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Abstract—In this paper, we present new adaptive and robust
methods of reconstruction (ARMOR) for thermoacoustic tomog-
raphy (TAT), and study their performances for breast cancer detec-
tion. TAT is an emerging medical imaging technique that combines
the merits of high contrast due to electromagnetic or laser stim-
ulation and high resolution offered by thermal acoustic imaging.
The current image reconstruction methods used for TAT, such as
the delay-and-sum (DAS) approach, are data-independent and suf-
fer from low-resolution, high sidelobe levels, and poor interference
rejection capabilities. The data-adaptive ARMOR can have much
better resolution and much better interference rejection capabili-
ties than their data-independent counterparts. By allowing certain
uncertainties, ARMOR can be used to mitigate the amplitude and
phase distortion problems encountered in TAT. The excellent per-
formance of ARMOR is demonstrated using both simulated and
experimentally measured data.

Index Terms—Array signal processing, biomedical acoustic
imaging, robustness.

1. INTRODUCTION

HERMOACOUSTIC tomography (TAT), the earliest in-
T vestigation of which dates back to the 1980s [1], has re-
cently attracted much interest with its great promise in a wide
span of biomedical applications (see, e.g., [2]-[4]). Its physical
basis lies in the contrast of the radiation absorption rate among
different biological tissues. Due to the thermoacoustic effect,
when a short electromagnetic pulse (e.g., microwave or laser)
is absorbed by the tissue, the heating results in expansion that
generates acoustic signals. In TAT, an image of the tissue ab-
sorption properties is reconstructed from the recorded thermoa-
coustic signals. Such an image may reveal the physiological and
pathological status of the tissue, which can be useful in many
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applications including breast cancer detection [5]. Compared
with microwave imaging and ultrasound imaging, TAT com-
bines their merits and possesses both fine imaging resolution
and good spatial contrast properties [4].

Developing accurate and robust image reconstruction meth-
ods is one of the key challenges encountered in TAT. Various
image reconstruction algorithms have been developed for TAT.
By using Radon transformation on the TAT data function, re-
flectivity tomography reconstruction algorithms can be used for
TAT image reconstruction [6]. Exact inverse solutions have been
found for different scanning geometries in both the frequency
domain [7], [8] and the time domain [9], [10]. Approximate
reconstruction algorithms, such as the time-domain delay-and-
sum (DAS) beamforming method [11], [12] and the optimal
statistical approach [13], have also been proposed. However,
a common assumption of these existing methods is that the
surrounding tissue is acoustically homogeneous. This approx-
imation is inadequate in many medical imaging applications.
According to previous studies, the sound speed in human fe-
male breast varies widely from 1430 to 1570 m/s around the
commonly assumed speed of 1510 m/s [14], [15]. The heteroge-
neous acoustic properties of biological tissues cause amplitude
and phase distortions in the recorded acoustic signals, which
can result in significant degradation in imaging quality [16].

In ultrasound tomography (UT), wavefront distortion due to
heterogeneity of biological tissue has been studied extensively.
Various wavefront correction methods have been proposed [17].
However, they are not highly effective at correcting severe am-
plitude distortions [18], and they usually involve complicated
procedures. The problem in TAT is somewhat different from that
in UT. In the breast UT, the amplitude distortion caused by re-
fraction is more problematic than the phase distortion induced by
acoustic speed variation. In TAT, however, even for the biologi-
cal tissue, such as the breast tissue, with a relatively weak hetero-
geneity, phase distortion dominates amplitude distortion [16].
These unique features suggest that new adaptive and robust
imaging techniques should be designed especially for TAT.

Time-domain approximate reconstruction algorithms, such
as the DAS (weighted or unweighted) type of data-independent
approaches have various applications in medical imaging. They
need little prior information on the tissue for image reconstruc-
tion and can be fast and simple to implement to process the
wideband acoustic signals. Although not based on the exact
solution, they provide similar image qualities to those of the ex-
act reconstruction algorithms. However, these data-independent
methods tend to suffer from poor resolution and high-sidelobe-
level problems. Data-adaptive approaches, such as the recently
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introduced robust Capon beamforming (RCB) method [19], can
have much better resolution and much better interference rejec-
tion capability than their data-independent counterparts.

We propose adaptive and robust methods of reconstruction
(ARMOR) based on RCB for TAT. ARMOR can be used to
mitigate the amplitude and phase distortion problems in TAT
by allowing certain uncertainties. Specifically, in the first step
of ARMOR, RCB is used for waveform estimation by treating
the amplitude distortion with an uncertainty parameter. In the
second step of ARMOR, a simple, yet effective, peak searching
method is used for phase distortion correction. Compared with
other energy- or amplitude-based response intensity estimation
methods, peak searching can be used to improve image quality
with little additional computational costs. Moreover, since the
acoustic pulse is usually bipolar: a positive peak, corresponding
to the compression pulse, and a negative peak, corresponding
to the rarefaction pulse [11], we can further enhance the image
contrast in TAT by using the peak-to-peak difference as the
response intensity for a focal point. We will demonstrate the
excellent performance of ARMOR by using both data simulated
on a 2-D breast model and data experimentally measured from
mastectomy specimens.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem of interest. Sections III-V
describe the first, second, and third steps of ARMOR, respec-
tively. Examples based on simulated and real-world experimen-
tal data are presented in Section VI. Finally, Section VII provides
the conclusions.

