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In this paper, we present a Born-type approximation method for bioluminescence tomography
�BLT�, which is to reconstruct an internal bioluminescent source from the measured bioluminescent
signal on the external surface of a small animal. Based on the diffusion approximation for the
photon propagation in biological tissue, this BLT method utilizes the Green function to establish a
linear relationship between the measured bioluminescent signal and the internal bioluminescent
source distribution. The Green function can be modified to describe a heterogeneous medium with
an arbitrary boundary using the Born approximation. The BLT reconstruction is formulated in a
linear least-squares optimization framework with simple bounds constraint. The performance of this
method is evaluated in numerical simulation and phantom experiments. © 2006 American Asso-
ciation of Physicists in Medicine. �DOI: 10.1118/1.2168293�
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I. INTRODUCTION

The use of light emitting probes as reporters of gene expres-
sions is a powerful noninvasive technique to reveal molecu-
lar and cellular activities in a small animal in vivo. Using
such probes, a small animal model can be studied for many
biomedical purposes.1–3 In bioluminescent imaging, biologi-
cal entities �e.g., tumor cells, genes� are tagged with lu-
ciferase enzymes, and implanted in a small animal. When the
luciferase molecules are combined with a substrate luciferin
in the presence of ATP and oxygen, the photons are emitted
at about 600 nm.4 The produced light intensity directly de-
pends on the concentration of the luciferin and the density of
luciferase molecules. The transmission of the bioluminescent
photons through the biological tissue is subject to both scat-
tering and absorption. Due to the semitransparent nature of
the biological tissue, the light penetration depth is several
centimeters in that spectral range, and a significant amount
of the photons can be recorded using a sensitive charge
coupled device �CCD� camera.4,5 Because the biological tis-
sue does not produce bioluminescence and autolumines-
cence, the background noise may be kept very low. This
results in an excellent signal-to-noise ratio of the imaging
process.5,6 Over past years, we have been developing biolu-
minescence tomography �BLT� to reconstruct the biolumi-
nescence source distribution within a small animal.7 Specifi-
cally, bioluminescent data measured on the body surface of a
small animal can be processed in reference to a correspond-

ing micro-CT volume of the same small animal to achieve
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three-dimensional �3D� localization and quantification of the
bioluminescence activities in the animal.

The bioluminescent photon propagation in the tissue can
be well described by either the radiative transfer equation or
the Monte Carlo model.8 However, neither the radiative
transfer equation nor the Monte Carlo model is computation-
ally affordable in most practical applications. Given the
dominance of scattering over absorption in the light propa-
gation inside a small animal, the diffusion approximation
gives a relatively accurate light propagation model to predict
the photon density.9,10 Recently, based on the diffusion equa-
tion, finite element-based methods have been presented to
solve the BLT problem.11–13 In the finite element scheme, the
diffusion equation is discretized to yield the corresponding
matrix equation, and this inverse source problem is formu-
lated in the linear least squares framework with simple
bounds constraint. The precision of the finite element solu-
tion to the diffusion equation depends on the finite element
model, the element size, and the interpolation shape function.
In the next section, based on the diffusion equation we de-
velop a BLT algorithm using the analytic Green function and
Born approximation. In the third section, we report numeri-
cal and experimental results. Finally, we discuss a few rel-
evant issues, and conclude the paper.

II. RECONSTRUCTION METHOD

A. Diffusion model

In bioluminescent imaging, bioluminescence sources are

biotechnically induced inside a small animal. In the highly
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scattering biological tissue, the diffusion approximation to
gives a quite accurate description of the bioluminescent light
propagation in the small animal,9,10,14

− � · �D�r� � ��r�� + �a�r���r� = S�r� �r � �� ,

�1�
D�r� = �3��a�r� + �1 − g��s�r���−1,

where � denotes the region of interest for the object, ��r�
the photon density �Watts/mm2�, S�r� the energy density dis-
tribution of a light source �Watts/m3�, D�r� diffusion coef-
ficient, �a�r� the absorption coefficient �mm−1�, �s�r� the
scattering coefficient �mm−1�, and g the anisotropy param-
eter. The optical parameters �a�r�, �s�r�, and g can be inde-
pendently determined; for example, from the literature or the
diffuse optical tomography technique. Assuming that the ex-
periment is performed in an ideal dark environment, and no
photon comes in an inward direction at the boundary. Taking
into account the mismatch between the refractive indices n
with � and n� in the surrounding medium, the boundary
condition can be expressed as14,15

