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Stochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography
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Ultrasound-modulated optical tomography is an imaging technique that detects ultrasonically tagged light in
optically turbid media to obtain images with optical contrast and ultrasonic spatial resolution. A CCD-camera-
based speckle contrast detection scheme has been introduced previously to detect modulated light emerging
from the ultrasonic sample volume. Differences in speckle contrast were experimentally observed when ultra-
sound was applied compared to when it was not. In this paper we provide an analytic explanation for this
phenomenon and connect speckle statistics with ultrasonic field parameters. The theory predicts that speckle

contrast changes linearly with applied acoustic intensity. This prediction is experimentally validated for both 1
and 3.5 MHz ultrasound. Signal dependence on ultrasound frequency is discussed.
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I. INTRODUCTION

Optical imaging of soft tissue in living subjects with high
spatial resolution and significant penetration depths remains
a challenge due to multiplyscattered light. Ultrasoundmodu-
lated optical tomography (UOT), also referred to as acousto-
optical tomography, aims to locally probe tissue optical prop-
erties by modulating the optical field within a spatially
confined, focused region of ultrasound. By sweeping the ul-
trasonic sample volume in tissue, images are formed repre-
sentative of the amount of modulated light emerging from
the ultrasonic sample volume, hence the images provide in-
formation about optical properties such as absorption and
scattering. Theoretical contributions explaining the mecha-
nisms of the ultrasonic modulation of light in optically scat-
tering media have been offered by Leutz and Maret [1], Ma-
han [2], Lev [3,4], Wang [5,6], SakadZi¢ and Wang [7,8],
among others. Various detection systems have been devised
to detect the modulated component of light emerging from
tissue including single square-law detectors [9], CCD cam-
eras [ 10-13], Fabry-Perot interferometers [14], and photore-
fractive detection schemes [15,16].

This paper is concerned with speckle contrast detection,
introduced for UOT in Ref. [11]. A phenomenological expla-
nation for this scheme was given in Ref. [11], however, no
connection was made to acoustic parameters. We provide a
more rigorous analysis based on the speckle statistics and
probabilistic models of ultrasound-modulated light propaga-
tion introduced in Refs. [5-8]. The model provides important
justification for the detection scheme, and offers insights into
ultrasonic parameter selection. Experiments validate pre-
dicted linear relationships between speckle contrast and
acoustic intensity.

II. THEORY
A. Statistical model of speckle contrast for UOT

We wish to establish a theoretical framework for model-
ing speckle contrast as a function of acoustic and optical
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parameters. Consider the propagation of temporally coherent
light through a homogeneous optically scattering medium
with discrete optical scatterers insonified by a monochro-
matic ultrasound plane wave. The time-intensity profile 7,(¢)
of one speckle spot (coherence area) matched to one detector
element can be given as the intensity of electric field due to
a sum of many scattered wave components. Neglecting po-
larization for simplicity, the electric field on the detector el-
ement p of the detector array may be written as follows:

Nl’
E (1) = (E a(r)) : (1)
i=1

and the intensity as

N, N,
L0 = |E,(0) = ( > E,»(t)E_}‘(t)), (2)

j=1 i=1

where the expressions are evaluated for a single realization
of a scatterer distribution = and E;(¢) is the complex electric
field contribution of the ith partial wave due to a given scat-
tered light path. N, is the number of partial waves originating
from N, photon paths.

1. First order statistics

To compute the speckle contrast we require the mean and
variance of the speckle intensity distribution from one CCD
exposure. The time-averaged intensity of one speckle spot is
given as E:(I (1)), In this paper we assume light-integration
times 7 are much longer than optical and ultrasonic periods
such that effectively (I,(1)),=limy .7 [¢1,()dt. The mean
intensity averaged over pixels p of the CCD is given as
follows:

Ny Np
)y =Lz = (E > Ei(t)Ejf(t)) - 3)
=N)

i=1 j=1

Here the middle equality follows from an assumption of
spatial ergodicity [17], that is, we assume that the first and
second-order speckle statistics are not spatially varying.