II. PROBLEM FORMULATION

Consider a TAT imaging system, as shown in Fig. 1(a). A
stimulating electromagnetic (laser or microwave) pulse is ab-
sorbed by the biological tissue under testing, which causes a
sudden heat change (of the order of 10~% °C [20]). Due to the
thermoacoustic effect, an acoustic pulse is generated that can
be recorded by an ultrasonic transducer array. The transducer
array may be a real aperture array or a synthetic aperture array
formed by rotating a sensor around the tissue and recording the
acoustic waves at different locations. We assume that the num-
ber of transducers in the array (or in the synthetic aperture array
case, the number of transducer data acquisition locations) is M.
Each transducer is assumed to be omnidirectional; mutual cou-
plings among the transducers are not considered in our model
as they can be tolerated by our robust algorithms to a certain
extent. The recorded acoustic signals are sufficiently sampled
and digitized and a typical recorded pulse is shown in Fig. 1(b)
(based on the data measured on the breast specimen II described
in Section VI).

The data model for the sampled and digitized acoustic signal
recorded by the mth transducer is given by:

Ty (n) =8, (n) +én(n), m=1,..., M. (1)

where 7 is the discrete time index, starting from ¢, after the ex-
citation pulse. The scalar s,, (n) denotes the signal component,
which corresponds to the acoustic pulse generated at a focal
point, and €, (n) is the residual term, which includes unmod-
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Fig. 1. (a) A schematic of a 2-D synthetic-aperture-based TAT scanning sys-
tem. (b) A typical acoustic pulse recorded by a transducer (for data measured
from breast specimen II).

eled noise and interference (caused by other sources within the
tissue).

The goal of ARMOR is to reconstruct an image of thermoa-
coustic response intensity I(r), which is directly related to the
absorption property of the tissue, from the recorded data set
{z;, (n)}. Herein, the (2-D or 3-D) vector r denotes the focal
point location coordinate. To form an image, we scan the focal
point location r to cover the entire cross section of the tissue
(the transducers can acquire signals at different heights; for each
height, a 2-D cross-sectional image can be reconstructed and a
3-D image can be formed from the 2-D images). We allow cer-
tain uncertainties in ARMOR to deal with amplitude and phase
distortions caused by the background heterogeneity.

The discrete arrival time of the pulse (for the mth transducer)
can be determined approximately as

b (1) = { + ”r_r’"J . @)

1o
At’UO

At

We will omit the dependence of the arrival time ¢, (r) on r
hereafter for notational simplicity. Here, At is the sampling
interval, and the 3-D vector r,,, denotes the location of the mth
transducer. The sound speed vy is chosen to be the average
sound speed of the biological tissue under interrogation. The
notation ||x|| denotes the Euclidean norm of x, and |y| stands
for rounding to the greatest integer less than y. The second term
in (2) represents the time-of-flight between the focal point and
the mth transducer.

The signal components {s,, (n)}}_, are approximately
scaled and shifted versions of a nominal waveform s(t) at the
source

exp (—aflr —ry|)
||I'—I‘,,,,,H

Sm (TL) ~ : s(n - tm) (3)
where « is the attenuation coefficient in Nepers/m. In TAT,
the major frequency components of the acoustic signals take a
relatively narrow band, and are usually lower than those in UT
[16]. Hence, we can approximate « as a frequency-independent
constant.

We preprocess the data to time delay all the signals from the
focal point r and compensate for the loss in amplitude due to
propagation decay. Let y,, (n) denote the signal after prepro-
cessing to backpropagate the detected signal to the source

Ym(n) =exp (aflr — vy ) - v — vl - zm (0 +tn).  (4)
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Then, the received vector data model can be written as

y(n) =aps(n) +e(n), n=-N,---,N (5)
where a is the corresponding steering vector, which is approxi-
mately equaltoa = [1,...,1]T, y(n) = [y1(n), ..., yu (n)]7,
e(n) represents the noise and interference term after preprocess-
ing, and ()T denotes the transpose. Here, we define the time
interval of interests for the signal y(¢) to be from —N to N,
which means that we only take N samples before and after the
approximate arrival time given in (2) for the focal point at r. The
value of NV should be chosen large enough so that the interval
from — N to N covers the expected signal duration in the region
of interest.

In reality, both the amplitude and the phase (or pulse arrival
time) of the acoustic pulse will be distorted. A major cause for
these distortions is the acoustically heterogeneous background.
Amplitude distortion is mainly due to the interferences caused
by multipath, which is inevitable in the heterogeneous medium:
refraction occurs due to acoustic speed mismatch across the tis-
sue interface; consequently, acoustic pulses arrived at the trans-
ducer will be via different routes and interfere with each other.
On the other hand, phase distortion is mainly caused by the
nonuniform sound speed. For example, in human female breast,
the sound speed can vary from 1430 to 1570 m/s; therefore,
the actual arrival time will fluctuate around the approximately
calculated time given in (2). Moreover, an inaccurate estimate
of ty (to is aligned with the focal point’s signal arrival time)
and the transducer calibration error may also contribute to the
phase distortion. Amplitude and phase distortion will blur the
image, raise the image background noise level, lower the values
of the object of interest, and, consequently, decrease the image
contrast [16].