��r� + 2Cnd�r�D�r��� · ���r�� = 0 �r � ��� , �2�

where � is the unit outer normal on ��, Cnd�r�= �1
+R�r�� / �1−R�r��. In the experiment, the medium surround-
ing � is air, for which n� is approximately 1. Therefore, R�r�
only depends on the refractive index n of the medium, and
can be approximated by R�−1.4399n−2+0.7099n−1

+0.6681+0.0636n. The measured quantity is the outgoing
photon density on ��,15

Q�r� = − D�r��� · ���r�� =
1

2Cnd�r�
��r� �r � ��� . �3�

B. Reconstruction formula

Clearly, BLT is to reconstruct the 3D source distribution
S�r� from the two-dimensional �2D� measured outgoing pho-
ton density Q�r� on �� based on �1�–�3�. This is typical
underdetermined and ill-posed problem, and much more dif-
ficult than the associated forward problem. Wang et al. dis-
cussed the solution uniqueness for the BLT problem under
some practical constraint conditions, and established that the
unique solution or semiunique solution is possible by incor-
porating sufficiently a priori knowledge, including the opti-
cal parameters of the anatomy, the region and form of the
light source.16

According to the partial differential equation theory, the
solution to �1�–�3� can be expressed in terms of its Green
function G�rd ,rs�,

��rd� = �
�s

S�rs�G�rd,rs�drs �rs � �s,rd � ��� , �4�

where S�rs� is the light source density at location rs, �s is a
subregion ��s��� to be predetermined from a priori
knowledge, in which a bioluminescent source distribution
may present, and rd is the detector position. The Green func-

tion G�rd ,rs� can be numerically computed; for example,
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using finite differences, finite elements or Monte Carlo
method. While the direct computation is expensive, a Born-
type approximation approach can be used to simplify the
procedure for the Green function G�rd ,rs�. In an infinite ho-
mogeneous medium, the Green function has an analytic
form:10

Gh�	rd − rs	� =
exp�− �eff	rd − rs	�

4�D	rd − rs	
,

�5�

��Gh�	� − r	� = − 
�eff +
1

	� − r	� � − r

	� − r	
Gh�	� − r	� ,

where �eff= ��a /D�1/2 is the effective attenuation coefficient.
In order to obtain the Green function for arbitrary bound-
aries, we can partition the body surface of a small animal
into N facets, each of which has an area �Sb and a surface
normal nb. Using the Kirchhoff approximation �KA� and ex-
trapolated boundary condition, the complete Green function
Gb�rd ,rs� for a homogeneous medium and boundary condi-
tion �2� can be expressed by the Green function Gh�rd ,rs�,

17

Gb�rd,rs� = Gh�rd,rs� − �
b=1

N

W�rd,rb�Gh�	rb − rd	�

��Gh�r1� − Gh�r2���S�rb� ,

�6�

W�rd,rb� = 
 1

2CndD
− 	�	rd − rb	�nb · �rd − rb�� ,

where r1= 	rs−rb	, r2=
4CndD�CndD− �rs−rb� ·nb�+r1
2, and

function 	�r� is defined as 	�r�= ��eff+ �1/r���1/r�. Since a
real animal body is not homogeneous, it should be consid-
ered as heterogeneous medium. According to the perturba-
tion theory,18 the optical parameters may be decomposed into
background values �D0 and �a

0� and its perturbation value
�
D and 
�a�, that is D�r�=D0+
D�r�, �a�r�=�a

0
�a�r�.
Hence, the Green function in the heterogeneous medium can
be expressed in an integral form19

G�rd,rs� = Gb�rd,rs� + �
�

Gb�rd,����� · �
D�����G��,rs��

− 
�a���G��,rs��d� . �7�

Therefore, the desired Green function G�rd ,rs� can be ob-
tained by an iterative procedure based on �7�. In general, the
Born method produces a relatively accurate approximation to
the exact Green function G�rd ,rs� in the small perturbation
case, and G�rd ,rs� in the heterogeneous medium under the
boundary condition �2� can be formulated as20

G�rd,rs� = Gb�rd,rs� − �
�

Gb�rd,��Gb��,rs�
�a���d�

− �
��

Gb�rd,��Gb��,rs�

D���

2CndD���
d�

− � ���Gb�rd,��� · ���Gb��,rs��
D���d� . �8�

�
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The gradients ��G�rd ,�� and ��G�� ,rs� in �8� are obtained
according to the following formulas:

