation
of Murray’s law,14,15 that rely on the imaged vessel structure
can be significantly affected. A virtual-point-detector-based
synthetic aperture focusing technique was developed to re-
store the degraded out-of-focus lateral resolution
numerically;16 however, only 1-D restoration is applicable to
in vivo experiments since motion artifacts between B-scan
images are too strong. Moreover, the change of acoustic ve-
locity in water and tissue is not considered. Based on the
anatomic observation of the subcutaneous microvasculature,
the major vessels are within a layer of limited thickness be-
neath the skin surface; therefore, good ultrasonic focusing of
such a vessel layer can be maintained if the ultrasonic detector
can follow the skin contour during the raster scanning �auto-
fit scan�. Thus, detecting the skin profile is a prerequisite for
the auto-fit scan.

We have developed an automatic algorithm to detect the
skin profile by analyzing A-lines and nonparametric smooth-
ing in each B-scan image. PA signals generated from the skin
surface were then removed from the volumetric data to calcu-
late the MAP images. Also, by applying auto-fit scan, vessels
that were previously blurred in the flat scan became resolved.
In this paper, we describe such an automatic algorithm and the
procedure of the auto-fit scan. Comparison of in vivo MAP
images before and after the skin signal removal and compari-
son of in vivo MAP images from the flat scan and the auto-fit
scan, respectively, are provided. The application of the auto-fit
scan is further demonstrated by in vivo imaging of a tumor
vasculature.

2 Materials and Methods
2.1 Animal Experiments
In vivo images of the normal subcutaneous microvasculature
were acquired from healthy Sprague-Dawley rats ��200 g,
Charles River Breeding Laboratories, Wilmington, Mass.� and
immunocomprised nude mice ��20 g, Harlan Co., Indianapo-
lis, Ind.�.An in vivo image of the tumor angiogenesis was
acquired from a BALB/c mouse ��20 g, Harlan Co., India-
napolis, Ind.�. A subcutaneous tumor was produced by inocu-
lation of 1.5�105 murine colon carcinoma tumor cells
�CT26.WT, American Type Culture Collection, Manassas,
Va.� with 50-�l injection volume under the scalp. Imaging
was conducted 7 days after inoculation when a bump at the
inoculation site was visually observable.

Before imaging, the region of interest was depilated with a
commercial human hair removing lotion �Surgi Cream, Ardell
International, Los Angeles, CA�. A dose of 87 mg /kg of Ket-
amine plus 13 mg /kg of Xylasine was administered intramus-
cularly to anesthetize the animals. During experiments, the
animal motion was minimized by a breathing anesthesia sys-
tem �E-Z Anesthesia, Euthanex Corporation, Palmer, Pa.�. The
flow rate of the mixture of medical grade oxygen with 1%
�volume to volume ratio� vaporized isoflurane was 1.5 l /min.
The arterial blood oxygenation and the heart rate of the ani-
mals were monitored by a pulse oximeter �8600 V, Nonin
Medical, Plymouth, Minn.�. In all the in vivo experiments, the
scanning step size was 50 �m along both the x and y axes.
March/April 2009 � Vol. 14�2�2
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ach A-line was recorded for 2 �s, which corresponded to a
epth range of 3 mm in biological tissues.

All experimental animal procedures were carried out in
onformity with the guidelines of the National Institutes of
ealth.17 The laboratory animal protocol for this work was

pproved by the University Laboratory Animal Care Commit-
ee of Texas A&M University, where all experiments were
arried out.

.2 Skin Profile Detection
n PAM, modern edge-detection algorithms18,19 cannot be ap-
lied directly because the imaged skin surface shows no con-
inuity �Fig. 2�a��. Here, skin profile detection is facilitated by
nalyzing the features of A-lines and is carried out on a
-scan basis �along the x axis�. The detection of a 1-D skin
rofile in a B-scan image consists of two steps. The first step
s a rough estimation of the skin location based on analyzing
he relationship between the amplitudes of PA signals gener-
ted from the skin surface and from subcutaneous blood ves-
els in each A-line. The second step is a nonparametric robust
ocal regression smoothing20,21 of the rough-estimation result.
fter the skin profiles are detected in all the B-scan images,

he robust local regression smoothing is performed again
long the y axis. Finally, the complete 2-D skin profile is
cquired by applying a 2-D Gaussian low-pass spatial
ltering.

