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Universal back-projection algorithm for photoacoustic computed tomography
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We report results of a reconstruction algorithm for three-dimensional photoacoustic computed tomography.
A universal back-projection formula is presented for three types of imaging geometries: planar, spherical, and
cylindrical surfaces. A solid-angle weighting factor is introduced in the back-projection formula to compensate
for the variations of detection views. A method for implementing this algorithm is described. Numerical
simulation is used to demonstrate the performance of the algorithm.
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I. INTRODUCTION grals, which are in contrast to those in straight-ray tomogra-

. ) phy such as PET and x-ray computed tomografiy)) [6].
Photoacousti¢PA) computed tomography is based on the Neyertheless, many imaging concepts and mathematical
reconstruction of an internal PA source distribution fromtechniques for other imaging modalities, such as ultrasonic,

measurements acquired by scanning small-aperture ultrg- ray, and optical tomography, can be borrowed for PAT ap-
sound detectors over a surface that encloses the source Undgtations.

study[1]. The PA source is produced inside the sample by |, this paper, we present a universal back-project®m)

the thermal expansion that results from a small temperaturgymyla, which offers exact reconstructions for the three
rise, which is caused by the absorption of externally applietommon geometries and can be easily implemented in the
radiation of pulsed electromagnetEM) waves. This tech-  reconstruction. For the spherical geometry, we note that a
nique has great potential for applications in the biomedicakjmnilar inversion formula was recently reportgd]; how-

field because of the advantages of ultrasonic resolution iRyer it can be simplified to the formula that we present here.
combination with EM absorption contrast. In general, differ-1,o paper is organized as follows. In Sec. II, the universal
ent measurement geometries need different reconstruction EBack—projection formula will be derived. A proof of the ex-
gorithms. The three geometries commonly used are planagciess of this formula for the three common geometries will

cylindrical, and spherical surfaces. In the last decadeye gemonstrated. In Sec. Ill, a method for implementing this
Fourier-domain reconstruction formulas with pomt—detectora|gorithm will be described. In Sec. IV. numerical simula-

measurements for these geometries have been deBuett  ions will be carried out to demonstrate the performance of

marized in Ref[1]), but they may involve multiple integra- hq algorithm. In Sec. V, a conclusion will be provided.
tions or series summations and can be inconvenient to imple-

ment. Alternatively, some approximate time-domain back-
projection reconstruction algorithms have also been reported
[2-5]. In these algorithms, the acoustic property of the tissue
is often assumed to be homogeneous as the speed of sound inAccording to the PA generation theory, the initial photoa-
soft tissue is relatively constant at 1.5 nus\/ The unique coustic pressure at positian excited by ad(t) EM pulse
advantage of photoacoustic imaging is its ability to detect thexqualspy(r)=I'(r)A(r) [8], whereA(r) is a spatial EM ab-
inhomogeneous EM absorption property of tissues when thgorption function and’(r) is the Griineisen parameter equal
acoustic property is relatively homogeneous. Pure acoustig, c?B/C, (c the speed of soungs the isobaric volume ex-
property differentiation should appeal to conventional ultra-pansion coefficient, an@, the specific heat The acoustic
sound imaging. wave, p(r ,t) at positionr and timet, prompted by the initial

From a physical point of view, PA tomograpliyAT) rep- sourcep,(r), satisfies the wave equati§8,9]
resents an inverse source problem analogous to positron

emission tomographyPET), except that PAT is based on , 1 & N da(t)

diffraction “optics” due to the diffraction of ultrasonic waves V-2 /PUD == po(n) = = (@)

and PET is based on geometric “optics” due to the straight-

line propagation ofy rays. Therefore, PAT belongs to the In this paper, we define the Fourier transform pair on

field of diffraction tomography. Since acoustic waves do notvariable t=ct as F(k)=/""F(t)expikt)dt and F(t)

travel along straight lines, the projections are not line ime':(1/27r)f’j§l~:(k)exp(—ikt_)dk wherek=w/c and o is an an-
gular frequency and equal tor2. As shown in Fig. 1, we
assume tha§, is the measurement surface. Particularly, for

* Author to whom all correspondence should be addressed. FAXthe planar geometry, we assume there is another planar sur-
979-845-4450. Electronic address: LWang@tamu.edu; URL: http:/face S (parallel toSy) at infinity and that the combination of
oilab.tamu.edu S and S encloses the souragey(r’). For convenience, we

