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Weighted Expectation Maximization Reconstruction
Algorithms for Thermoacoustic Tomography

Jin Zhang, Mark A. Anastasio*, Xiaochuan Pan, and Lihong V. Wang

Abstract—Thermoacoustic tomography (TAT) is an emerging imaging
technique with potential for a wide range of biomedical imaging applica-
tions. In this correspondence, we propose an infinite family of weighted
expectation maximization (EM) algorithms for reconstruction of images
from temporally truncated TAT measurement data. The weighted EM al-
gorithms are equivalent mathematically to the conventional EM algorithm,
but are shown to propagate data inconsistencies in different ways. Using
simulated and experimental TAT measurement data, we demonstrate that
suitable choices of weighted EM algorithms can effectively mitigate image
artifacts that are attributable to temporal truncation of the TAT data func-
tion.

Index Terms—Image reconstruction, optoacoustic tomography, photoa-
coustic tomography, thermoacoustic tomography.

I. INTRODUCTION

Thermoacoustic tomography is an important emerging imaging tech-
nique with potential for a wide range of biomedical imaging appli-
cations [1]. Previously, we proposed and investigated reconstruction
methods for TAT that were based on the half-time reflectivity tomog-
raphy paradigm [2], [3]. These reconstruction methods permit accurate
image reconstruction from knowledge of only half of the detected pres-
sure signal at each location on the receiving aperture. This is possible
because a complete set of TAT measurement data contains twice as
much information as is required theoretically for stable image recon-
struction.

Reconstruction algorithms for TAT that are in current use assume
that the object is acoustically homogeneous. An attractive character-
istic of the half-time reconstruction approaches is that they can miti-
gate image artifacts due to heterogeneous acoustic properties of an ob-
ject [2]. However, an undesirable feature of the half-time reconstruc-
tion approaches is that they can produce artifacts in the central region
of image space that are attributable to the abrupt truncation of the data
function. Such artifacts can obscure centrally located object features
and, in some cases, hinder the diagnostic interpretation of the images.

In this correspondence, an infinite family of weighted expectation
maximization (EM) algorithms is proposed for reconstructing images
from temporally truncated TAT measurement data. We demonstrate
that suitable choices of the weighted EM algorithm can mitigate image
artifacts that are attributable to temporal truncation of the TAT data
function. The weighted EM algorithms are shown to be equivalent
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mathematically to the conventional EM algorithm, but generally prop-
agate data inconsistencies in different ways. Images are reconstructed
from simulated and experimental TAT measurement data to validate
the proposed algorithms and corroborate our theoretical assertions.

II. IMAGING MODEL AND DATA TRUNCATION

In TAT, an electromagnetic pulse is used to irradiate a tissue sample
and a thermoacoustic effect results in the generation of a pressure wave-
field p(~r; t). This pressure wavefield is measured by use of wide-band
ultrasonic transducers that are located on the surface of a spherical [or
circular in the two-dimensional (2-D) case] measurement aperture 
0

that encloses the sample. Assuming that the object has homogeneous
acoustic properties and the probing elec- tromagnetic pulse has a neg-
ligible temporal width, the pressure wavefield p(~r0; t) that is measured
as a function of time t at transducer location ~r0 2 
0 can be expresses
as [4]

p(~r0; t0) = � d3~rA(~r)
d

dt0

� t0 �
j~r �~rj
c

4�j~r0 � ~rj
(1)

where A(~r) denotes the spatial energy absorption function that resides
inside a sphere of radius RA; c0 is the (constant) velocity of sound in
the object and background medium, and the constant � represents the
isobaric volume expansion coefficient divided by the specific heat of
the medium. The reconstruction problem of TAT [4], [5] is to invert (1)
for determination of A(~r) from knowledge of p(~r0; t0) for ~r0 2 
0

and t0 2 (0; j~r0j=c0 + RA=c0].
The TAT data function and the spherical Radon transform are related

as [2]

g(~r0; �t) �
4�

�
t

t

0

dt0p(~r0; t0) = d3~rA(~r)�(�t� j~r0 � ~rj) (2)

where �t � c0t and g(~r0; �t) can be interpreted as a spherical Radon
transform of A(~r). Equation (2) has the same mathematical form as the
imaging model in reflectivity tomography [6], [7]. Consequently, image
reconstruction in TAT can be accomplished by inverting the spherical
Radon transform in (2) via a reflectivity tomography reconstruction
algorithm.