We mitigate the effects of these distortions by allowing ag to
belong to an uncertainty set centered at a and by considering
the signal arriving within the interval from —N to V.

III. STEP I OF ARMOR: WAVEFORM ESTIMATION

The first step of ARMOR is to estimate the waveform of the
acoustic pulse generated by the focal point at location r, based
on the data model in (5). It will appear that we have neglected the
presence of phase distortion by using this data model in the first
step. However, by allowing a, to be uncertain, we can tolerate
some phase distortions as well. This approximation causes little
performance degradation to our robust algorithm.

Covariance-fitting-based RCB [21] is used to first estimate
the steering vector a,, and use the estimated a, to obtain an op-
timal beamformer weight vector for pulse waveform estimation.
By assuming that the true steering vector lies in the vicinity of
the nominal steering vector a, we consider the following opti-
mization problem [19]

max o> R - aQaOaOT >0,

subject to
02,2

lag — a|* <&, (6)
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where A = 0 means that the matrix A is positive semidefinite,
o? is the power of the signal of interest, and

- 1

R = INT1 Z y(n)y" (n) (N

n=-—N

is the sample covariance matrix. The second constraint in (6) is
a spherical uncertainty set; an elliptical uncertainty set can be
used instead, if a tighter constraint is desirable [21].

The parameter ¢ in (6) determines the size of the uncertainty
set and is a user parameter. To avoid the trivial solution of
ay = 0, we require that

e < |l ®)

It can be verified that the smaller the e, the higher the resolution
and the stronger the ability of RCB to suppress an interference
that is close to the signal of interest, and that the larger the e,
the more robust RCB will be to tolerate distortions and small-
sample-size problems caused by calculating R in (7) from a
finite number of data vectors or snapshots. When ¢ is close to
M, RCB will perform like DAS. To attain high resolution and
to effectively suppress interference, € should be made as small
as possible. On the other hand, the smaller the sample size [NV
or the larger the distortions, the larger should € be chosen [19].
Since the performance of RCB does not depend very critically
on the choice of ¢ (as long as it is set to be a “reasonable
value”) [21], such qualitative guidelines are usually sufficient
for making a choice of €. We will investigate the effect of € in
Section VI. In our examples in Section VI, we choose certain
reasonable initial values for €, and then make some adjustments
empirically based on image quality: making it smaller when the
resulting images have low resolution, or making it larger when
the image is distorted by interferences.

By using the Lagrange multiplier method, the solution to (6)
is given by [19]

a=a—[I+pR]'a 9)

where I is the identity matrix, and g > 0 is the correspond-
ing Lagrange multiplier that can be solved from the following
equation

1T+ pR)'a|” =< (10)

Consider the eigendecomposition on the sample covariance ma-
trix R

R =uru” (11)

where the columns of U are the eigenvectors of R and the
diagonal matrix I' consists of the corresponding eigenvalues
Y1 >y > -+ > . Letb = UT a, where b,,, denotes its mth
element. Then, (10) can be rewritten as

M

Lp)=>

m=1

|bm |2

[ LS 12
A+ o )? (12)

= E.

Note that £(u) is a monotonically decreasing function of 1, with
L£(0) > e by (8) and lim,, . £(1) = 0 < &, which means that
1 can be solved efficiently, say, by using the Newton’s method
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(see [19] for more details). After obtaining the value of p, the
estimate &, of the actual steering vector a, is determined by (9).

Observe that there is a “scaling ambiguity” in (6) by treating
both the signal power o and the steering vector a; as un-
knowns (see [19] and [21]). The ambiguity exists in the sense
that (02, ay) and (0% /c, ¢'/?ay) (for any constant ¢ > 0) yield
the same term o?agal . To eliminate this ambiguity, we scale
the solution &, to make its norm satisfy the following condition

l|a0]> = M. (13)

(Note that M = ||al|?.)

To obtain an estimate for the signal waveform s(n), we apply
a weight vector to the preprocessed signals {y(n)}"_ .. The
weight vector is determined by using the estimated steering
vector & in the weight vector expression of the standard Capon

beamformer (see, e.g., [19] and [21])

) [R+ %I}_ a

WRCB = : - . - (14
R+/%I} R[R+}LI} a

Note that (14) has a diagonal loading form, which allows the
sample covariance matrix to be rank-deficient. The beamformer
output can be written as

drep(n) = Whepy(n), n=-N,...,N  (15)

which is the waveform estimate for the acoustic pulse generated
at the focal point at location r.

RCB can provide a much better waveform estimate than the
conventional DAS but at a higher computational cost. For a
single focal point, RCB requires O(M?) flops, which mainly
come from the eigendecomposition of the sample covariance
matrix R [19]; DAS needs only O(M) flops. DAS can be used
as a fast image reconstruction method to provide initial imaging
results.

