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We develop a temporal correlation transfer equation (CTE) and a Monte Carlo algorithm (MC) for multiply
scattered light modulated by an ultrasonic pulse propagating in an optically scattering medium, where the
ultrasound field can be nonuniform and the medium can have spatially heterogeneous distribution of optical
parameters. The CTE and MC can be used to obtain the time-varying specific intensity and the spatial distri-
bution of the time-dependent power spectral density, respectively, of ultrasound-modulated light. We expect the
CTE and MC to be applicable for estimation of contrast and resolution in a wide spectrum of conditions in
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ultrasound-modulated optical tomography of soft biological tissues. © 2007 Optical Society of America
OCIS codes: 030.1670, 030.5620, 170.7050, 170.6960, 290.4210, 290.7050.

1. INTRODUCTION

There is increasing interest in developing new imaging
modalities based on the optical properties of soft biologi-
cal tissues. At visible and near-infrared optical wave-
lengths the optical properties of biological tissues are re-
lated to the molecular structure. Radiation at these
wavelengths is nonionizing with the potential for the de-
tection of functions and abnormalities. However, it is dif-
ficult to obtain good spatial resolution at imaging depths
greater than one optical transport mean free path owing
to the strong diffusion of light at these wavelengths [1].

Ultrasound-modulated optical tomography (UOT) is a
hybrid technique that combines the advantages of ultra-
sonic resolution and optical contrast [2,3]. In this tech-
nique, optical radiation of high temporal coherence and
focused ultrasound are simultaneously applied to soft bio-
logical tissue. The resulting ultrasound-modulated light
provides information about the optical properties of the
tissue, spatially localized at the interaction region of the
ultrasonic and the electromagnetic waves. UOT images
that are based on the optical properties of a tissue sample
are typically created by scanning either the ultrasound or
the tissue sample [4,5].

Owing to diffused light propagation and uncorrelated
phases among optical speckles in UOT experiments, effi-
cient detection of ultrasound-modulated light has proven
to be challenging. At present, the development of effective
detection techniques for UOT is the subject of intense re-
search [3-17]. Simultaneously, a theoretical understand-
ing of the ultrasound modulation of multiply scattered
light is emerging. Present theoretical models include two
mechanisms of modulation. The first mechanism accounts
for dynamic scattering by optical scatterers oscillating in
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an ultrasound field, which causes optical frequency shifts
[6,18] as does dynamic light scattering by scatterers un-
dergoing Brownian motion [19]. The second mechanism
accounts for ultrasound-induced changes in the optical in-
dex of refraction [20,21]. The two mechanisms have been
combined by Wang [21] in a model based on the diffusing-
wave spectroscopy (DWS) approach [19,22]. Subsequently,
the equations are extended to account for anisotropic op-
tical scattering [23] and Brownian motion [23,24]. In ad-
dition [25] accounts for pulsed ultrasound and strong cor-
relations between ultrasound-induced optical phase
increments, which exist when the ratio of the optical
transport mean free path /,, to the ultrasound wavelength
A\, is small. In the case of anisotropic optical scattering,
equations derived for the isotropic case can be applied by
substituting /. for the optical mean free path [, [23,25].

The applications of theoretical models based on the
DWS approach are limited to simple geometries where it
is possible to approximate the ultrasound field within the
sample with a plane ultrasound wave and where the prob-
ability density function of the optical path length between
the source and detector is analytically known. In most ex-
periments, however, the sample geometries are complex
with heterogeneously distributed optical parameters, and
a focused ultrasound beam is used.

Recently, a more general theoretical model based on the
ladder diagram approximation of the Bethe—Salpeter
equation [26-32] was developed [33,34]. A temporal corre-
lation transfer equation (CTE) [35-38] was derived for
multiply scattered light modulated by continuous wave
(CW) ultrasound. This equation can be used to obtain the
time-varying specific intensity and subsequently the
power spectral density of light produced by a focused ul-
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trasound field in optically scattering media that have a
heterogeneous distribution of optical parameters.

In addition, based on the theoretical models, Monte
Carlo algorithms were developed and used for comparison
with the theoretical predictions [23,25,33,34,39] as well
as for modeling the scattering samples that have optically
absorbing objects of cylindrical shapes [40].

In this paper, based on the ladder diagram approxima-
tion of the Bethe—Salpeter equation [26], we have derived
a temporal correlation transfer equation (CTE) for multi-
ply scattered light modulated by an ultrasonic pulse. The
derivation is similar to the previous development of the
CTE when CW ultrasound was used [34], and to the de-
velopment of the CTE for scatterers moving with a given
velocity distribution or undergoing Brownian motion
[35-38]. In addition, it involves the link between the mul-
tiple scattering theory and the radiative transfer equa-
tion, which has been reviewed in numerous articles
[27-32].

In Section 3, we develop a Monte Carlo simulation
based on the CTE that can be used to calculate the time-
varying power spectral density of light modulated by
pulsed and focused ultrasound in optically turbid media
with heterogeneous distributions of optical parameters.
We further calculate the time-varying spatial distribution
of the power spectral density of the ultrasound-modulated
light produced by an ultrasound pulse with a center fre-
quency of 1 MHz that is focused in an optically scattering
slab. The scattering slab has two embedded optically ab-
sorbing objects positioned within the ultrasonic focal zone
with background optical parameters representative of
those in soft biological tissues at visible and near-infrared
wavelengths.

