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Abstract: A real-time 512-element photoacoustic tomography system for 

small animal imaging using a ring ultrasound array has been developed. The 

system, based upon a 5 MHz transducer array formed along a 50 mm 

circular aperture, achieves sub-200 micron lateral resolution over a 2 cm 

disk-shaped region. Corresponding elevation resolutions of 0.6 to 2.5 mm 

over the central volume enable depth-resolved 3D tomographic imaging 

with linear translation. Using 8:1 electronic multiplexing, imaging at up to 8 

frame/sec is demonstrated for both dynamic phantoms and in vivo mouse 

and brain samples. The real-time, full 2D tomographic capability of the 

system paves the way for functional photoacoustic tomographic imaging 

studies in small animals with sub-second time frame. 
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1. Introduction 

In recent years, biomedical photoacoustic imaging has demonstrated great potential for 

investigation of skin disorders [1,2], rheumatoid arthritis [3], brain vasculature [4,5], and 

cancerous lesions in the breast [6] and prostate [7]. The reliance upon ultrasonic signals for 

image formation not only confers a high penetration capability of up to 3 cm, but also enables 

the use of commercial ultrasound detection technologies for achieving real-time functional 

imaging. Many dynamic functional and in vivo studies require acquisition rates on the order of 

seconds to milliseconds such as monitoring the uptake of targeted contrast agents or 

investigating physiological responses to external stimuli as in functional brain imaging. 

To date only a few real-time systems have been reported, all based upon linear arrays 

predominantly optimized for clinical imaging [8–12] although a few have been used for small 

animal experiments [2,13,14]. Due to the limited aperture of linear array transducers, features 

with high aspect ratio or orientations oblique to the transducer surface suffer distortion and 

azimuthal resolution is reduced. Tomographic systems, by offering complete angular views of 

the imaging target, overcome these limitations and provide both high resolution and accurate 

feature definition regardless of shape or location. Because of the large measurement surface, 

however, tomographic imaging has traditionally been demonstrated using mechanically 

scanned single or linear transducers. The long imaging times (minutes to hours) for these 

approaches have restricted applications to static or slowly varying phenomena. 

We previously reported a 128-channel photoacoustic imaging system optimized for small 

animal imaging [15]. The system featured a curved ultrasound array that captured a 90-degree 

field of view in less than one second, but required sample rotation for complete tomographic 

imaging. The increased scan time (15-30 seconds) and registration errors associated with the 

mechanical rotation prevented imaging of short-duration physiological responses and 

introduced some distortion of the high-resolution (< 200 µm) images. 

In this paper, we present results from a second-generation system employing a 512-

element full-ring configuration [16]. By eliminating the speed and registration issues due to 

mechanical scanning and increasing the parallel receiver electronics, the system achieves, for 

the first time, a complete two-dimensional tomographic imaging in less than one second. The 

organization of this paper is as follows. We first present details of the system design and 

detailed characterization results of the system performance in terms of resolution and imaging 

volume. The capabilities of the system are then explored through ex vivo and in vivo imaging 

of mouse brain vasculature at up to 8 tomographic frames/second. 
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2. Photoacoustic imaging system 

Figure 1 depicts the experimental set-up and architecture of our 512-element, 360-degree 

photoacoustic tomography imaging system. A Ti:Sapphire (Symphotics TII, LS-2134) laser 

optically pumped with a Q-switched Nd:YAG laser (Symphotics-TII, LS-2122) delivers 8-12 

ns pulses at 15 Hz with wavelength tunable from 700 to 950 nm. The beam is expanded with a 

Galilean telescope assembly and subsequently diverged with either a plano-concave lens or 

homogenized by a circular profile engineered diffuser (ED1-S20, ThorLabs, Newton, NJ). 

The laser beam is positioned at the center of the transducer and strikes the stage orthogonal to 

the imaging plane of the transducer for maximum uniformity. 

The transducer array, custom manufactured by Imasonic (Besancon, France), consists of 

512 elements in a curved aperture such that they form a complete circle (i.e. 360 degrees), 

with a radius of curvature equal to 25 millimeters. The transducer array has a center frequency 

of 5 MHz and a bandwidth greater than 80%. The 1-3-piezocomposite elements are spaced 

with a lateral pitch of 0.3 mm; the maximum nearest neighbor acoustic crosstalk was 

measured to be −45 dB. Each element is directly shaped in elevation to produce a mechanical 

focal depth of 19 mm without the loss and acoustic aberrations of external lenses. The 

combined focal points of all elements form a ring around the central imaging region with a 

diameter of 1.2 cm. Within the elevation focal plane, phased array electronic scanning is used 

for focusing. Measurements of the sensitivity of individual elements with both pulse-echo 

ultrasound from a central stainless steel post and the photoacoustic signal from the transducer 

surface indicate a sensitivity variation of up to 12 dB across the entire array. 