Within the depth range, most A-lines have only two domi-
ating PA peaks, which are generated from the skin surface
nd a subcutaneous vessel, respectively. The relationship be-
ween the amplitude of PA signal generated from the skin
urface �denoted as AS� and the amplitude of PA signal gen-
rated from a subcutaneous blood vessel �denoted as AV� can
e classified into three major categorizes: �1� AS and AV are
omparably strong �Fig. 2�b��; �2� AS dominates �Fig. 2�c��;
nd �3� AV dominates �Fig. 2�d��. Figure 2�b� demonstrates
he most ideal case as we can easily select the location of AS
o be the position of the skin surface. However, such an easy

ethod is not valid for other situations. In addition to the
ajor relationships between AS and AV, other rare situations

lso exist. In some cases, more than two dominating PA peaks
xist within an A-line when, for example, multiple PA peaks
an be generated from multiple blood vessels at different
epths at the same horizontal position. In other cases, an
-line could show only one or no dominating PA peak, i.e., it
nly has a PA peak generated from the skin surface or it
onsists only of random noise and background signals without
istinctive PA peaks from either the skin surface or blood
essels. All these situations are generalized to have N peaks in
he first-step rough estimation for the 1-D skin profile in each
-scan image. N is a varying number that can be adjusted
ccording to each special situation.

In B-scan images, A-lines are analyzed in an order that
ollows the data acquisition sequence. For each A-line, the
epth locations of the first N strongest PA peaks �LPi , i
�1,N�� are identified and the distance between each pair of

onsecutive peaks �Dj =LPj+1−LPj, j� �1,N−1�� are further
alculated. Once the largest pair distance �Dj max=max�Dj��
s found, LPj max is considered the location of the skin surface
n that A-line. Such an operation is based on the observation
hat the distance between the PA peak generated from the skin
ournal of Biomedical Optics 024050-
surface and the PA peak generated from a shallower blood
vessel is generally larger than the distances between any other
consecutive pairs within the same A-line.

After all A-lines within a B-scan image as shown in Fig.
2�a� are processed as described above, a 1-D rough estimation
of the skin profile is acquired as shown in Fig. 3�a�, where the
detected skin locations at the positions of the three A-lines
shown in Fig. 2 are labeled. In this special case, N was 2. In
Fig. 2�b�, where AS and AV are comparable, the rough estima-
tion gives the correct skin location. In Fig. 2�c�, where AS
dominates, the second strongest PA peak selected by the algo-
rithm is near the real skin surface. Therefore, the estimated
skin location is close to the true location; however, in Fig.
2�d�, where AV dominates, the second strongest PA peak is
behind the PA peak from the vessel. Hence, the rough estima-
tion gave an error. Several similar erroneous estimations also
can be observed in Fig. 3�a�.

After the rough estimation, a better estimation of the 1-D
skin profile was achieved by removing the error points �out-
liers� through smoothing. The assumption behind the smooth-
ing operation was that the majority of the estimated skin lo-
cations in the first-round rough estimation were either true or
were close to their true skin locations, and the outliers were
randomly distributed along the x axis. Hence, a method is
needed that can extract the backbone based on the estimated
major skin locations and that will not be affected by the out-
liers. Moreover, such a method should not require human in-
tervention. Among the several smoothing technologies that
have been reported,22 the nonparametric, robust, locally-
weighted-regression smoothing20,21 was found to fit our appli-
cations well based on the trade-off between computation time
and capability to reject outliers from the first-round rough
estimation. Compared with parametric smoothing, a nonpara-
metric smoothing showed a greater advantage on the degree
of freedom since it does not require a single expression of the
smoothing result. Hence, nonparametric smoothing offers bet-
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Fig. 3 Detected 1-D skin profiles: �a� comparison of the rough and
smoothed estimations of the skin profile and �b� overlay of the
smoothed skin profile onto its original B-scan image.
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er approximations than parametric smoothing when applied
o the irregularly shaped skin profile. Moreover, robust regres-
ion “guards against deviant points distorting the smoothed
oints”20 and the local weighting allows for the variation in
he skin profile. The robust regression requires longer compu-
ational time than the direct parametric and nonparametric re-
ression smoothing. Since this skin profile detection was con-
ucted offline and the time required for regression �around
wo minutes for a complete volumetric data containing 120

100 A-lines� was much shorter than the data acquisition
ime �40 min�, computational cost was not a concern here.
he smoothing procedure was carried out in a piecewise man-
er for each point span. The length of a point span is defined
y the ratio of the number of points within the span to the
otal number of A-lines in a B-scan image.