2. DEVELOPMENT OF THE CTE

The development of the CTE for multiply scattered light
modulated by an ultrasound pulse is largely analogous to
the derivation of the CTE for CW ultrasound [34]. The dif-
ference is that in the former case a more general repre-
sentation of the spatiotemporal dependence of ultrasound
is used. For the sake of clarity, we present the derivation
steps with all details. We first develop an approximate ex-
pression for the Green’s function of the electric field com-
ponent in a medium free of optical scatterers and absorb-
ers in the presence of an ultrasound field. For moderate
ultrasound pressures, the optical index of refraction expe-
riences a small perturbation and we locally approximate
it with n(r,t)=ny1+ nP(r,t)/(pvg)], where n is the un-
perturbed optical index of refraction, P(r,?) is the ultra-
sound pressure, p is the mass density of the medium, v, is
the ultrasound speed, and 7 is the elasto-optical coeffi-
cient (in water at standard conditions v,~1480 m s71,
and 7=~0.32).

We consider a source of monochromatic light having an-
gular frequency wy and wave-vector magnitude ky=wq/cy,
where ¢ is the speed of light in vacuum. Time retardation
and optical polarization effects are neglected for simplic-
ity and we consider only one component of the electric

field vector E(r,t). Because of the large ratio of wy to the
ultrasound angular frequency, we approximate the quasi-

monochromatic electric field in the medium as E(r,?)
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~E(r,t)exp(-iwgt), where E(r,t) is a slowly changing
function of time. For a point source of light positioned at
ry, the slowly changing amplitude E(r,?) is given by the
Green’s function G,(r,ry,¢) that satisfies the equation

[V2+k2n2(1+2np(r,t)>}G(rr t)=8r-ry), (1)
0’*0 2 a\tH> 10t = 0/

pUg

where 27|P(r,t)|/(pv?) <1, and & ) is the Dirac delta func-
tion.
We present G,(r,r,t) as

exp(ikonolr — ro|[1 + &(r,ro,t)])
Ga(rar07t) =

(@)

—47lr — vy

where &(r,r(,t) is the small fractional phase perturbation
that slowly varies in time and depends on P(r,t).
We further approximate &(r,rg,t) as

77 r
g(r’rO)t) = z—f P(r’,t)dr’, (3)
pl)a|1'— 1‘0| ry

where we assume moderate ultrasound pressures, dis-
tances r not far from the source position ry such that
konolr—rg|é(r,ry,t) <1, and that the ultrasound-induced
refraction of the optical waves is negligible for the inter-
action length [r-rg|.

Next, we consider independent optical scattering in an
optically scattering medium representative of soft biologi-
cal tissue having discrete and uncorrelated optical scat-
terers. We assume the weak scattering approximation
that the optical mean free path /; is much greater than
the optical wavelength \y. We also assume that the ultra-
sound field in volumes ~lfr can be locally approximated as
a plane wave P(r,t):Poh(t—vaﬁa ‘r+ ), where h(x) is the
propagation function of the ultrasound pulse normalized
to unity, and P, ¢, and fla are the local pressure ampli-
tude, local initial phase, and local propagation direction

unit vector of the ultrasound, respectively (|Q,|=1). Now,
Eq. (3) could be expressed as

1 r R
&(r,ro,t) = §Mf h(t—v,Q, 1"+ P)dr’, (4)
ro

where M=27Py/(pv|r—r)).

In further derivations, the expressions for &(r,r,t)
[Eq. (4)] and for G,(r,r(,t) [Eq. (2)] are required to be ap-
proximately valid for |r-ry on the order of a few [,
which is satisfied in soft biological tissues at visible and
near-infrared optical wavelengths (/=1 mm), for moder-
ate ultrasound pressures (P,<10° Pa), and in the medical
ultrasound frequency range [25].

The optical extinction, scattering, and absorption coef-
ficients are defined as ;= s+ py, ps=0sps, and p,=o,ps,
respectively, where p, is the density of optical scatterers,
o, is the optical scattering cross section, and o, is the op-
tical absorption cross section. We assume that the optical

scattering amplitude f(flsc,flmc) is a function of Qsc'ﬂinc
only, where flinc and ﬂsc are the directions of the incident
and scattered waves, respectively. The scattering phase

function p(flsc,ﬂinc) is defined as p(flsc,ﬂinc)
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=07 '[f(Qge, ind |, and it satisfies [4p(Qe, Bin)dQye=1.
From the optical theorem we also have o,+0,
=47 Im[A(Qine, Qinc) 1/ (kono), where Im[] takes on the
imaginary part.

The ensemble averaged value of the electric field at r,
emitted from a point source at r, is referred to also as a
mean or coherent field and it is provided by a mean
Green’s function G(ry,r,,t). We assume sufficiently
small optical scatterers and consider only the far-field ap-
proximations of the scattered fields. Gy(rp,r,,t) is ob-
tained by solving the Dyson equation [26,35,36], whose
far-field expression in the Bourret approximation is given
by

Gs(rb’ra’t) = Ga(rb’ra,t) - 47Tps f Ga(rb’rs’t)f(ﬂsb’ﬁas)

X explikonoes(t) - (Qu — Q) Gy (r,, 1y, t)dr,.
(5)

The exponential factor on the right hand side of Eq. (5)
accounts for the Doppler shift caused by the ultrasound-
induced movement of the scatterer, and the position of the
scatterer at time ¢ is r,+ey(t), where r, is the resting po-
sition and e,(¢) is the small ultrasound-induced displace-
ment. The refraction of the mean optical field that is due

to the ultrasound is neglected and ﬁas and st are unity
vectors in directions r,—r, and r,-r,, respectively.