Existing reflectivity tomography reconstruction algorithms [6]–[8]
assume that g(~r0; �t) is untruncated with respect to �t. However, it has
been demonstrated [3], [8] that knowledge of g(~r0; �t) for ~r0 2 
0

and �t 2 (0; j~r0j + �], where � � 0, is sufficient for accurate image
reconstruction. For � = 0, we refer to data function g(~r0; �t) as a
“half-time” data function, which is a minimally complete data function.
We have demonstrated [2] that half-time TAT reconstruction methods
can possess better statistical properties and reduced artifact levels than
images reconstructed by use of conventional (i.e., full-time) methods
that utilize the complete, untruncated, data function. However, trunca-
tion (with respect to �t) of the data function g(~r0; �t) can result in image
artifacts when data inconsistencies are present. The data inconsisten-
cies can be caused by stochastic noise introduced by the measurement
process or deterministic errors created by inaccuracies in the imaging
model. The image artifacts can be attributed to numerical (e.g., inter-
polation) errors and to nonuniform data averaging effects. To mitigate
these artifacts, we propose weighted EM algorithms for image recon-
struction that are described below.
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Fig. 1. (a) Numerical phantom. (b) and (c) Noiseless images reconstructed by use of weighted EM algorithms specified by weighting functions w (~r ; �t) and
w (~r ; �t), respectively.

III. WEIGHTED HALF-TIME EM ALGORITHMS

A. A Family of Weighted EM Algorithms

We will express the imaging model in (2) as

g(~r0; �t) = HA(~r) (3)

where H represents the spherical Radon transform operator, and the
data function g(~r0; �t) and absorption function A(~r) are elements of
the Hilbert spaces Y and X , respectively, which are equipped with L2

inner products. The EM algorithm can be employed for the reconstruc-
tion of A(~r) from knowledge of the TAT (full- or half-time) data func-
tion g(~r0; �t) as [3]

A(~r) � H
�1
g(~r0; �t) = lim

k!1
A
k(~r)

where H�1 is the inverse of H and the iterates Ak are defined by

A
k+1 = A

kH
� g

HA

H�m
(4)

and k is a nonnegative integer. In (4),H� represents the adjoint operator
corresponding toH and the data maskm 2 Y satisfiesm(~r0; �t) = 1 if
g(~r0; �t) > 0 and zero otherwise. The adjoint operatorH� backprojects
the (filtered) data onto concentric spherical surfaces of radii �t that are
centered at the receiver location ~r0.

Truncation of the data function g(~r0; �t) can result in image artifacts
when data inconsistencies are present. To mitigate these artifacts, we
propose the use of a weighted EM algorithm for image reconstruction.
Consider an operator L : Y ! Y that is defined as

Lg(~r0; �t) � g(~r0; �t)w(~r0; �t); (5)

where w(~r0; �t) is a smooth (continuously differentiable) function on

0 � (0; j~r0j + �] that satisfies w(~r0; �t) > 0 almost everywhere1. We
can obtain a weighted imaging model by acting the operator L on both
sides of (3) yielding

gw(~r0; �t) = HwA(~r) (6)

where gw(~r0; �t) � g(~r0; �t)w(~r0; �t) and Hw � LH . Equation (6)
describes a positive integral equation. Moreover, it possesses a unique
solution because (3) possess a unique solution and L is a one-to-one
(injective) operator on the space Y . Accordingly, the EM algorithm
can be employed in a principled way [9] for reconstruction of A(~r)
via inversion of (6). It can be shown readily that H�w = H�L, which
indicates thatH�w represents a spherical backprojection of the weighted

1More specifically, w(~r ; �t) > 0 everywhere on 
 � (0; j~r j + �] except
on a subset of measure zero.

Fig. 2. The weighting function w (~r ; �t) (solid line) and w (~r ; �t) (dashed
line) as defined by (9) and (10), respectively. In this example, � = 15; R =
128, and R � j~r j = 1:2R .

data function. The reconstruction of A(~r) by use of a weighted EM
algorithm can be accomplished as

A(~r) � H
�1

w gw(~r0; �t) = lim
k!1

A
k
w(~r) (7)

where H�1w is the inverse of Hw and the iterates Akw are defined by

A
k+1
w = A

k
w

H�L g

LHA

H�L(m)
= A

k
w

H�L g

HA

H�L(m)
(8)

where the mask function m is the same as in the conventional formula
in (4).