��Gb�rd,�� = ��Gh�rd,�� + �
b=1

N

�W�rd,rb�Gh�	rb − rd	�

�P�r1,r2��S�rb�� ,

�9�
P�r1,r2� = �Gh�r1�	�r1� − Gh�r2�	�r2���� − rp�

+ 2CndDGh�r2�	�r2�nb

and

��Gb��,rs� = ��Gh��,rs� − �
b=1

N

H��,rb�Gh�	rb − �	�

��Gh�r1� − Gh�r2���S�rb� ,

�10�

H��,rb� =
nb · �� − rb�

	� − rb	2
��eff

2 + 3	�	� − rb	���� − rb�

− 	�	� − rb	�
 �� − rb�
2CndD

+ nb� .

Now, the linear relationship between the predicted photon
density on the domain boundary and the bioluminescence
source strength has been established as summarized by
�4�–�10�. Since BLT is an ill-posed problem, an effective
approach is to find a regularized solution by minimizing the
following objective function:21

min
0�S�rs��U�rs�

��Q�rd� − Qmeas�rd��W
2 + �
�S�� ,

�11�

Q�rd� =
1

2Cnd
�

�s

G�rd,rs�S�rs�drs,

where W is a weighting matrix and norm �V�W
2 =VTWV,

U�rs� denotes an upper bound on S�rs� to be physically
meaningful, 
�S� a stabilizing functional, � the regulariza-
tion parameter to balance 
�S� and �Q�rd�−Qmeas�rd��W

2 .

III. EXPERIMENTAL RESULTS

A. Born approximation

We designed a numerical heterogeneous highly scattering
phantom. The phantom had radius 10 mm and height
13 mm, and contained four kinds of materials to represent
muscle �M�, lungs �L�, heart �H�, and bone �B�, respectively.
The proper optical parameters were assigned to each of the
four components,9 as summarized in Table I. Then, the phan-
tom was discretized into 23 400 wedge elements, 13 174
nodes, and 1120 measurement datum nodes on the external
surface of the phantom, as shown in Fig. 1�a�.

To evaluate the accuracy associated with the Born ap-
proximation, we compared computed boundary data Q�r� us-
ing direct computation and Born approximation according to
�4� and �6�–�10�. We embedded a number of point source

configurations in the phantom to test the precision of Born
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approximation. We first put a point source of power
1.0 nanowatts at p1�−4.96,0.31,6.00� in the numerical phan-
tom. Then, the direct finite element algorithm and the Born
approximation method were employed to solve the diffusion
equations �1� and �2� for boundary data Q�r�, respectively.
Similarly, the point light source was also moved to other
positions p2�2.14,2.95,6.00�, p3�0.33,−3.02,6.00�, and
p4�−0.73,−6.06,6.00�, respectively, as shown in Fig. 1�b�.
Then the direct finite element algorithm and the Born ap-
proximation procedures were repeated for more datasets. The
results indicate that the computed boundary data by the two
methods were very close, with the maximum relative error
being less than 5%. Figure 2 shows the comparison between
the finite element solution and the Born approximation solu-
tion corresponding to the four point source positions, respec-
tively.

B. Experiment with the numerical heterogeneous
highly scattering phantom

First, we evaluated the performance of the reconstruction
method presented in Sec. II using the numerical heteroge-
neous highly scattering phantom in Sec. III A. Two variants
of the model were studied, which contained a single source
and double sources, respectively. In the single source model,
the source consisted of seven pointlike sources, each had a
power of 0.1 nanowatts. The center of the source located at
�2.4,−3.1,7.0� in the right lung region �L� of the phantom, as
shown in Fig. 3�a�. In the double source model, the sources
were embedded in the left and right lungs �L� of the phan-
tom, respectively. The first source was composed of seven
pointlike sources, each had a power of 0.1 nanowatts. The
center of the source located at �−3.6,−2.8,7.0� in the left
lung region. The other source was embedded in the right
lung region, and was in the same position, strength and com-
position as in the single source model shown in Fig. 4�a�.
Based on the above two models, output photon density mea-
sures at the datum nodes on the phantom surface were gen-
erated using the Born approximation method. In optical im-
aging experiments, the inherent data noise can be optimally
modeled as a Poisson distribution. However, when the pho-
ton rate is sufficiently high, the Gaussian distribution is often
a very good approximation to the Poisson distribution.22,23 In
practice, it is common to model the measurement noise as a
Gaussian distribution. To mimic real experiment data in our
bioluminescent imaging test, the directly synthesized output
photon density data were corrupted with 10% Gaussian noise
to obtain Q�x�. Then, our reconstruction method was used to

TABLE I. Optical parameters used in the numerical phantom.