The weight vector used by DAS for waveform estimation is

Wpas = a (16)

and the estimated waveform is given by

M
§DAS(n)=WgASy(n)= Zym(n), HZ—N,...,N.

m=1
a7

IV. STEP II OF ARMOR: PEAK SEARCHING

Based on the estimated waveform obtained in Step I for the
focal point at location r, in Step IT of ARMOR, we will search
for the two peaks of the bipolar acoustic pulse generated by
the focal point. In a homogeneous background, where phase
distortion is absent, we can accurately calculate the arrival time
of the acoustic pulse generated by the focal point at location r by
using (2). However, this is never true in heterogeneous biological
tissues. It was reported in [16] that when the heterogeneity is
weak, such as in the breast tissue, amplitude distortion caused
by multipath is not severe. We can assume that the original
peak remains a peak in the waveform estimated from Step I of
ARMOR.
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The bipolar acoustic pulse has one peak positive and another
negative. We determine the positive and negative peak values as
follows:

Pt = 5(n)0 18

max {ner[naA%A] 3(n) } , (18)

P = min{ min §(n)0} , (19)
ne[-A,A]

where the searching range [—A, A] € [-N, N] is around the
calculated arrival time given by (2). Here A is a user parameter.
Since the peak searching is independent of the particular wave-
form estimation methods, we use §(n) to denote the waveform
estimated by either DAS or ARMOR.

The search range is determined by the difference between the
true arrival time ¢,, and the calculated arrival time t,,, based
on (2). This arrival time difference has been analyzed for breast
tissue by taking into account its relatively weak heterogeneity
acoustic property [16]. An expression for this difference is given
in [16] by

[v(r') = vo]

6777, (I‘,) - Em — by X
Vo

(20)
where 1’ is a point within the line connecting the focal point
at location r and the mth transducer at location r,,, and v(r’)
is the local sound speed. The higher order terms of [v(r') —
vo]/vo in (20) have been ignored. It is reasonable to assume
that v(r’) is Gaussian-distributed with mean vy and variance
o2. Consequently, the arrival time difference is also Gaussian-
distributed with zero-mean and variance o o< o2 /v}. If we
choose A = oy, and the duration of the acoustic pulse is 7, we
can find the two peaks of the pulse within the interval (—oy, o5 +
7) on the recorded signals with a high probability of 0.6826.
This analysis is consistent with the experimental measurements
in [22]. From our examples, we found that a symmetric range
[-A, A] around the estimated arrival time performs similarly
to the asymmetric range [—A, A + 7], and we use the former
since it is easy to handle in practice. Also, we can use similar
techniques as those in [22] to estimate o5 to find a good searching
range for Step II of ARMOR, and to estimate 7 for the energy-
type methods, as shown in our examples later.

There is a tradeoff in choosing the searching range. The larger
the searching range, the higher the probability we can find the
peaks of the acoustic pulse within the range. However, if the
range is chosen too large, the interferences may cause false
peaks, and as a consequence, we are more likely to find a false
peak. In our examples in Section VI, we choose the best search-
ing range empirically based on the estimated variance of the
arrival time difference &5.

V. STEP III o0F ARMOR: INTENSITY CALCULATION

After estimating the waveform generated by the focal point at
location r, we need to obtain the response intensity based on the
estimated waveform. For the same estimated waveform, differ-
ent approaches can be used to evaluate the focal point response
intensity. These approaches extract different information from
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the estimated waveform as the response intensity, and may be
useful to physicians in different ways.

There are two major types of response intensity measurement
approaches: amplitude-based and energy-based. The waveform
peak values obtained in Step II of ARMOR can be used for both
approaches.

Conventional DAS uses the amplitude-based measure for TAT
imaging [11], [12], with the corresponding response intensity
given by §(0), or equivalently

M
Ic =3(0) = Y yu(0) @1

m=1

T3]

where the subscript “¢” stands for “Conventional.”

The energy-based measure, such as the one used in [23],
calculates the response intensity as follows
2

M
Iey = 82(0) = | > ym(0) (22)

m=1
where the subscript “g;”” means “Energy-type 1.”
The entire pulse energy has also been used as an intensity
measure, such as in the monostatic and multistatic microwave
imaging for breast cancer detection [24], [25], and the intensity
is given by
M 2
y'ﬂl (n) Y

m=1

T T

Iy =Y &n)=>_

n=0 n=0

(23)

where the subscript “go” stands for “Energy-type 2.”
We can consider using the peak value as the response intensity
measure due to the bipolar nature of the response at the focal

point
I itk
’ { P,
where the subscript “p” stands for “Peak,” with P* and P~
defined in (18) and (19), respectively. Herein, we keep the sign
of the maximum amplitude since the sign of the peak may also
contain some information about the focal point.

Peak searching maximizes the output signal-to-noise ratio.
An intuitive explanation is that, given the fact that the acoustic
pulse is bipolar [11], if we assume that the residual term e(¢) is
stationary, or its power is uniform over time, then the signal-to-
noise ratio (SNR) is maximized at the (positive or negative) peak
of the acoustic pulse. As a comparison, the conventional DAS
(21) fixes the samples to be summed up at the calculated arrival
time. Due to phase distortions, the waveform at the calculated
time may be far from the peak value.