Equation (5) can be solved by applying the method of
stationary phase in a way similar to the derivation pre-
sented in the Appendix of [34]. The mean Green’s function
is expressed as

expl[iK(ry,ry,t)|r, — 1r4|]

Gs(rb’ra’t) = ) (6)

- 47T|rb - ra|
where
K(ry,r,,t) = kool 1 + &y, 14,8)] + 2pf(Q, Q) (ko).

G,(ry,r,,t) is expressed in Eq. (6) similarly as in [34]
where CW ultrasound is considered. However, the expres-
sion for &(ry,r,,t) in [34] is just a special case of the more
general expression in Eq. (4). The term &(ry,r,,t) in
propagation constant K(ry,r,,t) is related to the accumu-
lated optical phase from r, to r, due to ultrasound-
induced changes in the optical index of refraction, and the

term 27-rpsf(fl,ﬂ)/ (kong) accounts for the multiple wave
scattering from r, to r;. In the absence of optical scatter-
ers (p;=0), G4(rp,r,,t) reduces to G,(ry,r,,1).

To obtain the time-varying power spectral density of
multiply scattered light at time ¢, we present the mutual
coherence function of the electric field component as

F(raarb’t? T) = <E(ra9t - T/Q)E*(rbvt + 7/2)>5

where r, and r, are two closely spaced points relative to
the optical mean free path [/;, and () represents ensemble
averaging. We further assume that I'(r,,r,,t,7) is a
quasi-uniform function that, under the weak-scattering
approximation, satisfies the ladder approximation of the
Bethe—Salpeter equation [26,35,36,38] for moving scatter-
ers,
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F(ra’rb7t7 T) = FO(rmrb,ta T)

+ f f Vot — #2005, (¢ + 72)T (1, 10,8, 7)

Xp(rs/,t - 7'/2;1‘5//,t + T/z)drsrdrsn. (7)

In Eq. (7), vy, and ryr are the positions of the same scat-
terer at times t—7/2 and t+17/2, respectively, and p(r,,¢
—7/2;ren,t+7/2) is the probability density of finding the
same scatterer s at position r,, and time ¢—7/2, and at po-
sition ry and time t+7/2. The term T'y(r,,rp,¢,7)
=(E(r,,t—17/2)XE"(rp,t+7/2)) is the mutual coherence
function of the coherent (unscattered) field.

We first define the spectral density I'(r.,q’,¢,7 of
F(I‘s/ ,rs//,t, 7') as

f(rcs,q’,t,f) = (277)'3f I(r,,ryst, Texp(—iq’ - rg)dry,,

(8)

where r ;=r, -ry and r.,=(r, +r.)/2. By assuming the
far-field approximation of the operators v{,(t—7/2) and
vi’,,*(t+ 7/2), the term v, (- 7-/2)112’,,*(15 +7/2)[(ry ,xer,t,7) in
Eq. (7) can be written as an integral over all the spectral
components of I'(ry,ryn,¢,7) as [34]

v‘:,(t - 7'/2)05(15 + 7/2)[(vgr, v, t,7)

f f(ﬁs’wﬂr)f*(fls”b’ﬁ’) ~
= F(PCS’q/’t7T)

[r, —ry|ry — 1y
Xexp[iK(ry,rg,t — 72)|r, —ry|]

X exp[— iK' (rp, vt + 72)|1, — rollexp(iq’ - rg)dq’,
9

where Q'=q'/|q'|.

Next, we define vectors r,=(r,+1,)/2, ry=r,—r;,, and
Q=(r,-r,)/|r,-r,| in the center-of-gravity coordinate
system. Since |rg| <|r,.—1,| and |rg| <|r.-7r., it is safe to
assume that f(Q,, Q) =~fQ,Q"), f(Quy,Q)=~AQ,Q"),
and

|ra - I‘s’| = |rc - rcsl + (rd - I‘ds) : Q/Z,

= ‘rc - rcs' - (rd - I‘ds) : ﬂ/29

|I‘b =Xy

(‘ra_rs’Hrb_rs”D_l = |I‘c—l‘cs|_2, (10)

and part of the expression on the right hand side of Eq. (9)
can be presented as

A(Qy10, Q) (g, Q)

Y, —T.||ry,—XY.n
a s b s

expiK(xy,ry,t — 72)|r, — 1y

— iK' (rp, vt + 72) |1, — 1]
= Usp(ﬁ’ﬁl)‘rc - I‘cs|_2 exp[iKr(rd - rds) : Q - :ut|rc - I'csH
Xexp[iq}n(ra,rbrs"rs”?t7 T)]’ (11)

where K, =ngko+4mRe[AQ,Q)]p,/(2kon,), and Rel]
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takes on the real part. The term W, (r,,r,,ry , e t,7) is
the difference between the ultrasound-induced phase in-
crements given by