II. UNIVERSAL BACK-PROJECTION FORMULA
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Our further study shows that the Fourier-domain recon-
struction formulas for the three common geometries can be
further simplified into a universal back-projection formula;
however, the derivations on a case-by-case basis are too ex-
tensive. For readability, we first propose the BP formula and
then demonstrate the exactness of the formula. The new
back-projection formula takes the following form:

0= [ as|  akproking VB0l (@)
s —»

where GE”)(r ,fo) is a Green’s function, G(k'”)(r )
=exp(—ik|r —rg|)/(4m|r —rg|), which corresponds to an in-
coming wave. In addition, it is straightforward to rewrite Eq.
(2 (3) in the time domair(to be detailed latgr
Now, we begin to prove tha]m(()b)(r)E po(r) for the three

\ common geometries. With considering Gauss'’s thedtEh

substituting Eq(2) into (3) gives
S
' s, / p6’(r) = f f JV, o' polr)P(r '), (4)

®) where Rr’,r) is a point-spread functio(PSBH, expressed by

+o0
FIG. 1. (a) In the measurement, an ultrasonic detector at posi-p(rr,r) — lf ikdkf dV,V, - [é(kout)(rr,ro)voaf(in)(nro)]’
tion ry on a surfaceS, receives PA signals emitted from source TJ Vo

po(r’). In the reconstruction, a quantity related to the measurement

at positionr  projects backward on a spherical surface with respect (5)
to positionrg. (b) In the planar geometry, assume there is anOthe'\NhereVO is the volume enclosed by surfage

surfaceS) at infinity and that the combination & andS; encloses For convenience, we deno®’ andV as the gradients
the source inside. over the variables’ andr, respectively. Sinc&q|r’ —r|

==V'|r'=ro| andVg|r —=ro|==V|r —rg|, we have
denoteS=S+ S for the planar geometry an8=S, for the = (o = iy
other two geometries. Based on Green's theorem, the spec- Vo [G(r',rg VoG (r,ro)]
trum P(ro,k) of the pressurep(ry,t) detected ar, can be . ~(outyyr o \(in)
written in the frequency domaif10-12 as =V V)G roG(rro)

+GRY(r ' r ) V2B (1 1 ). 6)

~ - 3,1 ~(out) /. s ' ~ ~
p(ro.k) = 'kfff,d CETI R, D) The Green's function&>*(r’,ro) andG,"(r ,r ) satisfy the
following equations, respectively:

where V' is the volume of the sourcepy(r’) and
G (r',ro) is a Green's function: GU(r’,ro)
=explik|r' =rg|)/ (4m|r’ =rg|), which corresponds to an out- and
going wave. . . 263 (in) 2 (in)

In principle, we can construct a Dirichlet Green’s function VGV (r,ro) + K GV (r,ro) == &r —ro). (8)
~(D) . i . _
E—:-kD (r,rq) [12,12, which satisfies the boundary condition Multiplying Eq. (7) by G(k'”)(r,ro) and Eq. (8 by
G(k A ,r1)=0 forr, on Sandr insideS. Then, according to
Green’s theorem, the acoustic presspie, k) inside surface
S can be computed by the surface integrgr,k) B o
= [dSHr o, K)[NS- VoG (r,ro)], whereV, denotes the gra- G, ro V2G| (r,r o)
dient over variabler, and ng is the normal of surface& _ 2 o2 (ot /s
pointing to the source. Singay(r)=p(r,t=0), we getpy(r) = ARLUVE+ VG ro)
=1/(2m) [*2dk[ ASTr 0, KNG - VoG (r ,1)]. For the three XGU(r,ro) + &(r' —r¢)
common geometriesé(kD)(r ,f1) can be written in some ex- = (in) e R (ou s
plicit expressiong13], with which we can directly write XG(1,ro) = 8N =ro G (r ', ro) ] ©
down the reconstruction formulas that are identical to the We then substitute Eq9) into Eq.(6) and further substi-
Fourier-domain formulas summarized in REf]. tute Eq.(6) into Eq.(5) and rewrite Pr’,r) as a summation

V26O rg) + KGO rg) == 81 —1o) (7

éf("”t)(r’ ,To), then subtracting them and rearranging, we ob-
tain
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of two terms, Br’,r)=PY(r’,r)+P(r’ r), where the first
term is