Because there exists an infinite number of weighting functions
w(~r0; �t), and consequently imaging models described by (6), (8)
represents an infinite family of reconstruction algorithms for deter-
mination of A(~r). These reconstruction algorithms are equivalent
mathematically, but can be expected to propagate data inconsistencies
and finite sampling effects distinctively. The images reconstructed by
use of different reconstruction algorithms can contain distinct artifacts
due to acoustic heterogeneities and have different statistical properties.
This observation presents the opportunity for the specification of a
weighting function w(~r0; �t) (equivalently, imaging model Hw) that
produces a reconstructed image that is optimal in a prescribed sense.
It is mathematically interesting to note that the family of weighted EM
algorithms described by (8) can be obtained naturally by considering
the data space Y to be a weighted Hilbert space [10] that employs
w(~r0; �t) in the definition of its inner product.

B. Application to Temporally Truncated TAT Data

In this correspondence, our primary intent is to demonstrate that
suitable choices for w(~r0; �t) can mitigate image artifacts that are at-
tributable to temporal truncation of the TAT data function. We restrict
our attention to data functions g(~r0; �t) that are known 8~r0 2 
0 and
8�t 2 (0; ~r0 + �]; � � 0. As discussed previously, knowledge of such
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Fig. 3. Noisy images reconstructed by use of 60 iterations of the EM algorithm with weighting functions (a) w (~r ; �t), (b) w (~r ; �t), and (c) no weighting
(conventional EM). (d)–(f) Corresponding images for 120 iterations of the EM algorithms.

truncated data functions is sufficient for unique and stable image re-
construction. We will require that w(~r0; �t) satisfies

w(~r0; �t = j~r0j+ �) = 0

i.e., the weighting function will be zero at the location of the data trun-
cation in g(~r0; �t). Therefore, because w(~r0; �t) is a smooth function
of �t, the discontinuity in g(~r0; �t) caused by data truncation will not
be present in the weighted data function gw(~r0; �t). Consequently, the
image reconstructed from gw(~r0; �t) can be expected to contain fewer
and/or weaker artifacts than one reconstructed directly from g(~r0; �t).
[Here, the artifacts that we refer to are the ones that can be attributed to
the data truncation in g(~r0; �t).] In the following sections, we suggest
and demonstrate the use of several choices of w(~r0; �t).

Note that the strategy of employing a weighting function to elim-
inate discontinuities in truncated tomographic data is well known.
For example, this approach is used commonly in the truncated X-ray
fan-beam and cone-beam tomography problems [11], [12] that uti-
lize analytic inversion formulas. However, in these applications, the
weighting function serves to both eliminate the data discontinuity and
properly normalize redundant information contributed by the overscan.
The weighting function in our EM algorithm serves only to accomplish
the former objective; the normalization of the measurement data is
accomplished implicitly by the EM algorithm [see the denominator
of (8)]. This feature of the EM algorithm is particularly convenient
for our purposes because the explicit structure of data redundancies in
TAT is not known at the present time.

IV. NUMERICAL STUDIES

We performed numerical studies using simulation and experimental
TAT measurement data to investigate the weighted EM-based recon-
struction approaches for TAT. Although both the simulation and exper-
imental data corresponded to 2-D TAT measurement geometries, the
conclusions derived from these studies are also applicable to the 3-D
case.

The 2-D numerical phantom shown in Fig. 1(a) was chosen to rep-
resent the absorption function A(~r). From knowledge of A(~r), which
had a radius of RA = 1 (arbitrary units), a truncated data function was
calculated numerically assuming the the 2-D measurement geometry
described in [2] with j~r0j = 1:2. The data function was determined

at 360 equally spaced positions on the circular aperture and at 138
equally spaced values of �t over the interval [j~r0j � RA; j~r0j + �]. The
overscan parameter � satisfied (�=RA) = (10=128). Noisy versions
of the simulated data functions were created by treating the pressure
signal p(~r0; t0) as an uncorrelated Gaussian random process with a
constant variance of �2 = (0:03)2, and integrating the pressure signal
according to (2). An explicit description of this noise model is pro-
vided by (23) with a = 0 in [2]. The two experimental TAT data sets
described in [2] were employed also. From the experimental data, trun-
cated data functions were defined that corresponded to overscan pa-
rameters satisfying (�=RA) = (50=952) (for the phantom object) and
(�=RA) = (50=500) (for the mouse brain).