W, (1, Ty, Ty, s t, 7) = Rong|r, — Tyr|E(Ty,Tgr,t — T/2)
- k0n0|rb - rsn|§(rb,rsu,t + T/2) ,
(12)

and it could be approximated by using the relations in Eq.
(4) and Eq. (10) with ¥, (r,,r,t, 7), where

1 Te .
\Pn(rc,rCS,t, 7') = §k0n0Mf [h(t —-7/2 - Uaﬂa v+ ¢)
rCS

—h(t+72-0,0, -1 +$)ldr'. (13)

The probability density function p(ry,t—7/2;r,¢t
+7/2) in Eq. (7) can be expressed as p drg—Ae(r,,t,7)],
where Ae(r,,t,7)=e4(t—7/2)—e,(t+7/2), and the positions
r, and ry of the scatterer at times t—17/2 and ¢+ 7/2 are
given by r, =r,+e,(t—7/2) and ry=r,+e,t+7/2), respec-
tively.

Then we replace the integral in Eq. (7) over positions
r,, and ry with an integral over ry, and r.. By using
dr,=|r,-r.?dlr,-r,|dQ and by performing an addi-
tional integration over ry,, we have

F(rc,rd,t, T) = FO(rcvr(bt;T) + f Msp(ﬁ,ﬁ,)

Xexp(iK,ry- Q)exp(- p,lr. - 1)
xexpli(q' - K,Q) - Ae(r,,t,7)]
XexpliV, (r,,es,t,7)]
XT(r.q',t,Ddlr, - 1. JdQdq’.  (14)

Since the spectral density ['(r.,q’,t,7) of the quasi-
uniform  mutual coherence function for quasi-
monochromatic light is approximately concentrated on a
spherical shell with radius |q'|=K, [27,30,31,41,42], we
relate the spectral density to the time-varying specific in-
tensity I (rcs,(i’ ,t,7) by the following approximation
[27,28,30,31,41,42]:

T(r.,q',t,n = &la'| - K)I(r,, Q' ¢, /K2 (15)

We can now combine Egs. (8) and (15) to express the
time-varying specific intensity as an angular spectrum of
the mutual coherence function

(., ry,t,7) = f I(rc,fl,t, T)exp(iKrﬁ -ry)dQ, (16a)

FO(rc’rd,t> T) = f IO(er,t, T)exp(iKrﬁ : rd)dﬂy

(16b)

where Eq. (16b) is obtained by assuming that
Ly(r,,ry,t,7) satisfies expressions similar to Egs. (8) and
(15).
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We can further use the time-varying specific intensity
I(x,, Q,t, 7) to obtain the time-varying optical power spec-
tral density P(r,,t,w) of the ultrasound modulated light
received in some solid angle Q)  based on the Wigner dis-
tribution [43] as

1 (™
P(r.,t,0)=—| Ig (r.t,7expliwndr, %))
2w ) 0

where I (r.,t,7)=[qI(r.,Q,t,7dQ.
In the next step we substitute Eqs. (16a), (16b), and
(15) into Eq. (14) and perform the integration over |q’'|. Af-

ter subsequently removing the integrals over Q together

with exponents exp(iKrﬂ-rd) that are common to all
terms, we finally obtain the integral form of the CTE as

I(r,Q,t,7) = Iy(r,Q,t,7) + f (2,0

Xexp(— /J“t‘r - rs|)I(rs’ﬁ’5t7 T)
X O(r,r, Q,Q' ¢t,ndlr -r/dQ’. (18)

In Eq. (18), the redundant subscript ¢ was removed from
the center-of-gravity coordinate r., and we also assumed
that r,,~r,. The factor

D(r,r,Q,Q',t,7) = exp[iVy(r,, 0,0 ,t,7]
Xexp[iW, (r,r,t,7)]

accounts for the ultrasound-induced optical phase incre-
ments due to both mechanisms of modulation. The term

\Pd(rs’ﬁ’ﬁrat,T) = _Kr(ﬁ - ﬁ’) : Ae(rmt’T)

is due to ultrasound-induced displacement of the optical
scatterers and is given by

A K,P,
wd(rs7ﬂ’ﬂ”t7 T) =
Vg

[(Q-0)-Q,]

t+7/2
xJ At —v,Q, -1, + B)dt,
t—1/2

(19)

where we assume that optical scatterers follow the
ultrasound-induced fluid movement in amplitude and
phase [25].

We see that the time-varying specific intensity

I(r,fl,t, 7) in Eq. (18) is given as a sum of all time-varying
specific intensities scattered into direction Q including

the unscattered term Io(r,ﬁ,t,r). Similar to the previ-
ously derived CTE for moving scatterers undergoing
Brownian motion [35,38], in Eq. (18) we have a term W,( )
that is due to the ultrasound-induced movement of the op-
tical scatterers. In addition, in Eq. (18) we also have a
new term W, () that is due to ultrasound-induced changes
in the optical index of refraction.

Analytical solutions for I(r,Q,¢,7) and P(r,t, w) are dif-
ficult to find from Egs. (18) and (17) for any practical ex-
perimental configurations. Numerical codes and Monte
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Carlo algorithms, however, can be readily developed. In
Section 3, one such Monte Carlo algorithm is presented.