We can also employ peak-to-peak difference as the response
intensity for the focal point at location r

Ipp =P —P >0

if |Pt] > |P|
) (24)
otherwise

(25)

where the subscript “pp” denotes the “peak-to-peak difference.”
Peak-to-peak difference has higher imaging contrast than peak
value measure: the peak-to-peak difference of the bipolar pulse
is approximately twice the absolute peak value, which means
that the output signal power of the former is four times of the
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Fig. 2. 2-D breast model in an z—y coordinate system, with a 2-mm-diameter
tumor present. (a) Model for electromagnetic simulation. (b) Model for acoustic
simulation.

latter; yet, the noise power of the former may be only twice
that of the latter. Therefore, the output SNR may be doubled
by using the peak-to-peak difference rather than the peak value.
Both peak-value and peak-to-peak difference measures belong
to the amplitude-based measures.

VI. NUMERICAL AND EXPERIMENTAL EXAMPLES

We demonstrate the performance of ARMOR using both nu-
merically simulated and experimentally measured TAT data.
The ARMOR images are compared with the DAS images.

A. Numerical Examples

We consider a 2-D breast model, as shown in Fig. 2. The 2-D
breast model includes 2-mm thick skin, chest wall, as well as
randomly distributed fatty breast tissues and glandular tissues.
The cross section of the breast model is a half-circle witha 10 cm
diameter. In the first numerical example, a 2-mm-diameter tumor
is located at 2.2 cm below the skin (at x = 7.0 cm, y = 6.0 cm).
Fig. 2 shows the shape, dielectric properties, and sound speed
variations of the breast model, as well as the tumor size and
location for the first example. In the second numerical example,
one large tumor (1 cm in diameter) is located at x = 12 cm,
y = 15 cm. Other properties of the breast model for the second
example are the same as those for the first example.

To reduce the reflections from the skin, the breast model
is immersed in a lossless liquid with permittivity similar to
that of the breast fatty tissue. Seventeen transducers (assumed
omnidirectional) are located on a half-circle 10 mm away from
the skin, with uniform spacing, to form a real aperture array.

The dielectric properties of the breast tissues are assumed to
be Gaussian random variables with variations of +10% around
their nominal values. This variation represents the upper bound
reported in the literature. The nominal values are chosen to be
typical of those reported in the literature [S], [26], which is
given in Table I [24]. The dielectric constants of glandular tis-
sues are between €, = 11 and e, = 15. The dispersive properties
of the fatty breast tissue and those of the tumor are also consid-
ered in the model. The randomly distributed breast fatty tissues
and glandular tissues with variable dielectric properties are rep-
resentative of the nonhomogeneity of the breast of an actual
patient.
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TABLE I
ACRONYMS
ART Adaptive and Robust Methods Of Reconstruction
DAS Delay-And-Sum
FDTD | Finite Difference Time Domain
PML Perfectly matched layer
RCB Robust Capon Beamforming
SNR Signal-to-Noise Ratio
SAR Specific Absorption
TAT Thermoacoustic Tompgraphy
uUT Ultra-sound Tomography
C Conventional
El Energy-type 1
E2 Energy-type 2
p Peak
PP Peak-to-Peak difference

Following the report that the breast tissues have a weak
acoustic heterogeneity [16], we model the sound speed within
the breast as a Gaussian random variable with variation +=5%
around the assumed average sound speed of 1500 m/s. Since
the attenuation coefficient « in (3) is small for breast tissue
(0.75 dB/(MHz-cm)) [15] and the acoustic signals are below
2 MHz, we neglect the exponential attenuation in acoustic wave
propagation. Also, since the acoustic pressure field generated
by the thermoacoustic effect is usually small [20], we do not
consider the nonlinear acoustic effects. The probing microwave
pulse used here is a modulated rectangular pulse with a mod-
ulating frequency of 800 MHz. The duration of the pulse is
1 ps. More details about the thermal acoustic simulations are
given in the Appendix. In the following, all the images are dis-
played on a linear scale, and we will name the imaging methods
by their waveform estimation method followed by the intensity
calculation approach, such as “DAS-C.”

Note that the skin also absorbs microwave energy and gen-
erates acoustic signals. The skin response is much stronger
than that of the tumor, since the skin has a much larger area
than the tumor and the skin is closer to the acoustic sensors.
So, before applying the aforementioned preprocessing steps
and ARMOR, we remove the strong skin response using tech-
niques similar to those in [24]. A calibration signal is obtained
as the average of the recorded signals containing similar skin
response. Then, the calibration signal is subtracted out from
all recorded signals to remove the skin response as much as
possible.

The searching range is chosen by the guidelines presented in
Section IV. To obtain a general profile of the arrival time dif-
ference caused by the phase distortion, we use a simple method
similar to the one used in [27]. First, the cross-correlation func-
tions for all the signals recorded by the two adjacent transducers
are obtained. The peak value of the cross-correlation function
is used to estimate the arrival time delay between the signals
recorded by the adjacent transducers. Second, these arrival time
delays are fitted using a fourth-order polynomial curve, which
is dominated by the arrival time delays due to the path length
differences in the absent of phase distortions. The fourth-order
polynomial is used since the delay caused by the path length
difference should vary smoothly [27]. Fig. 3(a) shows the esti-
mated arrival time delay and the delay based on curve fitting.
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Fig. 3. (a) Comparison between the estimated and fitted arrival time delays,
for the simulated breast model with one tumor (the curves for the two-tumor
case are similar). Histograms of delay differences. (b) Simulated breast model
with one tumor. (c) Breast specimen I. (d) Breast specimen II.