Material �a �mm−1� �s� �mm−1�

M 0.10 1.8
L 0.09 2.3
H 0.12 2.0
B 0.11 1.9
reconstruct the light source distributions in the two numeri-
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cal phantoms. In the case of the single source model, the
reconstructed source had a power of 0.65 nanowatts, and re-
constructed source center was very close to the true one, as
shown in Figs. 3�b� and 3�c�. In the case of the double source
model, the reconstructed source powers were 0.66 nanowatts
and 0.60 nanowatts for the right and left sources, respec-
tively. Figures 4�b� and 4�c� depicts the true and recon-
structed source distributions. The reconstruction results re-
veal that the true sources can be recovered with about 75%
of total power, while about 10% power was scattered in the
neighborhood of less than 1 mm width surrounding the true
sources. The offset of reconstructed source center was less
than 1 mm. The reconstructed source power is subject to a
relative error up to 15%.

C. Experiment with the physical heterogeneous
highly scattering phantom

1. Camera calibration

In bioluminescent imaging, a CCD camera was used for
measuring photon density data on the surface of a physical
phantom or a small animal. The collected bioluminescent
views must be transformed from pixel numbers into values
Medical Physics, Vol. 33, No. 3, March 2006
in physical units. Hence, camera calibration is required
for BLT. For that purpose, we used an absolutely calibrated
integrating sphere of 8 inches in diameter, which contains a
night vision monitor resolving 10e−7 F-L
��5 femptowatts/mm2� �LR-8-LC, 8 inches low level out-
put sphere system, SphereOptics, Contoocook, New Hamp-
shire�. The sphere was illuminated with a tungsten lamp. A
filter and variable attenuator helped select a particular wave-
length with full width at half-maximum �FWHM� 20 nm and
control the light level entering the sphere. For a selected
wavelength, gray levels were associated with varying inten-
sity values. For the wavelength range of interest
600–650 nm, a calibration formula for the CCD camera was
established as �=	�0.377 nanowatts/mm2, where � repre-
sents photon density and 	 the pixel value.13

2. Physical phantom

A heterogeneous cylindrical phantom of 30 mm height
and 30 mm diameter was designed and fabricated. It con-
sisted of four types of materials viz. high-density polyethyl-
ene �8624K16�, nylon 6/6 �8538K23�, delrin �8579K21�,
and polypropylene �8658K11� �McMaster-Carr supply com-

FIG. 1. Numerical heterogeneous highly scattering
phantom. �a� the phantom consisting of bone �B�, heart
�H�, lungs �L�, and tissue �M�; and �b� a middle cross
section of the phantom. Four pointlike sources p1, p2,
p3, and p4 locate at �−4.96, 0.31, 6.00�, �2.14, 2.95,
6.00�, �0.33, −3.02, 6.00�, and �−0.73, −6.06, 6.00�, re-
spectively. The pointlike source power is always
1.0 nanowatts.

FIG. 2. Comparison between photon
density profiles computed via direct
computation and Born approximation
along the detection circle on the phan-
tom surface at height 8.0 mm. �a�–�d�
Results for one pointlike source at p1,
p2, p3, and p4, respectively.
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pany, Chicago, IL�. The four regions M, L, H, and B in the
phantom represent the polyethylene, nylon, delrin, and poly-
propylene, respectively, as shown in Fig. 5�a�. The lumines-
cent light sticks �Glowproducts, Victoria, British Columbia,
Canada� were used as light sources. The stick consisted of a
glass vial containing one chemical solution and a larger plas-
tic vial containing another solution with the former being
embedded in the latter. By bending the plastic vial, the glass
vial can be broken to mix the two solutions and emit red
light around 650 nm. Two small holes of diameter 0.6 mm
and height 3 mm were drilled in the phantom with their cen-
ters at �−9.0,1.5,15.0� and �−9.0,−1.5,15.0� in the left L
region of the phantom. Two catheter tubes about 1.9 mm
height were filled with red luminescent liquid, and were
placed inside the two holes as light sources, respectively.
Medical Physics, Vol. 33, No. 3, March 2006
Emitting light power of two catheter tubes was measured
with the CCD camera. They are 105.1 nanowatts and
97.4 nanowatts, respectively.