3. MONTE CARLO SIMULATION

We developed a Monte Carlo (MC) algorithm that can be
used to calculate the time-varying power spectral density
of light modulated by a pulsed ultrasound field focused in
an optically scattering medium with a heterogeneous dis-
tribution of optical parameters. We first divide the opti-
cally scattering medium into cells along the Cartesian
axes and assign a vector m with integer coordinates
{ny,n,,n;} to each cell. Next, we assign values of the opti-
cal absorption (u, ) and the scattering (u;n) coefficients
as well as the scattering anisotropy factor (g,) to each
cell, where a Henyey-Greenstein scattering phase func-
tion is assumed [44]. The local parameters of the ultra-
sound field are also assigned to each cell: an average ul-

trasound propagation direction f)a,n, pressure amplitude
Py, and time delay of the pulse #,. We assume that the
dimensions of each cell are much smaller than the ultra-
sound wavelength and that the ultrasound field can be
approximated within the cell as Py(¢) =Py n2(¢—t,), Where
h(t) is the propagation function of the ultrasound pulse
normalized to unity. We also assume that the error due to
using the same propagation function A(¢) in all the cells is
small. The procedure for propagation of the photon pack-
ets in the MC is the same as in [34], and similar to the
previously described algorithms [39,45]. The photon
packet is analyzed at each crossing of the cell boundaries,
and the remaining length of the free path is adjusted
based on the extinction coefficient within the cell that the
photon packet is entering.

The trajectory of each photon consists of many small
steps that are determined by all of the scattering events
and cell boundaries along the way. For each small photon
step of length [, within cell m;, we calculate the optical
phase increment due to ultrasound-induced index of re-
fraction changes as Ag, ;(¢)=konol;Pm,(?) n/(pvi). Simi-
larly, for each scattering event j within cell n;, we calcu-
late the optical phase increment that is due to
ultrasound-induced scatterer displacement as

Ay (1) = kool (Qine; = Ree)) * Qo n JAn ),

where ﬂmnjAnj(t) is the scatterer displacement vector and

ﬂinc j and ﬂsc ; are the incident and scattered photon di-
rections, respectively.

At each scattering event, the total ultrasound-induced
phase increment of the photon packet accumulated up to
this point is Ae(t)=Z;A¢, () +2A¢q(t), and & and j
count all of the previous steps and scattering events of the
photon. We calculate the time-varying power spectral
density W,,P(t,w) for the photon packet at time ¢ based
on the Wigner distribution [43] as

W, P(t,w) = th(27r)_1f W(t, nexp(ion)dr, (20)

where W, is the current weight of a photon, P(¢, ») is the
normalized time-varying power spectral density, and
W(t,7) is given by
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W(t,7) = explide(t, )],

Ag(t,?) = Aplt + 72) = Ag(t — 7/2).

In Eq. (20), w represents the angular frequency increment
with respect to the angular frequency o, of the nonmodu-
lated light.

We further assume that the difference in phase incre-
ment Ag(¢, 7) is small (|Ae(¢, 7)|<1), and consider only the
first three terms in the Taylor expansion of W(¢, 7). The
approximate expression for P(¢,w) from Eq. (20) is then
given by

+e 1
P(t,w) = (277)"1f [1 +iAp(t,7) - §A<p2(t,7') exp(lwndr.

(21)

We proceed by integrating the individual terms in Eq.
(21). The phase increment difference Ag(¢, 7) is given by

kongm
Alt,7) = g > [Py [l + 72—t ) = h(t = 712~ £ )]
PUq
kong N A N
+ pU, ; [(Qinc,j - Qsc,j) : Qa,nj]PO,nj
t+17/2
-2 !

where we assumed that optical scatterers follow the
ultrasound-induced fluid oscillations in amplitude and
phase such that

(pva)_IPO,njf

t—1/2

t+7/2

h(u =~ ty)du = Ay (¢t + 7/2) - Ay (t = 7/2).

We denote with Py(¢,w) the integral of the first term
[(2m)71[ exp(iwnNdr= & w)] in Eq. (21). Thus, WonPo(t, w)
contributes a value of W, to the unmodulated intensity of
light at time ¢.

The integral of the second term in Eq. (21)
[(2m) L *ZiAe(t, Dexp(ior)dr] is then denoted with
P,(t,w) and expressed as

4kongm _
Py(t,0) == — 5= 3 1Py m, Im[A(20)exp[~ i20(¢  t )]
PUq k
4kong A A A
- vy ; PO,nj[(Qinc,j - ‘Q'sc,/') : ‘Q'a,nj]
h(2w)
XRe exp[-i2w(t — tnj)] , (23)
w

where h(w) is the Fourier transform of A(#). It is physi-
cally meaningful to require that there be no dc component

in the temporal spectrum of the ultrasonic pulse [R(0)
=0], which ensures that the expression for P{(¢,w) in Eq.
(23) be well defined for all angular frequencies w and that
P{(¢,0)=0. Owing to the factor exp(2iwt) in Eq. (23),
P(t,w) fluctuates fast in time. If T, is the time period as-
sociated with the central frequency of the ultrasound
pulse, then the average value of P;(¢, w) is approximately
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zero in any time interval that is comparable with or
longer than 7',/2, and we will neglect it in further deriva-
tions.