Due to the large number of channels, we have constructed our own front-end electronics 

and data acquisition system to obtain radio frequency (RF) data for tomographic image 

reconstruction. The laser Q-switch provides the master timing and triggers the acquisition 

system. Front-end receiver electronics reside on sixty-four boards, each serving eight 

channels. Further details of the board designs have been detailed in [15]. Upon absorption of 

the laser pulse, 512 dedicated low-noise, 20dB gain preamplifiers amplify the transient 

photoacoustic waves measured around the sample. To reduce the number of acquisition 

channels, multiplexers on each receiver board select one of eight channels and forward the 

outputs to low-noise second-stage amplifiers. The gain of the second stage amplifiers can be 

electronically controlled from 20 dB to 100 dB. The 64 output signals are filtered by 15 MHz 

anti-aliasing bandpass filters and sampled by parallel 40 MHz A/D channels with 10 bits 

precision. After each 64-channel acquisition, the computer outputs a pulse to advance the 

multiplexer setting and prepare for the next capture on the subsequent laser trigger. The data 

from each acquisition is DMA-transferred to RAM and accumulated over the experimental 

duration to maximize the imaging speed. The acquisition computer subsequently transfers the 

measurement data to disk for post-processing. 

With the 8:1 multiplexing, eight laser firings are required to generate a complete 512-

element capture. Data setup and transfer for results of a single acquisition can be performed at 

up to 8 Hz, leading to a maximum full-capture rate of 1 frame/second. As each tomographic 

image involves data over 8 distinct time instants, all frames actually reflect a time-averaged 

response over the acquisitions required for a complete data set. Using “sliding-window” data 

accumulation, where signals from each element with the nearest acquired time instant are 

retained for imaging, continuously updated time-averaged images can be achieved for each 

acquisition, leading to a higher rate of 8 frames/sec. 
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Fig. 1. Diagram (a) and photograph (b) of ring photoacoustic system. Photograph (c) of mouse 

within 50 mm transducer aperture. 

3. Performance characterization 

Resolution and the three-dimensional field-of-view are critical performance metrics for small-

animal tomographic imaging systems. In order to assess the conformance to design, system 

characteristics were evaluated using both theoretical models and computer simulations and 

compared with experimental measurements. Simulation of the photoacoustic response was 

performed using the Field II ultrasound simulator [17]. As described in more detail in [18], the 

transducer element responses were calculated for thin cylindrical collections of spherical 

sources (emulating a 1.5mm long, 80 micron diameter source with long direction in 

elevation). The computed signals were then processed with a backprojection algorithm [19]. 

Due to the symmetry of the transducer, sources were located along a single radial line from 

the center to a radius of 18 mm. The resolution was calculated from the full-width half-

maximum widths in the radial and transverse directions. In addition, the peak value of the 

imaged source was plotted for determination of the radial sensitivity arising from the fixed 

elevation focus. 

Xu and Wang [20] derived the theoretical resolution for tomographic photoacoustic 

systems without acoustic focusing. The results for a cylindrical measurement surface predict a 

nearly constant radial resolution with a linearly increasing transverse resolution ranging from 

zero at the center to the width of each transducer element at the periphery. As the 

contributions from individual elements are weighted by the location of the source relative to 

the elevation focus, the resolution can degrade more rapidly than for unfocused systems due to 

fewer effective numbers of elements contributing to the image. In the calculations, both the 

spatial and bandwidth contributions to the resolution were considered. 

#109657 - $15.00 USD Received 3 Apr 2009; revised 17 May 2009; accepted 18 May 2009; published 8 Jun 2009

(C) 2009 OSA 22 June 2009 / Vol. 17,  No. 13 / OPTICS EXPRESS  10492



Experimentally, the resolution and spatial response was evaluated using a short section (< 

2 mm) of 80-micron diameter black thread mounted on a plastic fiber. The thread was scanned 

radially in 0.5 mm increments. To minimize illumination variations, a diffuser was used to 

homogenize the light to a diameter larger than the ring. Figure 2 (a) shows the measured and 

calculated resolutions to a radius of 18 mm. The radial resolutions agree well with a nearly 

constant value throughout the range of distances. The lateral resolution follows the theoretical 

curve well to a radius of about 10-12 mm beyond which non-linear decreases in resolution are 

observed due to the defocusing of more distant elements. 