1 +o0 -
POt/ == f ikdk f dVy(1/2[ 8" = ro)GI"(r 1)
mTJ)_w Vo

— 8 —rg)G(r" 1

and the second term is

0] (10

1 +o0
P(Z)(r’,r):—(V+V’)2J ikdk
2 o

X f dVeG(r' ro)GIM(r ro).  (11)
Vo

The first term reduces to a delta functioPD(r’,r)
=8(|r"—r|)/(2m|r'—r|?)=&(r' —r). The second term involves

a volume integral that depends on the measurement geo

etry. Particularly, whem’=r, P@(r’
can also be rewritten as

,r)=0. The second term

PR = (V+ Ve + (], (12)

where =* denotes
=i [5 Fi(r’,rkdk with

the complex conjugate and*

dVoG(r’, )GV (r 1 ).
Vo

Fu(r',r)= (13)

In the planar geometry, we hay#&] (Az>0)

. 1 +0oo

GE”)(r,ro):—st dudv exp(— iuAx — ivAy)
(2m) o

x{— (p)ms r(k)exp[—iAzsgr(k)w]
W

2k

‘X( - ) exp( WAZM}

and é(k"“t)(r’,ro):[éf;”)(r’,ro)]* with the replacements aof
=(x,y,2) by r'=(x",y",Z'), p by p’, and (u,v,w) by
(U, v", W), whereAx=x—X,, etc.x(£&)=1 for |§<1/2 and 0
otherwise, sgfk)=1 for k>0 and —1 fork<0, p=\u?+v?,
andw=|k?-
the measurement plang=0. Since dVy=dxydy,dz, and
the identity [[ Zdx,dypexdixq(u—u’)]lexdiyo(v-v")]
=(2m)>28(u-u’)8v-v’), substitutingG."™ andG{**" with the
expansion of Eq(14) into Eq.(11) gives P(Z)(r ,r)=0.
In the spherical geometry, we haye>0) [10]

(14)

GM(rrg) = S (2 + Dy kDK ko) Pi(n -,
47 |20

(15

and G(r',ro)=[G\"(r",ro)]" with the replacement of

m_

p?|. Here, we assume that the source is above
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kind, P,(:) is a Legendre polynomial, and’'=r'/r’, ng
=ro/ro, andn=r/r. SincedV,=r3dr,dQ, and the identity
[10] fﬂodﬂop|(n 'no)Py(n, -no):4775||,P|(n n,)/(ZI +1),
substitutingé(ki”) and é(k"“t) with the expansion of Eq(15)
into Eq. (13) gives

2 o

~ k
Fu(r’,r) = EE (21 + 1)jy(kn)jy(kr")P(n - n’)
1=0

X f radrom(kro),
r

0

(16)

with m?(krg) =j2(krg) +né(kro), where ni(-) is a spherical
Bessel function of the second kind. Th&g(r’,r) is real and
e*(r) becomes purely imaginary. Therefore, from E#2),
P@(r’,r)=0.

In the cylindrical geometry, we denoté=(p’,¢’,Z'), r
=(p,¢,2), andry=(pg,¢o.Zy). In this case, we havé>0)
[1,11]

(m)(r fo) = — E exdin(eo—

n——m

) f _ dkexilik,(zo-2)]

- K,
X {LX( 2k> A(wp)HP (1po)

+ X(i—k> I n(Mp)Kn(MPO)] ; (17)
Z

and é(k"“‘)(r’ ,r0)=[é(k'”)(r’,r0)]* with the replacements af

by n’, k, by k;, and u by u', respectively, whereu
=\[k?=kJ and u'=V|k?-k.?, J.(-) is a Bessel function of
the first kind,H'?(-) is a Hankel function of the second kind,
I,(+) is a modified Bessel function of the first kind, aldg(-)

is a modified Bessel function of the second kind. Since the

identity [10] [, d<p0exr[|<p0(n n)]fzodzoexdlzo(k k)]
=(2m)2 8y O(K,— k) and dVy=pgdpgdeedz, substituting

G and G\ with the expansion of Eq(17) into Eq. (13)
gives

F(r’ r)—— 2 exdin(¢’ —qo)]J diexdik,(z' - 2)]

n=—o

[k,
X l— ( 2k) Jn(mp")In(1ep) f dpoM3(1po)

2k
+X<?)In(ﬂp,)ln(ﬂp) f dpoKﬁ(Mpo)], (18

with M2(pe) = J2(po) + N2(upo), where Ny(-) is a Bessel
function of the second kind. It is easy to show tRatr’,r)
is real. Thus,e*(r) is purely imaginary. From Eq(12),
P@(r',r)=0.