Finally, the more complex expression for the integral of
the third term in Eq. (21) is given by

11
Py(t,w) = - Eﬂf A@%(t, Dexp(iwn)dr. (24)

Since
Ap(t,7) = zk‘, A, 1(t,7) + E Ay (t,7),
J
where
A@y 1t 7) = Ay 1t + 72) = Agy, 1 (¢ = 7/2)
and

Ay jt,7) = Agq  (t + 712) = Ay (¢ — 772),
we express Py(t,w) as
PQ(t5w) = PZ,nn(t5w) + PZ,dd(t5w) + 2P2,nd(t’ w)’ (25)

where terms Py (¢, ) in Eq. (25) are given by

400

2 Ay (t, DA, j(t, Texp(iwT)dT.
xRy

11
Py oplt,0) = — ——
2,b( w) 29,

(26)
The integrals

Ly j(t,0) = (2m)7 f A, 1(t, 7)Agy j(t, Texp(iwn)dT

of individual terms in Eq. (26) can be expressed as
Inn,k,j(t’a))

= - 4AilijPO,mkP0,nj Relexp[l ﬂ)(tmk - tnj)]
+00
X f h(w = w)h' (0 + )expliw 2t — ty, - tnj)]dwt}
- Relexp[— [0(2t —ty, - tnj)]

XJ };(w - wt)ﬁ(w + wt)exp[— iwt(tmk - tnj)]dwt] s

(27)
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Ly j(t, )

== 4A(21P0,mkPO,nj[ﬁa,mk : (ﬁinc,k - Qsc,k)]

X [Qa,nj . (Qinc,j - Qsc,j)] Re[eXP[l w(tmk - tnj)]

f“o E(w - wt)ﬁ*(a) + wy)

(0 — o) (0 + wy)

expliw/(2t -ty - tnj)]dwt:|

—o0

+Re |: exp[— iw(2¢ — ¢y, — tnj)]

j‘m E(w— wt)fl(w + w,)

(0 — o) (w+ wy)

exp[— iwt(tmk - tnj)]dwt:| >

—0

(28)
Ly j(t, o)
=~ 4A APy mPon [ Qan,* (Qinej— Quc,)]
X Im|:exp[i (tm, - tnj)]
R(w- wt)ft*(w + ;)
x|+ expliw,(2t — tp, — tn)]dow,
(0 + ) k J
+ Im[ exp[-iw(2t — tm, ~ tnj)]
** h(w - wt)fz(w + wy)
xf expl— iwy(tm, —tn)]do, >
. W+ w, k J
(29)

where Anzkonon/(pvg) and Ag=kony/(pv,).

The second terms in the curly brackets in Eqs. (27),
(28), and (29) contain fast fluctuating factors exp[—iw(2t
—tmk—tnj)], and we will neglect them in further deriva-
tions.

The difficulty of obtaining analytical solutions for the
integrals in Eqgs. (27), (28), and (29) depends on the par-
ticular form of the pulse propagation function A(¢). We
choose a convenient but still general form of A(¢t) as h(¢)
=, oho(t)/ o, where hy(t)=exp[-t2/(20°T?)]sin(w,t) is a
simple periodic function bounded with a Gaussian enve-
lope. Here T, and w,=27/T, are the temporal period and
angular frequency of the sound wave associated with the
central frequency of the pulse, respectively, and o is a
nondimensional parameter that is used to control the
temporal width of the pulse. The function A(¢) and its

Fourier transform %(w) are given by
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t2 ¢
h(t) = exp(— W) |:COS(wat) - m sin(wat):| ,
(30)
3 1 1)
(w) - 2 waoa\,'%

(0+ w,)? (0= w,)?
X | exp —T —exp _T ,  (31)

a a

where o,=1/(0T,). The approximate values of the terms
Lo 1 j(t, ®), Ly j(t, ), and I, (¢, w), are then given by

Ly j(t,0) = = AWzvgzlkljpo,mkpo,njw2‘l’(t,tmk,tnj)

XE(w)cos[w(tmk - tnj)], (32)

Lygp(t,w)=- APO,mkPO,nj[Qa,mk : (ﬂinc,k - Qsc,k)]
X[Qa,nj : (Qinc,j - ﬂsc,j)]

X \Ij(t’tmkatnj)E(w)cos[w(tmk - tnj)]’ (33)
T (6,0) = = A0 1uPo mPon [ Qam,* (Qinej = Dec)]

X ‘I’(t,tmk,tnj)E(w) < I5) sin[w(tmk - tnj)]

tm, * tn,
-0l t- 5 cos[w(tm, - tnj)] )

(34)

where

A = (kono)*[2(pv,)* o),
- 2 2
W (t,tmystn) = Xpl= 05 (t — 1 /2 - 14 /2)°],

E(w) = exp[— (@ + w,)¥02] + exp[- (0 — w,)?/02].

Let M and Ny, represent the total number of scattering
events and the total number of free steps, respectively, of
the photon at scattering event M that happens at time ¢.
Since we analyze the photon propagation at each cell
boundary, the number of small free steps N, can be
greater than M. We calculate the value of Py(t, ) associ-
ated with the photon at each scattering event M as

Ny Ny M M
Py(t,w) = - 52 > Lt ) - 52 > Ligpt, o)
k=1 j=1 k=1 j=1
Ny M
-2 L p(t,w). (35)
k=1 j=1

We specify a discrete set of times ¢, during the time of
flight of the ultrasonic pulse in the scattering sample, and
a discrete set of angular frequencies w, around the cen-
tral angular frequency of the ultrasound pulse w,. At ev-
ery scattering event of the photon, quantity Py(¢;,w,) is
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calculated for all ¢, and o, and APyy(¢;,w,)
=Ps(ts, wg) AW, is evaluated, where AW,,=W, ;1 m/ i m»
and W, is the current weight of a photon at the scatter-
ing event that occurs in cell m. At the end of the simula-
tion of all of the photon packets, sums Py (s, w,)
=3APy i(ts, w,) of the increments for all of the scattering
events that have happened in cell m are proportional to
the time-varying power spectral density of light at time ¢,
and angular frequency w,.