3. Optical parameters

Since the optical parameters were needed for BLT, we had
to determine them for the four components �M, H, L, and B�
of the physical phantom. Four homogeneous cylindrical
phantoms with diameter 20 mm and height 20 mm were
made of the above-mentioned four kinds of materials, re-
spectively. The light about 650 nm was output from the exit
port of the integrating sphere, and guided into a small hole
with 10 mm depth of one specimen through the optic fiber.
In a dark environment, the specimen was imaged and cap-

FIG. 3. BLT reconstruction of one
source in the right L region of a mouse
model. �a� A middle cross-section of
the phantom with the true source dis-
tribution of power 0.70 nanowatts, �b�
2D graphics of the reconstructed
source distribution, and �c� 3D graph-
ics of the reconstructed source distri-
bution from the surface data corrupted
by 10% Gaussian noise, and true
source and reconstructed source distri-
bution are displayed using low inten-
sity and high intensity, respectively.

FIG. 4. BLT reconstruction of two
sources in the left and right L region,
respectively. �a� A middle cross-
section of the phantom with the true
source distribution, �b� 2D graphics of
the reconstructed source distribution,
and �c� 3D graphics of the recon-
structed source distribution from the
surface data corrupted by 10% Gauss-
ian noise, and true source and recon-
structed source distribution are dis-
played using low intensity and high
intensity lines, respectively.



684 Cong et al.: A Born-type approximation method for bioluminescence tomography 684
tured the output photon on the other surface of the specimen
using cooled CCD camera �Roper Scientific Inc, Trenton,
NJ� with an exposure time of 30 seconds. Then, the surface
output photon density was calculated by transforming the
pixel values in the CCD image into the light unit according
to our experimentally established calibration formula. The
specimen was modeled as a semi-infinite homogeneous me-
dium. The steady-state diffusion theory was applied with the
extrapolated boundary condition that the photon density was
zero at an artificial boundary parallel to the boundary of the
medium. Then, an analytic formula was used to predict the
photon density on the bottom surface. Finally, a nonlinear
least square fitting was done to determine the absorption co-
efficient �a and the reduced scatter coefficient �s�. The cal-
culated optical parameters of the four regions are given in
Table II.13

4. Data acquisition

The heterogeneous phantom containing the two light
sources was placed on the sample holder in front of the CCD
camera. Then, the data acquisition was performed in a dark
environment along four horizontal orientations 90 degrees
apart. During each acquisition, one luminescent view was
taken by exposing the camera for 60 seconds, as shown in
Fig. 6. A permissible source region �s was assigned by ana-
lyzing the four luminescent views taken by the CCD camera.
These four planar images exhibited high value clusters near
the center of the front image and a low value distribution in
the back image. On the right-hand side and left-hand side
images, it was seen that one side displayed high values while

TABLE II. Optical parameters estimated for the heterogeneous highly scat-
tering phantom.

Material �a �mm−1� �s� �mm−1�

T 0.0068 1.031
L 0.0233 2.000
H 0.0104 1.096
B 0.0001 0.060
Medical Physics, Vol. 33, No. 3, March 2006
the other side showed low values. From these observations,
we infer that the light source region should be in the front
part of the phantom. Along the longitudinal direction, high
values were clustered around z=15 mm relative to the phan-
tom bottom. Consequently, the permissible source region
was specified as

�s = ��x,y,z�	− 12.0 � x � − 6.0,− 7.0 � y � 7.0,13.0

� z � 17.0� .

5. BLT reconstruction

To simulate the photon propagation in the phantom, a
geometrical model of diameter 30 mm and height 20.66 mm
was established corresponding to a middle section of the
physical phantom. Based on this geometrical model, a finite-
element discrete model was built consisting of 13 608 wedge
elements and 7809 nodes with 1216 datum nodes on the
phantom surface, as shown in Fig. 7�a�. The optical proper-
ties of every element were assigned in reference to the opti-

FIG. 5. Physical heterogeneous highly scattering phan-
tom. �a� A photography of the highly scattering phan-
tom consisting of polyethylene �M�, nylon �L�, delrin
�H�, and polypropylene �B�; and �b� a middle cross sec-
tion through two small hollow cylinders for hosting
sources in the L region.