We also assume that the photon mean free path is much
longer than the optical wavelength (weak scattering approxi-
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mation) and the acoustic particle displacements are much
less than the optical wavelength.

With these conditions in mind, Eq. (3) is evaluated as
follows:

1,3, = Gi(0) =1, )
where [, is the mean optical intensity. Here
Gi(n)=(T'(t,7), ©)

is the time average of the temporal field autocorrelation func-
tion [5,7]

Ly(t,7) =(E,(NE,(t+ 7))z
N, N,

=2 2 (EWE;(t+ 1)z

i=1 j=1

NP
= 2 (EADE; (1+ 7))z
i=1

= J PUNEJDE,(t + 7)pds. (6)

0

In Eq. (6) we follow the diffusing-wave spectroscopy ap-
proach [18,19], where it is assumed that in the weak scatter-
ing approximation the correlation between different random
paths vanishes and only the photons traveling along the same
physical path (meaning a given sequence of scatterers) pro-
duce a nonzero effect. E(¢) is the electric field from paths of
length s and p(s) is the probability density function of s. H is
the space of all possible realizations of paths of path length s
(discussed more precisely in Refs. [7,8]). Because s is related
to photon propagation times, in the diffusion regime, p(s)
can be modeled by time-resolved diffusion-theoretic ap-
proaches [20]. Our assumptions of spatial ergodicity rely on
the fact that the CCD detector is sufficiently far from the
sample that the modulated diffuse light produces a fairly uni-
form speckle field over the CCD surface. In Eq. (6) we ne-
glect Brownian motion or assume that the CCD integration
time is sufficiently brief so as to ignore Brownian motion
induced speckle decorrelation.

2. Second order statistics

Here we want to compute the variance of the speckle
pattern on the CCD surface. As a first step in computing the
speckle variance, we rely on spatial ergodicity to compute
the second-order moment of intensity:

(LY, = 1,2 = (E(DE () E,(tE,(t"))=
= (E,(E,(0E,(t)E,(t'))=), - (7)

When we make the substitution ¢'=¢+ 7, this is recognized as
(Gy(7)),» where G(7)=(I,(t)[,(t+ 7))z, is the time-averaged
temporal intensity autocorrelation function.

Now from Eq. (1) we note that the complex electric field
E, is composed of a large number of statistically independent
zero-mean random processes, E;. Hence, by virtue of the
Central Limit Theorem [17], E,(¢) is well modeled by a zero-
mean complex normal process with an approximately uni-
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formly distributed phase. Normality allows us to write the
fourth order moment of the electric field as follows [21]:

(E,(DE,(DE,(t+ DE,(t+ 7))z
=(E,(0E,(1))=(E,(t + DE,(t+ 7))z
+(E,(0E,(t + D)=(E,(DE, (1 + 7))z
+(E,(DE,(t+ )=(E,(DE,(t + )=, (8)

thus breaking the expectation over scatterer realizations =
into a product of second order moment contributions. Noting
that the second term on the right-hand side of Eq. (8) van-
ishes due to ensemble averaging over a uniformly distributed
phase and using Eq. (6), the second moment of speckle in-
tensity, Eq. (7), can be written as follows:

(Go(M)-= GH0) + (T (e, 7)), - )
and the variance is then simply
o> =(|T(t. D), . (10)

At this point we need to express the autocorrelation function
(6) as follows:

©

Ly(1,7) =10f p(s)exp(= iAeg(t,7))pds,  (11)
0

where Agp(r,7) is the difference of the accumulated phase
due to the ultrasound-modulation mechanisms at two time
moments along the same path, which we assume is small for
small ultrasonic pressures, and for further conditions dis-
cussed in Ref. [8]. Then we may use a Taylor expansion.
First-order terms average to zero, and terms higher than sec-
ond order are neglected. Consequently, to the second order,

<|F1(I,T)|2>z,7=1<2>(1—j p(S)(MDf(LT))y,z,TdS)- (12)

0

Now our problem reduces to evaluating (A@(t, ). The
difference of the accumulated phase

Ap (1, 7) =Ag, ,(1,7) + A, 4(1,7), (13)

is due to two physical mechanisms: ultrasound-induced op-
tical scatterer displacement and ultrasound-induced changes
in the optical refractive index of the medium, represented by
the first and second terms on the right-hand side of Eq. (13),
respectively.