Figure 2 (b) compares the measured and simulated spatial response along a radial line. The 

response peaks at the radial distance corresponding to the fixed elevation focus and drops by 

less than 3 dB throughout the central region. Defining the imaging field-of-view by a response 

within 6 dB of the peak, the system provides an imaging domain of approximately 2 cm 

diameter. Within this region, the resolution is better than 300 microns. To provide a more 

realistic view of the three-dimensional response surface, Fig. 2(c) depicts the simulated 

response through a cross-sectional cut dividing the transducer into two identical halves. The 

plot illustrates that the imaging “plane” consists of a disk of 2 cm diameter with thickness 

ranging from 600 microns at the elevation focus to 2 mm at the center. This slice thickness 

and diameter enables tomography for an entire small animal brain or anatomical region with 

selectivity to discriminate depth-dependent vascularization. 

 

Fig. 2. (a) Measured and theoretical resolution versus distance from the center of the 

transducer. (b) Measured and simulated response vs. distance from the transducer center. (c) 

Simulated cross-sectional view of spatial response with location for a radial cut dividing the 

transducer into two halves. The locations of the transducer elements capping the ends of the 

region are indicated for reference. 

4. Mouse/rat brain imaging 

The brains of mice and rats were imaged to demonstrate the ability of the system to resolve 

vascular features and provide depth-resolved feature definition. Ex vivo experiments were 
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performed with freshly sacrificed 50 g white rats with intact skull and skin (hair removed). 

The rats were acquired from the University of Connecticut Office of Animal Research and 

were euthanized in accordance with procedures of the University Institutional Animal Care 

and Use Committee as well as the National Institutes of Health. The rats were mounted in a 

1.5” diameter PVC pipe with the skull level with the imaging plane. Full tomographic images 

were obtained at depths spanning over 6 mm with a 100-micron spacing. The incident fluence 

levels were maintained below 15 mJ/cm
2
 with a wavelength of 750 nm. 

Figure 3 presents images at depths corresponding to approximately 1 and 5 mm below the 

top of the skull along with open-skull photograph from dorsal and basal surfaces. Image 

reconstruction was performed using a backprojection algorithm after Wiener deconvolution of 

the transducer impulse response from the raw data using the measured noise spectrum at 60 

dB electronic gain. At the dorsal plane, the superior sagittal and cerebral veins including 

branches are visible in addition to the top surfaces of the eyes. At the deeper cross-section, 

basalar veins and the middle cerebral artery can be observed along with ringed features near 

the brain stalk not visible in the photographs. 

 

Fig. 3. Ex vivo images of rat brain at two depths spanning 4 mm. Image (a) and photograph (b) 

of surface vascularization. (c) Image at 4 mm below (a). Note the larger size of the brain at this 

level and the orbits of the eyes. (d) Photograph of basal surface annotated with features visible 

in photoacoustic image (c). 

Figure 4 presents sectional images of an ex vivo 20 g white CD-1 mouse brain vasculature 

over a depth range of 4.5 mm. The cross-sections illustrate the capability of the system to 

provide volumetric imaging with an elevational resolution of 0.6 to 2 mm as illustrated by the 

presence of the largest vessels in about two layers. 
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Fig. 4. Cross-sectional images of mouse brain vasculature at various depths. 

In vivo imaging performance was evaluated using 4-6 week old female, CD-1 mice with 

masses of approximately 20 g. All experiments were carried out under a protocol approved by 

the University of Connecticut Institutional Animal Care and Use Committee. The mice were 

mounted upright in white PVC tubing with the skull level to the lateral imaging planes. An 

isoflurane (2%) gas system (VetEquip, Pleasonton, CA) delivered anesthesia through a 

custom miniaturized polyethylene mask to fit within the 44 mm aperture of the transducer. A 

thin heating pad, wrapped around the PVC tube, maintained a temperature of 37 °C and the 

blood oxygenation was monitored with a pulse oximeter. Because the imaging plane is 25 mm 

above the bottom plate of the transducer, a thin transparent plastic bag was mounted on the 

base and the mouse inserted into the transducer chamber under the bag with a thin layer of 

ultrasonic gel to provide acoustic coupling. The bag was fitted with sufficient slack to enable 

imaging at planes over a 1 cm range in depth. Prior to imaging, hair was removed using a 

depilitating cream. 

Figure 5 presents photoacoustic images obtained from two mice with different head 

positioning. Because the imaging plane is a thin cylindrical volume, the observed feature 

definition in the brain can vary significantly with the orientation of the skull, particularly for 

cerebellum (steep slope) and anterior hemispheres (gentle slope). For a single cross-sectional 

image, tilting of the head can emphasize vasculature in the hemispheres (a) or cerebellum (b). 