FIG. 6. Luminescent views on the cylindrical phantom surface taken using a
CCD camera in four horizontal directions 90 degrees apart. �a� Front, �b�

back, �c� left-hand side, and �d� right-hand side views of the phantom.
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cal parameters reported in Sec. III C 3. On the surface of the
geometric model 19 circles were selected, separated by
1.148 mm, along each of which 64 detection locations were
uniformly distributed. The pixel values of the luminescent
views were transformed into corresponding physical units.
The measured photon density at each detector location was
obtained from the luminescent images �Fig. 6�. The com-
puted photon density at the corresponding detection point
was obtained using �3� and �4� in Sec. II. Then, the recon-
struction method described in Sec. II was applied to recon-
struct the light source distribution in the heterogeneous phan-
tom. The reconstructed results correctly revealed that there
were two light sources in the phantom, their center located at
�−8.24,2.75,15.0� and �−8.24,−2.79,15.0� with total power
76.3 nanowatts and 67.6 nanowatts, respectively. Each light
source just consisted of up-and-down two point-like sources
separated about 2 mm, matching the real cylinder light
source inside phantom. The pointlike source at a node can be
regarded as an equivalent spherical source with a corre-
sponding power and radius estimated as half an average size
of the element edges. Figure 7 shows both a photograph of
the phantom and the reconstructed source distribution. The
differences between the reconstructed and real source posi-
tions were less than 1.5 mm. The relative errors in the source
power were 27% and 31% for the two sources, respectively.
The computed surface photon density profiles based on the
reconstructed light sources were in good agreement with the
experimental counterparts, with the average relative error be-
ing 11%. Two representative photon density profiles for the
Medical Physics, Vol. 33, No. 3, March 2006
comparison between the computed and measured photon
density on the side surface of the phantom were shown in
Fig. 8.

IV. DISCUSSION AND CONCLUSIONS

The above-described results have demonstrated the feasi-
bility of our reconstruction method for BLT. In the numerical
phantom experiment, even though the measured data on the
external surface of the phantom were corrupted by 10%
Gaussian noise, the light sources can be located fairly accu-
rately, and source power can be recovered up to 85%. All the
simulation experiments we performed have shown that the
algorithm is fairly robust with respect to data noise and the
initial distribution in the optimization procedure. Our physi-
cal phantom experiment has confirmed that the method can
reliably identify light sources in the heterogeneous back-
ground. The error of the reconstructed source location is
about 1.5 mm. The error of the reconstructed source power is
about 30%. Compared with the data we obtained in the nu-
merical simulation, the reconstruction results for the physical
phantom may be further improved by using the radiative
transport equation instead of the diffusion equation, decreas-
ing the element size, reducing the measurement noise, and so
on. Although the total power of each reconstructed source
was close to the true power, the volumes of the reconstructed
sources are different from the actual values, depending on
the mesh size. Generally, the smaller the mesh size we use,
the higher accuracy we will achieve in reconstructing the

FIG. 7. BLT reconstruction of the two
sources in the left L region from ex-
perimental data. �a� A 3D rendering of
the reconstructed sources �sphere� and
real sources �cylinder�; and �b� a 2D
graphics of the reconstructed sources.

FIG. 8. Comparison between mea-
sured and computational photon den-
sity profiles along the detection circle
on the phantom surface at heights �a�
10.37 mm and �b� 17.27 mm.
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shape and/or size of the underlying source. A procedure for
progressive mesh refinement will help enhance the recon-
struction quality, and will be explored in our future study.

In this work, we have established a direct linear relation
between the light source distribution and the measured pho-
ton density on the side surface of the object. The advantage
over the finite element reconstruction method13 is that our
method does not involve an inverse matrix, and can handle
more complicated numerical models. Particularly, our
method is more suitable for parallel computing. In addition,
this method will be more efficient in the case of smooth
varying optical properties consistent to Born approximation
theory.

Currently, we are working to perform living mouse stud-
ies using the proposed reconstruction method. It would be
critically important for BLT to be applied in biomedical ap-
plications. Such in vivo BLT is highly challenging, involving
geometrical modeling of the mouse, determination of optical
parameters, bioluminescent data acquisition, multiresolution
iterative reconstruction, and generation for a finite element
mesh of a heterogeneous, irregular and complicated object.

In conclusion, we have developed a Born-type approxi-
mation method for BLT, obtained encouraging preliminary
results in both numerical simulation and physical phantom
experiments, and established that our proposed method is
effective for BLT. In vivo mouse studies using our BLT
method will be reported in the future.
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