Third, the delay difference between the estimated arrival time
delay and the fitted delay, or the fitting error, is treated as the
arrival time distortion for the transducers. The standard devia-
tion of the delay difference is used to estimate o5. Although the
accuracy of the cross-correlation method is limited due to false
peaks and jitter problems, it is sufficient to obtain a qualitative
profile for o;.

Fig. 3 gives the histogram of the delay difference for all the
cases that we considered herein. For the simulated example,
the standard deviation of the delay difference is 4.5, which
indicates a weak phase distortion in the breast model. We set
an initial value for A, based on the estimated &5, and adjust
the length of the searching range to achieve the best imaging
result.

To estimate the pulse duration 7 (used in DAS-E2 and
RCB-E2), we select several typical signals (with clear peaks)
and take the average of their pulse durations. In practice, the
acoustic pulse duration is determined by the probing pulse du-
ration, size and shape of the tumor, as well as the transducer
response.

Fig. 4 shows the images for the simulated breast model with
one 2-mm diameter tumor formed using ARMOR and DAS.
The tumor response is weak for such a small tumor. In these
images, we use ¢ = 0.1M and the searching range [—14, 14].
Fig. 4(a) corresponds to DAS-C, where the tumor is buried by
interference and noise. In Fig. 4(b), DAS-E1 fails to detect the
tumor. In Fig. 4(c), for DAS-E2, a shadow of the tumor can be
seen. In Fig. 4(d), for RCB-E2, most of the clutters are cleared
up but a strong clutter shows up near the chest wall. Fig. 4(e)-
4(h) shows the results of peak searching; none of them have
false tumors, which may be attributed to proper corrections of
phase aberrations. Images produced by ARMOR-P in Fig. 4(f)
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Fig. 4. Reconstructed images based on the 2-D simulated breast model with
one 2-mm-diameter tumor. (a) DAS-C. (b) DAS-EI1. (¢) DAS-E2. (d) RCB-
E2, with e = 0.1M. (e) DAS-P. (f) ARMOR-P, with e = 0.1M. (g) DAS-PP.
(h) ARMOR-PP, withe = 0.1M.

and by ARMOR-PP in Fig. 4(h) have lower sidelobe levels and
higher resolutions, and the latter has a higher contrast than the
former, due to the latter using the peak-to-peak difference as the
intensity measure.

Fig. 5 shows the imaging results for the one large tumor
(1 cm diameter) case. Here, we set ¢ = 0.1 M and the search-
ing range [—20, 20]. (Note that different tumor sizes and loca-
tions will result in different sound speed variations in the breast
model.) The white circle in the image corresponds to the ac-
tual contour of the tumor. Although all the methods can detect
the tumor, only ARMOR can be used to form an image of the
tumor with the best agreement with the actual tumor size and
location.

By plotting a map (maps are not shown here due to limited
space) of the values of ;1 used in ARMOR, for each focal point,
we find that at the tumor locations, ; usually takes smaller values
than that at other locations.
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Fig. 5. Reconstructed images based on the 2-D simulated breast model with
one large tumor (1 cm in diameter). The white circle in the image corresponds
to the actual shape of the tumor. (a) DAS-C. (b) DAS-EL. (c) DAS-E2. (d) RCB-
E2, with e = 0.1M. (e) DAS-P. (f) ARMOR-P, with ¢ = 0.1M. (g) DAS-PP.
(h) ARMOR-PP, withe = 0.1M.

B. Experimental Results

We have also tested ARMOR and DAS on two sets of TAT
experimental data from mastectomy specimens [4] obtained by
the Optical Imaging Laboratory at the Texas A&M University.

The two data sets were acquired from mastectomy specimens
using a TAT system. Microwave sources were used to heat the
specimens transiently. In the experiment, the breast specimen
was formed to a cylindrical shape inside a plastic bowl. The
bowl was immersed in ultrasound coupling medium in a con-
tainer. For breast specimen I, the acoustic signals were recorded
at 240 equally spaced scanning stops on a circular track of radius
12.9 cm. The thickness of this specimen was about 4 cm in a
round plastic bowl of 17 cm in diameter. This lesion was diag-
nosed as an invasive metaplastic carcinoma with chondroid and
squamous metaplasia. The size of the tumor was measured to be
35 mm in diameter by TAT, and 36 mm in diameter by radiog-
raphy (see [4] for details). For breast specimen II, the scanning
radius was 9.7 cm, with 160 scanning stops. This specimen was
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Fig. 6.

Reconstructed images for breast specimen I. (a) DAS-C. (b) DAS-EL. (c) DAS-E2. (d) RCB-E2, with ¢ = 0.5M. (e) DAS-P. (f) ARMOR-P, with

e = 0.5M. (g) DAS-PP. (h) ARMOR-PP, with ¢ = 0.5M. (i) X-ray image. (j) Inverse solution.