The smoothed skin profile, whose span was 0.4, is pre-
ented in Fig. 3�a�. It can be seen that the outliners are re-
ected and the underlying backbone is extracted. Figure 3�b�
hows the overlay of the smoothed result onto the original
-scan image, where a good agreement is demonstrated. After

he 1-D smoothed skin detection is completed for each B-scan
mage, the same smoothing procedure was performed again
long the y axis. The final 2-D skin profile was further ac-
uired after a Gaussian low-pass spatial filtering.

.3 Auto-Fit Scan
fter the 2-D skin profile was acquired from a flat scan, an
ptimal distance between the ultrasonic detector and the skin
urface was chosen based on the ultrasonic focal length and
he imaged mean vessel depth. One horizontal position of the
ltrasonic detector, where the best ultrasonic focusing of a
ubcutaneous vessel was observed, was set as the reference
osition. The observation of the ultrasonic focusing is based
n the imaged cross-section of the vessels in a B-scan image.
mall objects �such as microvessels� demonstrate similar
butterfly” shape with symmetries along both the x and z axes
hen imaged within the ultrasonic focal region. For a more
etailed description about ultrasonic focusing in PAM, please
efer to Ref. 3. Distances from all other scanning positions to
he reference position were then calculated along the z axis.
he distances were further converted to motor rotation steps

o vertically translate the ultrasonic detector. In the end, the
uto-fit scan was conducted in a way that the z coordinate was
djusted at each horizontal position to maintain the preset
ptimal distance within the whole region of interest. Since the
uto-fit scan requires the information from an initial flat scan,
he data acquisition time is doubled.

Result and Discussion
oth the skin profile detection algorithm and the auto-fit scan
ere tested on a known phantom. A brass sphere with a di-

meter of 8 mm was imaged as shown in Fig. 4. Due to the
ature of this phantom, PA signals were only generated from
he surface of the brass sphere. In Fig. 4�a�, the detected
phere surface �red dashed line; color online only� is overlaid
nto the B-scan image. It can be clearly observed that the
etected profile overlaps the imaged sphere surface, which
ndicates that our algorithm found the surface profile cor-
ectly. In this special situation, N was 2. Once the skin profile
as detected, an auto-fit scan was conducted. The middle lo-
ournal of Biomedical Optics 024050-
cation in the B-scan image from the flat scan was taken as the
reference position. The B-scan image from the auto-fit scan
and its correspondingly detected surface profile are shown in
Fig. 4�b�. Since the distance between the sphere surface and
the ultrasonic detector was maintained, both the newly im-
aged surface and detected surface profile appear to be flat.

Once the skin profile was detected in a volumetric image,
the skin signals were removed by setting PA values to zero
within a range that starts from the beginning of the A-line to a
certain depth beneath the corresponding detected skin posi-
tion. Such a depth represented the skin thickness, which was
an empirical value varying with animals.

The comparison between in vivo MAP images before and
after skin signal removal is shown in Fig. 5. The span here
was 0.6 and the skin thickness was 0.2 mm. The detailed
vessel structure that is overshadowed by stronger signals from
the skin surface, as shown in Fig. 5�a�, is clearly seen in Fig.
5�b�. However, since the image was acquired from a flat scan,
degraded lateral resolution �resulting in vessel blurring� due to
the skin contour variation can be observed at the top and
bottom regions in Fig. 5�b�, as indicated by the arrows.

The auto-fit scan overcomes the blurring problem because
the ultrasonic focus is maintained on the subcutaneous vessel
layer within the entire field of view. The MAP images ac-
quired from a flat scan and from an auto-fit scan, respectively,
are compared in Fig. 6. In Fig. 6�a�, the 1-D detected skin
profile from the flat scan scan was overlaid onto the B-scan
image, where large skin contour variations were observed.
Figure 6�b� shows the B-scan image acquired by auto-fit scan
from the same cross-section as in Fig. 6�a�. Although the skin
contour in the volumetric image acquired from the auto-fit
scan is flat, it can be recovered based on the detected skin
profile from the flat scan. In Fig. 6�c�, good ultrasonic focus-
ing was achieved within the central region, whereas the top
left region �within the dashed box� was out of the ultrasonic
focus due to the changing skin contour. As a result, no vessel

1 mm

(a) (b)

1 mm

(a) (b)

Fig. 4 Detecting the surfaces of a brass ball using the automatic algo-
rithm in both �a� flat scan and �b� auto-fit scan.