The evaluation of the second-order moment of Ag,:

<AQD32,(I, T)>H,z = <A(Pin>H,z + <A(Pid>H,z + <2A¢x,nA(ps,d>H,t
(14)

was calculated in Eq. (29) of Ref. [8], assuming isotropic
Scattering’ where <AqD?,n>H,t’ <AqD?,d>H,t’ and <A¢s,11Aqu,d>H,r
are the auto and cross correlations of accumulated optical
phase differences due to ultrasound-induced optical refrac-
tive index changes and time-varying optical scatterer dis-
placements. Averaging over 7 gives our desired results:
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1
(AQ*(t, D)= (ot Cat Cpa), (15)

where C,, C,, and C, , are given by Eq. (30) of Ref. [8]:
G G2 1= GS/l+l
C, = AZf(kal)Z[ (? + 1) _ Gt M

k2 1-G (1-G)?
s2[ s l_Gs/l—1:|
C,=N5| —-—— |,
¢ k§{3l (k1)
23S G(1-G""
CAn_w)[g] 16)
’ k2 I 1-G

Here A:ZnOkOPo/(pvi), where ny is the optical index of re-
fraction, ky=27/\ is the magnitude of the optical wave vec-
tor, A is the optical wavelength in vacuum, P is the ultra-
sound pressure amplitude, p is the mass density of the
medium, and v,, is the ultrasound velocity. &, is the ultrasonic
wave vector magnitude, and 7 is the elasto-optic coefficient,
approximately equal to 0.32 in water at standard conditions.
S and ¢ are the relative displacement amplitude and phase
lag between the optical scatterers and the fluid motion, ap-
proximated as =1 and =0, respectively, in our subsequent
analysis, and discussed further in Ref. [8].

In Eq. (16), G=(k,l)~" arctan(k,l), where [ is the isotropic
mean-free path. Anisotropic scattering can be considered by
exploiting an approximate similarity relation and replacing [
with the transport mean-free path /,,.=1/(1-g) (where g is the
scattering anisotropy factor) in the above equations.

3. Contrast of speckles
Speckle contrast is defined
g
@),

Inserting calculated values for mean and standard deviation
of speckle intensity, we have

C= (17)

<|F (tv )|2>t7' 1 -
=G (lﬁ(OT)’ = _Efo PAQY(t, 7)) - ds,
(18)

where the last expression keeps only terms to first order in
(A@(t, D)y, » appropriate for small ultrasonic pressures.
The difference in speckle contrast AC between ultrasound
off and ultrasound on states is given by the magnitude of the
second term in the right-hand side of Eq. (18), evaluated as
follows:

1 o0
AC= Ef p)(C,+Cy+C, )ds. (19)
0

Since all the C terms of Eq. (16) are proportional to P(z) we
note that AC is proportional to acoustic intensity. In this
article we validate this linear relationship between speckle
contrast and acoustic intensity with experimental data. Al-
though the theory is limited in its scope it provides greater

PHYSICAL REVIEW E 73, 061920 (2006)

FIG. 1. Experimental setup. S, sample; CCD, CCD camera;
AMP, RF amplifier; FG, function generator; TG, trigger generator;
Tx, ultrasound transducer.

intuition and analytical motivation behind speckle contrast
detection and acoustic and optical parameter selection.