9 cm thick in a round plastic bowl of 11 cm in diameter. The
lesion in the specimen was diagnosed as infiltrating lobular car-
cinoma; the size of the tumor was about 20 mm x 12 mm on
TAT image, and about 26 mm X 15 mm on the radiography
(see [4] for more details).

First, we study the delay difference for both the breast speci-
mens to get a qualitative guide for choosing the searching range
in Step II of ARMOR. The results are shown in Fig. 3(c) and
3(d), respectively. Note that breast specimen II has a larger vari-
ance in delay differences than breast specimen I. In Fig. 3(c),
70% of the delay differences are roughly between —23 to 23
samples, whereas in Fig. 3(d), 70% of the delay differences
are between —40 and 40 samples. Therefore we should set a
larger searching range for breast specimen II than for breast
specimen 1.

Fig. 6 shows the reconstructed images for breast specimen I.
In the following images, the searching range was set to [—3, 3]
after adjustment, and ¢ = 0.5M for all the RCBs used herein.
In Fig. 6(a), for DAS-C, the dark region shows a blurred object
corresponding to the breast tumor. In Fig. 6(b), for DAS-E1, the
light region shows a vague boundary of the tumor. Fig. 6(c),
for DAS-E2, and 6(d), for RCB-E2, have similar performances.
In Fig. 6(e), for DAS-P, and 6(f), for ARMOR-P, a dark region
with a clear cut has a good correspondence with the location
and shape of the tumor in the radiograph [4]. In Fig. 6(g), for
DAS-PP, and 6(h), for ARMOR-PP, not only a clear image of the
tumor is obtained, but also the detailed boundary is revealed. For
comparison, the images from X-ray mammography, considered
the “gold standard” of breast imaging, and the exact inverse
solution of TAT (see [4] for more details) are shown in Fig. 6(i)
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Fig. 7.
e = 0.5M. (g) DAS-PP. (h) ARMOR-PP, with ¢ = 0.5M. (i) X-ray image. (j)

and 6(j), respectively. We give Fig. 6 and the following Fig. 7 in
gray scale to have a better comparison with the X-ray images.
Fig. 7 shows the reconstructed images for breast specimen
II. The tumor size here is smaller, and a high level of interfer-
ence and noise is present in the recorded data. The searching
interval is eventually adjusted to [—120, 120] and RCB pa-
rameter € = 0.5M. In Fig. 7(a), for DAS-C, the true tumor is
barely identifiable from the surrounding clutters. The DAS-EI
shown in Fig. 7(b) and the DAS-E2 shown in Fig. 7(c) provide
higher imaging contrast than DAS-C but show strong clutter. In
Fig. 7(d), for RCB-E2, a false tumor shows up, which demon-
strates the need for robustness in the presence of relatively strong
phase distortion. DAS-P is shown in Fig. 7(e) and ARMOR-P is
shown in Fig. 7(f). DAS-PP and ARMOR-PP produce the best
images in Figs. 7(g) and 7(h), respectively, with the location and
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Reconstructed images for breast specimen II. (a) DAS-C. (b) DAS-E1. (c) DAS-E2. (d) RCB-E2, with ¢ = 0.5M. (e) DAS-P. (f) ARMOR-P, with

Inverse solution.

shape of the tumor consistent with the radiograph in Fig. 7(i) [4].
If we define the signal-to-background ratio (SBR) (i.e., squaring
the pixel values of the image, the ratio of the maximum to the
total sum of the squared values) as an image quality measure-
ment metric, ARMOR-PP has an SBR twice that of DAS-PP,
which means a 3 dB gain for ARMOR-PP. For comparison, the
image formed by the exact inverse solution of TAT (see [4] for
more details) is shown in Fig. 7(j).

The effects of the uncertainty parameter € in ARMOR is
studied in our next example. We vary € of RCB used in ARMOR.
The imaging results for breast specimen I, shown in Fig. §,
are consistent with our previous analysis: when ¢ is large, the
performance of RCB, in Fig. 8(a), is close to that of DAS in
Fig. 6(g). When the parameter ¢ is small, as shown in Fig. 8(c),
the resolution is improved at the cost of robustness.
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Fig. 9. Effects of the searching range on the DAS-PP images. (a) Searching

range [—20, 20]. (b) Searching range: [—40, 40]. (c) Searching range [—60, 60].
(d) Searching range: [—80, 80].

In our last example, the effect of the searching-range width on
the imaging quality is considered. We use DAS-PP as an exam-
ple since it shows more dependence on the searching range. The
conclusion drawn for DAS applies to ARMOR. A symmetric
searching range centered around the calculated arrival time is
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used. From the discussions in Section IV, we know that there
is a tradeoff in choosing the searching range. Clearly, when the
searching range is too small, such as in Fig. 9(a), we miss the
true peaks. With an increase in the searching range, the image
quality becomes gradually better, as shown in Fig. 9(b) and 9(c).
However, when the searching range passes a certain threshold,
with too much interference coming into the searching range, the
image quality degrades because of increased clutters, as shown
in Fig. 9(d).