(a) (b)

1 mm1 mm1 mm

Fig. 5 In vivo MAP images of subcutaneous microvasculature in a
Sprague-Dawley rat �a� before and �b� after the skin signal removal.
March/April 2009 � Vol. 14�2�4
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tructure could be observed within the dashed box due to
egraded lateral resolution. In comparison, good ultrasonic
ocusing was achieved within the area that was previously out
f focus in the auto-scan, and a clear microvascular structure
as evident �Fig. 6�d��. Such an image quality improvement
arrants the accuracy of further study based on the anatomi-

al structure of the imaged vessel network.
A direct application of the auto-fit scan can be found in the

maging of subcutaneous tumor angiogenesis where large
ariations in skin contour exist. The vasculature of a subcuta-
eously inoculated tumor is shown in Fig. 7. The elevation of
he skin bump around the tumor region was 1.9 mm, which
as much larger than the ultrasonic focal zone �0.3 mm�.
sing the auto-fit scan, the ultrasonic transducer successfully

ollowed the skin contour and, as a result, the vessel structure
ithin both the tumor and the neighboring regions were both

learly resolved regardless of the large variations in vertical
levations. Such a capability to resolve tumor vasculature in
ivo provides the foundation to extract information such as

(c) (d)

(a) (b)
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ig. 6 Comparison of images acquired from flat scan and auto-fit
can: �a� B-scan image from the flat scan overlaid with the smoothed
stimation of its skin profile at the location marked by the dashed line
n �c�, �b� B-scan image from the auto-fit scan overlaid with the
moothed estimation of its skin profile at the same location as marked
n �c�, �c� MAP image from the flat scan, and �d� MAP image from the
uto-fit scan.

1 mm1 mm1 mm
1
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ig. 7 MAP image of vascular network in a subcutaneous tumor ac-
uired from auto-fit scan. The clouds labeled as 1 and 2 in the image
ere found to be subcutaneous hemorrhages.
ournal of Biomedical Optics 024050-
microvessel density23 and vessel branching24 for further stud-
ies of cancer biology.

Since PAM is a new technology with unique features in its
B-scan image as discussed above, established image process-
ing technologies cannot be directly applied to PAM images.
Although many edge detection algorithms have been devel-
oped, they rely on the change of grayscale values �or their
higher orders of derivatives� and generally require a closed
object boundary. Moreover, most of the algorithms need prior
knowledge of the image content and human inputs either to
start or stop the computation. In our algorithm, once the only
two parameters, N and the span, are specified, no knowledge
of the skin and vasculature and no human interventions are
necessary. Moreover, it works well with open object boundary
in cross-sectional images from PAM and, presumably, images
from optical coherence tomography.

We plan to further improve the skin profile detection by
either achieving real-time skin profile estimation or reducing
the time required for the first-round flat scan. First, because
detection of the skin profile used in our experiments was con-
ducted offline, a complete flat scan was required before the
auto-fit scan. Hence, the second-round auto-fit scan might
face a different skin contour due to animal motion in in vivo
experiments. To solve this, an ultrasonic pulse echo measure-
ment can be employed at each horizontal location to detect the
location of the skin surface and adjust the vertical position of
the ultrasonic transducer in real time. The ultrasonic measure-
ment can be performed between two laser pulses so that the
total data acquisition time is not prolonged. However, this
method requires modifying the imaging system to switch be-
tween ultrasonic and photoacoustic detections although these
two detections share the same ultrasonic detector.

Second, the data acquisition time in the first-round flat
scan can be reduced by minimizing the number of scanning
steps and enlarging the scanning step size. The same skin
profile detection algorithm can then be applied to acquire a
sparse skin profile that can be further interpolated to match
the desired number of scanning steps. Moreover, the compu-
tation time for the application of our algorithm will also be
reduced as there are fewer A-lines to be processed and
smoothed.

4 Summary
In summary, we have developed an algorithm to automatically
detect the skin profile in volumetric PAM data. Such an algo-
rithm does not require human involvement and has been dem-
onstrated to be essential in calculating MAP images. Further-
more, an auto-fit scan is developed for PAM to achieve good
ultrasonic focusing of the subcutaneous vasculature when the
variation of the skin contour is beyond the ultrasonic focal
zone. This algorithm may also find applications in other im-
aging techniques such as ultrasonic imaging and optical co-
herence tomography, where depth-resolved A-lines are
acquired.
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