Positioning is thus critical for real-time monitoring but less important for quasi-static 

volumetric imaging the animal where the animal is translated in the elevation direction. 

Interference from the breathing mask introduced reflections of the photoacoustic signals and 

limited the aperture angle to approximately 240 degrees. In combination with the extra loss 

from the plastic coupling bag, the mounting limitations reduced the visible features to the 

largest vessels as evident from comparison of Fig. 3 and Fig. 5. With further improvements in 

the setup imaging of smaller second order branches should be attainable. 
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Fig. 5. In vivo photoacoustic images of brain vasculature for two mice with (a) dorsal and (b) 

ventral head tilt emphasizing hemispherical (a) and cerebellar vasculature (b). 

5. Real-time imaging 

With a capture rate of 8 frames/sec for a 64-channel subset and 1 frame/sec with a complete 

512-element view, real-time tomographic imaging was demonstrated on both phantoms and 

mice in vivo. Figure 6 depicts frames from a 10-second sequence of dynamic ink flow through 

a 1 mm diameter polyethylene tube using a manual syringe push (movie online). To avoid 

partial view effects and maximize temporal resolution, a sliding window acquisition was 

adopted in which element data from the nearest (or equal) time instant were used for image 

formation. The images clearly track the flow through the tubing over the course of 

approximately 4 seconds with high spatial and temporal resolution possible only with 

tomographic methods. 
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Fig. 6. Photoacoustic images of dynamic ink flow through a 1 mm diameter tube (Media 1). 

As an illustration of the system performance at the borders of the imaging region, Fig. 7 

depicts frames of an ink flow sequence through 580 micron (inner diameter) tubing over a 

three second interval. For this experiment, the two inner rings were filled with ink while ink 

was manually injected around the peripheral tube. Excellent definition of the tubing was 

maintained over the entire region of approximately 2 cm diameter. Results of other real-time 

measurements using this system and processed with limited-data algorithms for improved 

time resolution can be found in [21]. 

 

Fig. 7. Images of dynamic ink flow through 580 micron inner diameter tubing over a three 

second interval. The inner two tubes were held constant while ink was injected through the 

outer ring. 

One important application of real-time systems is the potential for dynamic spectroscopic 

investigations that could monitor changes in oxygenation status both spatially and temporally. 
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As a demonstration of the principle, the wavelength of the laser was manually scanned from 

approximately 700 nm to 900 nm during a 30-second in vivo imaging session with one of the 

mice shown in Section 4. Figure 8 depicts individual frames from the real-time sequence. The 

higher intensity for the 850 nm images is due to the increased penetration and higher 

absorption of the predominantly oxygenated hemoglobin. This experiment demonstrated the 

capability to perform wide-range, in vivo spectroscopic studies with sub-minute scan times. 

 

Fig. 8. Time-resolved imaging of mouse brain vasculature with fast wavelength scanning. The 

wavelength was swept from 710 nm to 900 nm over 30 seconds. 

6. Discussion and conclusion 

The system presented herein is the first capable of real-time tomographic photoacoustic 

imaging. The optimization of geometry and resolution for imaging of small animals provides 

a powerful platform for development and investigation of techniques for dynamic functional 

imaging. Speed constraints have thus far limited such studies to either quasi-static evaluation 

of responses to whisker stimulation [22], induction of hypo- and hyper-oxia [22], or uptake of 

contrast agents [23] or low spatial-resolution monitoring of oxygenation status [24]. Due to 

the 8:1 multiplexing, tomographic images from the system present an amalgamated view over 

a one-second interval. When combined with new algorithmic approaches for improving image 

quality with limited data sets, however, real-time sequences with temporal resolutions of less 

than 150 milliseconds have been achieved [21]. 

In conclusion, a 512-element tomographic system based upon a curved transducer array 

has been developed. With a resolution of better than 200 microns throughout an imaging 

volume of approximately 2 cm by 0.6 to 2.5 mm thick, the system provides complete 2D 

tomographic depth-resolved sections for three-dimensional small animal imaging. A 64-

channel data acquisition, coupled with 8:1 multiplexing, enables real-time imaging with frame 

rates of 1 (full resolution) to 8 (partial view) frames/sec. The imaging performance was 

demonstrated through real-time imaging of dynamic fluid flow in phantoms and in vivo mouse 

brain vasculature imaging. The fast imaging capability offers the potential for complete two-

dimensional in vivo small animal functional photoacoustic imaging studies at real-time rates. 
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