The sample in our simulation is an optically scattering
slab with a thickness of 20 mm along the X axis (Fig. 1).
The dimensions of the slab in the Y and Z directions are
both 100 mm, which minimizes the error of the simula-
tion within the central region. We define the background
optical properties of the scattering slab as u,=0.1 cm™!
and u,=10 cm™! in the entire slab, which values are rep-
resentative of soft biological tissue for visible and near-
infrared light, and, for simplicity, assume isotropic scat-
tering. An ultrasound pulse propagates parallell to the Z
axis within the slab, spaced at equal distances from the
slab surfaces. The temporal profile of the pulse is given by
Eq. (30), with the central frequency of 1 MHz and o
=0.65. The focal spot of the transducer coincides with the
center of the slab ({x,y,z}={10 mm,0 mm,0 mm}), and
the peak pressure amplitude P, at the focus is 10° Pa. In
order to model the ultrasound field we define the concave
transducer element with an aperture diameter of
25.4 mm and a focal length of 40 mm. The distributions of
the ultrasound pressure and phase are calculated with
the publicly available software FIELD II [46] versus time ¢,
equally spaced by 0.5 us. The ultrasound propagation di-
rections are subsequently obtained by taking the gradient
of the ultrasound phase. A pencil light source with a
wavelength of 532 nm irradiates the scattering slab from
the «x<0 half  space at  position {x,y,z}
={0 mm,0 mm,0 mm}. We assume the same optical index
of refraction ny=1.33 in whole space, a mass density of
the medium p=103kgm=3, an ultrasound velocity v,
=1480 m s~!, and an elasto-optical coefficient of water at
room temperature 7=0.32. The dimensions of the cells
that divide the simulation volume are Ax=0.5 mm, Ay
=0.5 mm, and Az=0.1 mm, such that the change in ultra-

Two optically
absorbing objects

Fig. 1. Configuration of the scattering sample. Dimensions in
the X, Y, and Z directions are 20 mm, 100 mm, and 100 mm,
respectively.
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Fig. 2. (a) Temporal profile of the ultrasound pulse. (b) Power spectrum of the ultrasound pressure (solid curve) calculated from (a) and

time-varying power spectrum of the ultrasound-modulated light (dotted-dashed curve) simulated at the transmission side of the slab at
{x,y,2}={20 mm,0 mm,0 mm}. The simulation results are shown for the ultrasound pulse at the focal point. (¢) Contour plot of the spa-
tial distributions of the ultrasonic power density (solid curve) and the time-varying power density (dashed curve) of the ultrasound-
modulated light. The distributions are presented in the plane defined by y=0 mm, for ultrasound pulse at the focal point. The contours
are plotted at 25%, 50%, and 75% of the maximum power levels. In this simulation no absorbing objects are present in the scattering

slab.

sound phase within each cell is small. The APy (%5, w,)
values are sampled at discrete frequencies w,=27f,,
where f, is equally spaced by Af,~82kHz from
265 kHz to 1.74 MHz. In order to reduce the memory re-
quirement, the values of APy ,(t,, w,) are recorded only in
cells m that belong to the plane defined by y=0 mm.

In Fig. 2(a), we present the temporal profile of the ul-
trasound pressure given by A(t). Figure 2(b) shows the
power spectrum of the ultrasound pressure (solid curve)
calculated from A(¢), and the time-varying power spec-
trum (dotted—dashed curve) of the ultrasound-modulated
light simulated at the transmission side of the slab at
{x,y,2}={20 mm,0 mm,0 mm}. In this simulation, the ab-
sorbing objects from Fig. 1 are not present in the scatter-
ing slab and the results of simulation are shown for the
ultrasound pulse at the focal point. It was previously sug-
gested by the theoretical model based on the DWS ap-
proach [25] that the efficiency of modulation of light by ul-
trasound in optically turbid media is smaller at the
higher ultrasound frequencies. Therefore, in Fig. 2(b) the
time-varying power spectral density of the ultrasound-
modulated light has a lower center frequency than that of
the ultrasound pulse.

Figure 2(c) presents the contour plots of the spatial dis-
tributions of the ultrasonic power density (solid curve)
and the time-varying power density (dashed curve) of the
ultrasound-modulated light. The distributions are pre-
sented in the plane defined by y=0 mm, for an ultrasound
pulse at the focal point. The contours are plotted at 25%,
50%, and 75% of the maximum power density levels. The
values of the time-varying power densities of the
ultrasound-modulated light in each cell m are calculated
from Py (¢, ®,) by multiplying with 27Af, u, m the sum
of all of the w, spectral components around the central
frequency w, and by subsequently multiplying the ob-
tained value by 2 to account for both first-order sidebands
of the modulated light. Similarly, the values of the ultra-
sonic power densities are obtained by integrating the
power spectral density of the ultrasound pressure. There
is a very good match between the 50% power density lev-
els in the two distributions, which indicates that the spa-
tial distribution of the ‘virtual source’ of ultrasound-
modulated light within the optically scattering sample is

strongly correlated with the spatial distribution of the ul-
trasonic power density. In addition, distribution of the
time-varying power density of the ultrasound-modulated
light is extended toward the point of optical illumination
of the sample. This anticipated behavior indicates the in-
fluence of distribution of the optical fluence in the sample
on the spatial distribution of the ‘virtual source’ of
ultrasound-modulated light.