From our numerical examples, we conclude that ARMOR has
higher resolution and better interference rejection capability and
more robustness against wavefront distortion than DAS. Also,
we find that the amplitude-based measures reveal more details of
the tumor in the reconstructed images than their energy-based
counterparts. The energy-based measures are not sensitive to
phase distortions; however, they tend to blur the reconstructed
images, causing loss of details with a low-pass filtering-like
effect.

VII. CONCLUSION

ARMOR has been proposed for thermoacoustic tomogra-
phy. ARMOR is robust to the amplitude and phase distortions
in the recorded signals caused by the acoustic heterogeneity
of biological tissues. ARMOR consists of three steps: in the
first step, ARMOR uses the data-adaptive robust Capon beam-
forming (RCB) for waveform estimation; in the second step of
ARMOR, a simple, yet effective, peak searching method is used
to mitigate the phase distortion in the estimated waveform; in
the third step, the response intensity is calculated for the focal
point using various approaches, among which the peak-to-peak
difference measure further enhances the image contrast. Exam-
ples based on a numerically simulated 2-D breast model and two
sets of experimentally measured data from human mastectomy
specimens demonstrate the excellent performance of ARMOR:
high-resolution, low sidelobe level, and much improved inter-
ference suppression capability.

APPENDIX
THERMAL ACOUSTIC SIMULATIONS

We consider the microwave-induced thermal acoustic simu-
lation in two steps. In the first step, the electromagnetic field
inside the breast model is simulated and the specific absorp-
tion rate (SAR) distribution is calculated based on the simu-
lated electromagnetic field. The second step is for the acoustic
wave simulation, where the SAR distribution obtained in the
first step is used as the acoustic pressure source through the
thermal expansion coefficient. In both steps, the finite-difference
time-domain (FDTD) method [28] is used for the simulation ex-
amples.

The 2-D electromagnetic breast model used is as shown in
Fig. 2(a). A narrow electromagnetic pulse is used to irradiate
the breast from the top of the model. The electromagnetic field
is simulated using the FDTD method. The grid-cell size used by
FDTD is 0.5 mm X 0.5 mm and the computational region is ter-
minated by perfectly matched layer (PML) absorbing boundary
conditions [29].
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TABLE II
NOMINAL DIELECTRIC PROPERTIES OF BREAST TISSUES [24]

Tissues Dielectric Properties
Permittivity (F/m) | Conductivity (S/m)
Immersion Liquid 9 0
Chest Wall 50 7
Skin 36 4
Fatty Breast Tissue 9 0.4
Nipple 45 5
Glandular Tissue 11-15 0.4-0.5
Tumor 50 4

TABLE III
ACOUSTIC PARAMETERS FOR BIOLOGICAL TISSUES

Tissue | p (kg/m?) [ ¢ (m/s) | o (dB/em) | B3 (1/° C) | C, (/C° C - kg))
Breast 1020 1510 07515 3E-4 3550
Skin 1100 1537 35 3E-4 3500
Muscle 1041 1580 0.57f 3E-4 3510
Tumor 1041 1580 0.57f 3E-4 3510

* fis the acoustic frequency, and the unit is in megahertz.

The SAR distribution is given as [30]
o(r)E(r)
2p(r)
where o(r) is the conductivity of the biological tissues at loca-
tion r, E(r) is the electric field at location r, and p(r) is the

mass density of the biological tissues at location r.

In the microwave-induced TAI system, the microwave energy
is small, and as a result, the acoustic pressure field induced by
the microwave is also small. So, the nonlinear acoustic effect

does not need to be considered in the TAI system. The two basic
linear acoustic wave generation equations are [9]

SAR(r) = (26)

pau(r,t) = —Vp(r,t) (27)
and
V-u(r,t) = —%gp(nt) + ap(r,t) + ﬁgT(r,t) (28)
pc? Ot ot

where u(r, t) is the acoustic velocity vector, p(r, t) is the acous-
tic pressure field, p is the mass density, « is the attenuation
coefficient, /3 is the thermal expansion coefficient, and T'(r, t)
is the temperature. The values for these acoustic properties for
different breast tissues are listed in Table III [25].

Because the duration of the microwave pulse is much shorter
than the thermal diffusion time, thermal diffusion can be ne-
glected [9], and the thermal equation is

OP%T(r, t) = SAR(r, t) (29)

where C), is the specific heat. Substituting (29) into (28) gives

Vour,t) = — ,Ti? %p(r, 1) + ap(r, £) + CESAR(r, .
(30)
FDTD is used again to compute the thermal acoustic wave based
on (27) and (30).

The breast model for the acoustic simulation is shown in
Fig. 2(b), which is constructed similarly to the model for elec-
tromagnetic simulation. An acoustic sensor array deployed uni-
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formly around the breast model is used to record the thermal
acoustic signals. The grid-cell size used by the acoustic FDTD
is 0.1 mm x 0.1 mm and the computational region is termi-
nated by PML-absorbing boundary conditions. Note that the
size of the FDTD cell for the acoustic simulation is much finer
than that of the FDTD cell for the electromagnetic simulation
because the wavelength of an acoustic wave is much smaller
than that of a microwave. The SAR distribution data is interpo-
lated to achieve a desired grid resolution for the acoustic breast
model.
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