4. High ultrasound frequencies

Here we consider ultrasound frequencies f,, high enough
that k,/,, is larger than, preferably much larger than 1. In this
case G tends to m/(2k,l,). Also, since our framework is
derived for the diffusion regime, we should consider optical
scattering paths much longer than the transport mean-free
path. In this case C,+C,+C, ,~ C, which is approximately
A2-;é(kalt,)2Gi, and the change in speckle contrast between

ultrasound on and ultrasound off states, AC, is given as fol-
lows:

s Py 2 v,

AC 4<n0kopv§) nzfa' (20)
The term 5= [;sp(s)ds reflects the mean path length for a
given light-propagation geometry. For example we might
consider transmission and reflection of light through a slab as
considered analytically in the diffusion regime by Ref. [20].
Then [§spr(s)ds and [ spg(s)ds represent mean transmis-
sion and reflection path lengths, respectively, for given posi-
tions of source and detector.

The more general expression, Eq. (19), more accurately
accounts for correlations between ultrasound-induced optical
phase increments along the photon path, although it is more
difficult to compute. In particular it accounts for correlations
between ultrasound-induced optical phase increments when
k,l, 1s not >1.

III. EXPERIMENT

Our experimental setup is illustrated in Fig. 1 and in-
cludes a laser source, ultrasound transducer, imaging sample,
CCD camera, and timing synchronization electronics. To ac-
quire one point of an image we apply ultrasonic bursts while
using a CCD camera to detect modulated light originating
from the ultrasonic sample volume. We used a frequency-
doubled Nd: YAG laser due to its stability and long coherence
length (Coherent, Verdi; 532-nm wavelengths). We used a
1-MHz transducer (Ultran VHP100-1-138) with 38-mm fo-
cal length and a 3.5-MHz transducer (Panametrics V380)
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FIG. 2. Plot of the change in speckle contrast AC (between
ultrasound off- and on-states) for 1- and 3.5-MHz transducers ver-
sus acoustic intensity g,

with 49-mm focal length. Both transducers had a 25 mm
diameter active aperture. The laser beam was aligned in free
space to pass through the ultrasonic focus such that the light
and ultrasound directions were perpendicular to each other.

Speckle patterns emerging from the sample were captured
by a digital CCD camera (Basler, A312f; 12-bit, 640 X 480)
such that the average speckle spot size was matched to the
CCD pixel size. A light tube with the appropriate aspect ratio
was used to ensure this matching. A function generator (Agi-
lent, 33250A) synthesized 2 ms bursts that were subse-
quently amplified by an RF amplifier (ENI, Inc., 325LA) to
drive the ultrasound transducer. A low 1-Hz duty cycle was
used to prevent damage to the transducer. Burst initiation
triggered a pulse-delay generator (Stanford Research,
DG535) that produced two CCD trigger pulses for each
burst. One image was captured with the ultrasound on while
the subsequent image was acquired with ultrasound off. Cap-
turing on-off pairs allowed considerable robustness to slow
speckle contrast drift due to environmental instabilities. For
our sample we used a homogeneous 10% gelatin, 10% corn-
starch phantom in a 2-cm thick slab geometry with reduced
scattering coefficient u=9.2 cm™' as measured by the
oblique-incidence diffuse reflectance technique [22].

Here we experimentally investigate the theoretical predic-
tion that laser speckle contrast decreases linearly with acous-
tic intensity. We do this by measuring speckle contrast with
both 1-MHz and 3.5-MHz transducers. Pressures were mea-
sured in deionized water at room temperature with a broad-
band needle hydrophone and are accurate to +10%. Rather
than plot the decrease in speckle contrast, in Fig. 2 we plot
the magnitude of the difference in speckle contrast, AC, be-
tween ultrasound off and ultrasound on as a function of time-
averaged acoustic intensity. Fifty pairs of on-off speckle con-
trast measurements were used to estimate each data point and
error bars are smaller than data marker sizes. Intensity is
defined as Pj/(2pv,) where P, is the peak acoustic pressure,
p is the mass density of the sample, and v, is the speed of
sound. This is often referred to as /,,,, the spatial peak time-
averaged intensity.