Next, we position two optically absorbing cylinders
(4,=100 cm™'), both 2 mm in diameter and 2 mm long,
within the scattering sample. The axes of both cylinders
are parallel to the propagation direction of the ultrasound
pulse. The separation between the absorbing objects is
2 mm and the center of separation coincides with the focal
point of the ultrasound pulse ({x,y,2}
={10 mm,0 mm,0 mm}). In Fig. 3, we show one frame of
the time-varying power density of the ultrasound-
modulated light simulated for the duration of propagation
of the ultrasound pulse in the scattering sample. The con-
secutive frames in the multimedia online version of Fig. 3
are equally spaced by 0.5 us time intervals, and in each
frame the spatial distribution of the power density is pre-
sented in the plane defined by y=0 mm. The values are
presented in shades of gray, with the levels equally
spaced from zero to the maximum value. The maximum
value of distribution (,,) in each frame is given in the up-
per right corner. The intensity of the ultrasound-
modulated light is much higher when the ultrasound
pulse is close to the focal point. The distribution of
ultrasound-modulated light has sharp boundaries at the
edges of absorbing objects. In addition, overlap of the ul-
trasound pulse with the position of either one of the ab-
sorbing objects causes a very significant decay in the in-
tensity of ultrasound-modulated light that is generated.

In Fig. 4, we present the temporal profile of modulation
depth M(¢) of ultrasound-modulated light when the ultra-
sound pulse propagates through the scattering slab with
two absorbing objects. The modulation depth is calculated
as a ratio of the time-varying power density of
ultrasound-modulated light to the power density of un-
modulated light (proportional to the sum of AW, u, m val-
ues for all of the scattering events in cell m). Since M(¢)
<1, we assume that the error due to considering the op-



S. Sakadzic¢ and L. V. Wang

tical fluence rate of unmodulated light equal to the total
optical fluence rate is small for the purpose of calculating
M(t). The solid curve in Fig. 4 represents the case when
the  detection point is  placed at {x,y,z}
={20 mm,0 mm,0 mm}—at the transmission plane of the
slab and symmetrically with respect to both the illumina-
tion beam and the two objects. This is a common experi-
mental configuration that usually provides good signal-to-
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Fig. 3. (Multimedia online; josaa.osa.org) Static frame of the
time-varying power density of the ultrasound-modulated light
simulated for the duration of time-of-flight of the ultrasound
pulse in the scattering sample. The spatial distribution of the
power density is presented in the plane defined by y=0 mm. The
values are presented in shades of gray, with the levels equally
spaced from zero to the maximum value. The maximum value of
distribution (Z,,) in each frame is given in the upper right corner.
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Fig. 4. Modulation depth simulated at the transmission plane of
the scattering sample during the ultrasound pulse propagation.
Solid curve, the case when the detection point is placed at
{x,y,2}={20 mm,0 mm,0 mm}—symmetrically with respect to
both the illumination beam and the two objects. Dashed curve,
the case when the detection point is placed at {x,y,z}
={20 mm,0 mm,3 mm}—3 mm away from the previous detec-

tion point.
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noise ratio, resolution, and contrast. The maximum
modulation depth of =1% is obtained when the ultra-
sound pulse is at the focal point. There are two distinctive
minima in the modulation depth profile that correlate
with the times when the ultrasound pulse overlaps with
the absorbing objects, which indicates the potential of
UOT for high-contrast and high-resolution imaging. How-
ever, breaking the symmetry between the positions of il-
lumination, detection, and the objects (dashed curve in
Fig. 4) leads to a significant change in the profile of the
modulation depth that is detected. This underlines the in-
fluence of the configuration of the imaging sample to-
gether with positions of the sources and detectors on the
detected signal. It seems reasonable to expect that mul-
tiple positions of sources and detectors would be neces-
sary to obtain an image of a complex sample.

4. CONCLUSION

In conclusion, based on the ladder approximation of the
Bethe—Salpeter equation and Wigner time—frequency dis-
tribution, we have developed an integral form of the CTE
for multiply scattered light modulated by an ultrasound
pulse. The derivations are valid under the weak-
scattering approximation within the medical ultrasound
frequency range and under moderate ultrasound pres-
sures, and further theoretical development should ad-
dress the setups with highly focused ultrasound and with
very high ultrasound pressure. We have also developed a
Monte Carlo algorithm that can be used to calculate the
time-varying power spectral density of light modulated by
the focused ultrasound pulse in optically turbid media
with heterogeneous distributions of optical parameters.
This permitted us, for what we think to be the first time,
to obtain the spatial distribution of the ultrasound-
modulated light intensity during ultrasound pulse propa-
gation in a scattering sample that contains optically ab-
sorbing objects. We expect the CTE and the MC algorithm
to be of use for the estimation of resolution, contrast, and
signal-to-noise ratios in UOT.
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