Images were reconstructed by use of the conventional EM algorithm
and two versions of the weighted EM algorithm. The weighted EM
algorithms were specified by the weighting functions

w1(~r0; �t)

=
j~r j+���t
R +�

: j~r0j �RA � �t � j~r0j+ �

0: otherwise
(9)

and

w2(~r0; �t)

=

1: j~r0j �RA � �t � j~r0j � �

0:5 + 0:5 sin2 �

2�
(j~r0j � �t) : j~r0j � � < �t � j~r0j

0:5� 0:5 sin2 �

2�
(j~r0j � �t) : j~r0j < �t � j~r0j+ �:

(10)

Plots of w1(~r0; �t) and w2(~r0; �t) are shown in Fig. 2. The weighting
function w1 is a linear function that decreases from 1 to 0 along �t on
the truncated data range. The weighting function w2 was proposed pre-
viously in the context of asymmetric fan-beam tomography [11]. Note
that the first-order derivative of w2 extends continuously to the data
truncation point �t = j~r0j + �.

V. RECONSTRUCTED IMAGES

Fig. 1(b) and (c) displays the images reconstructed from the noise-
less simulated data by use of the weighted EM algorithms specified
by w1(~r0; �t) and w2(~r0; �t), respectively. As expected, both algorithms
yielded nearly identical reconstructions that accurately represented the
true absorption function A(~r). Although not shown, the image recon-
structed by use of the conventional EM algorithm is also virtually iden-
tical to those shown in Fig. 1. These results corroborate our claim
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Fig. 4. (a) and (c) Images reconstructed from experimental TAT data by use of
the conventional (unweighted) EM algorithm. (b) and (d) By use of the weighted
EM algorithm with weighting function w (~r ; �t). The arrows in (a) and (c)
indicate the position of artifacts that are not present in (b) and (d). In all cases, the
EM algorithms were terminated at 100 iterations. Arrows in (a) and (c) indicate
artifacts near the center of reconstructed images.

that the members of the infinite family of weighted EM algorithms are
equivalent to the conventional EM algorithm and exact mathematically.

Fig. 3(a)–(c) displays images reconstructed from the noisy simula-
tion data by use of 60 iterations of the EM algorithms with weighting
functionsw1(~r0; �t); w2(~r0; �t) and no weighting (conventional EM), re-
spectively. The noise patterns of the images in Fig. 3(a) and (b) is dis-
tinct, which is consistent with our claim that the members of the infinite
family of weighted EM algorithms will generally propagate data incon-
sistencies in different ways. Note that both of these images have a less
noisy appearance than the image reconstructed by use of the conven-
tional EM algorithm that is shown in Fig. 3(c). The image reconstructed
by use of the conventional EM algorithm contains circular arc-like ar-
tifacts that are attributable to the abrupt truncation of the data function.
Additionally, a circular disk artifact is present at the center of the image.
The radius of this artifact is equal to the length of the overscan (�) in
the data function. For an exactly half-time data function, the disk arti-
fact reduces to a bright point in the center of image space. Fig. 3(d)–(f)
shows the corresponding images obtained by use 120 iterations of the
EM algorithms.

Fig. 4(a) and (c) displays images reconstructed from the exper-
imental data sets by use of the conventional EM algorithm. The
corresponding images reconstructed by use of the weighted EM algo-
rithm specified by w1(~r0; �t) are displayed in Fig. 4(b) and (d). For both
objects, the weighted EM algorithm produced images that contained
fewer and weaker artifacts than produced by the conventional EM
algorithm.

VI. SUMMARY

In this correspondence, we proposed and investigated an infinite
family of weighted expectation maximization (EM) algorithms for
reconstruction of TAT images. The weighted EM algorithms were

shown to be equivalent mathematically to the conventional EM algo-
rithm, but generally propagated data inconsistencies in different ways.
We demonstrated that suitable choices of the weighted EM algorithm
could mitigate image artifacts that are attributable to temporal trunca-
tion of the TAT data function.

Although the use of weighting functions in analytic tomographic re-
construction approaches is well known, it appears that little or no work
has been devoted to investigating their use in iterative reconstruction
approaches. The flexibility afforded by the weighted EM reconstruc-
tion approach permits the specification of a reconstruction algorithm
that produces an image that is optimal in a prescribed sense. For ex-
ample, in addition to reducing image artifacts attributable to data trun-
cation, the weighting function can (in principle) be designed to reduce
optimally the statistical variance of the reconstructed image for a given
data noise model. The exploration of this idea and the investigation
of other characteristics of the weighted EM reconstruction algorithms
represent topics for future work.
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