IV. DISCUSSION

The trend in Fig. 2 is linear for both 1- and 3.5-MHz
transducers as evidenced by the high linear correlation coef-
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ficients 0.9995 and 0.9978, respectively. These curves vali-
date the theoretical prediction of linearity of signal with
acoustic intensity, even though the theoretical model did not
account for spatially varying acoustic fields.

It should be noted that the 1 MHz transducer offers con-
siderably more signal than the 3.5 MHz transducer. It is
noteworthy to comment on the frequency dependence of AC.
The ratio of slopes between 1 and 3.5 MHz in Fig. 2 is
approximately 18:1. Let us assume that we may use Eq. (20)
as a rough estimate to compute an expected slope ratio to
compare with the experiment. In doing so, let us approximate
the acoustic field as plane-wave homogeneous over a
bounded volume representative of the ultrasonic focal zone,
and that this is the principal light-ultrasound interaction re-
gion. For 1 MHz, the mean photon path length s should be
greater than the focal beam width of 2.3 mm and for
3.5 MHz 5 is close to the ultrasound beam focal width of
0.85 mm. In making estimates of the predicted slope ratios,
we should note that the assumptions needed to make the
theory analytically tractable do not closely match the experi-
mental conditions. In particular: (i) the focal widths are
likely too small to accurately use the diffusion approximation
for light transport across the light-ultrasound interaction re-
gion: (ii) the acoustic field is spatially inhomogeneous rather
than a plane wave: (iii) k,/,, for 1 MHz is not much larger
than 1 thus reducing the accuracy of Eq. (20): (iv) optical
index of refraction changes due to pressures greater than
10° Pa may be large enough to bend photon paths in a way
not presently accounted for by theory: (v) the theory does not
account for polarization, Brownian motion, or imperfect tem-
poral coherence of the laser source, effects that may tend to
blur speckle contrast over the CCD exposure period. Indeed
we note that the maximum ultrasound-off speckle contrast
C,.ax €xperimentally observed is ~0.3 rather than 1.

Another key point is that the amount of unmodulated light
passing around the acoustic beam will influence the observed
change in speckle contrast between ultrasound on- and off-
states. Equations for AC such as Eq. (20) may be modified to
include a multiplicative factor ¢ which is representative of
the fraction of light passing through the acoustic sample vol-
ume (see endnote [24]). In our situation, the fraction of light
passing through the beam focal region is estimated as
Cimm:~0.3 and £y~ 0.1 [25].

Accounting for £, Eq. (20) predicts that the slope ratio
should be ~28:1. This very rough estimate differs from the
measured slope ratio by approximately 50%. Using C,,,.
=0.3, the absolute values of the slopes for 1 and 3.5 MHz are
estimated within an order of magnitude of the measured val-
ues of 0.0037cm?/W and 0.0002cm?/W, respectively. Al-
though the experimental conditions do not closely match the
conditions presently required to make the theory analytically
tractable, the main point of the experimental results is to
demonstrate the predicted linearity of AC with acoustic in-
tensity, and to show that there is substantially more modu-
lated light with low frequencies, compared with higher fre-
quencies. Future work should account for modulated light
transport through spatially varying acoustic fields, as well as
modulated light transport across subdiffusion-regime sample
volumes. Progress is being made to this end [23].
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V. CONCLUSIONS

We have presented a stochastic model of speckle statistics
in ultrasound-modulated optical tomography for plane-wave
ultrasound and low acoustic intensities. The model predicts
that speckle contrast will change linearly with acoustic
intensity—a prediction validated experimentally. Signifi-
cantly more modulated light is detected using 1-MHz ultra-
sound compared with 3.5-MHz ultrasound for the same
acoustic intensity. The greater signal is attributed to a larger
ultrasonic sample volume, larger ultrasound-induced particle
displacement, and enhanced optical field modulation due to
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index-of-refraction mechanisms. The model suggests that the
change in speckle contrast is proportional to the intensity of
modulated light. The present model breaks down at high
acoustic powers where substantial phase accumulation is ex-
pected. Future work should incorporate spatially varying
acoustic fields, and optical heterogeneities.
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