In conclusion, we get®’,r)=4(r’ —r) for all three com-
mon geometries. Therefore, from E@), we provep(b)(r)

by n’, wherej,(-) is a spherical Bessel function of the first =py(r). Particularly for the planar geometry, by taking the
kind, hl(z)(-) is a spherical Hankel function of the second limit §— ¢ in Eq.(3), we find that the integral oves) gives
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transform ofH(t). SinceH(t) is real, H(-k)=[H(k)]". Re-
placingp(ro,k) with Py(ro.k) in Eqg. (3) introduces the factor
H(k) in the PSF expressed by E®), or both in the first term
of the PSF by Eq(10) and in the second term by E.1). If
H(k) is even[H(-K)=H(K)], it is easy to showP@(r’,r)
=0. Thus, the PSF equaB™V(r’,r)=—(1/27R)dH(R)/dR
I dQo (with R=|r =r’|), which is identical to the result in Reff1].
If H(K) is odd[H(-k)=-H(K)], PY(r’,r)=0. Usually, how-
ever, PA(r’ r)#0. In this case, the BP formula, E(L9),
gives a “bad” reconstruction, becau®?(r’,r) does not
~ converge to a point aBY(r’,r) does. In other words, be-
Po(r)/2.  Since the relationship VoG "(r.19==V  cause acoustic pressure is phase sensitive, the reconstruction
xef('”)(r,ro), by taking the inverse Fourier transform of may be seriously destroyed due to the phas~e distortions that
P(ro,k), we rewrite Eq.(3) in the time domain as are introduced in the measured PA signalsHik). More-
_ over, the ramp filtek clearly indicates the contribution of
p(b)(r)=—£V f nsds, p(ro,t) (19) ea<_:h f_reqL_Jency component in the reconstructior_w. If khe
0 Q, S 0 T et " weighting in the different frequency components is not fol-
0 lowed, the reconstruction will also be distorted.
where (), is a solid angle of the whole surfa& with re- Therefore, to accurately recover the source distribution, in
spect to the reconstruction point insi®g: Q=27 for the  principle we need to find a filter to adjust the measurement.
planar geometry anf,= 4 for the spherical and cylindrical Two types of filters are possible. One is to restore the pres-
geometries. In addition, as mentioned before, a similar inversure by F;(k) such thatF;(k)H(k)=1 and F;(k)p4(ro,k)
sion formula for the spherical geometry was reported in Ref=p(r,k), and the other is to restore the derivative of the
[7]. We find that it can be simplified to E419) [14]. pressure by Fo(k) such that Fh(kH(K)=-ik and
Further, we can rewrite Eq19) in a clear back-projection F(0B(10,K)=~iKp(ro,K). Since the real measurement is

form as band limited, we need to add a low-pass filter, such as a
b _ Hanning window, to dampen the noisy high-frequency com-

p(r)= | b(ro,t=|r = ro))dQg/Q, (20)  ponents. Sometimes, we also need to remove a small portion

Qq of the low-frequency components if the ultrasound detectors

where b(ro.0=2p(ro 0~ 2ap(ro D/ is the back- &€ not sensitive in that frequency range. For convenience,

projection term related to the measurement at positjand ~ We denote the additional bandpass filter\elk). With the
dQo=dSy/|r =rg|2-[ng-(r=ro)/|r =ro[] is the solid angle for filter F4(k), we computeSff)(ro,t_):F‘l[W(k)Fl(k)ﬁ(’j(ro,k)]
a detection elementS, with respect to a reconstruction point 54 §12)(r0,t_): F‘l[—ik\7\/(k)l~:1(k)|~3[j(ro,k)], where the Fou-
Patr (Fjg. 2. The termdQO/QO is a factor weighting the jer transformF=1[(-)]=(1/2m) [*%(-)exp(—ikt)dk can be per-
ggtq_?::'?:Cgontsr:reuL?ii)?]n:?sglt;ogrgjzrgtéhti:?S;g%{;el%mengormed by the fast Fourier transform algorithm. Thus, the
. 0 ineti ; N=ocdV(r T Ty
backward on a spherical surface with respect to positipn bgck-prOJectpn term s b(ro,t).—2§l (Fo.9 2t§12)(r0,t)_.
The first derivative over time actually represents a pure With the filter Fp(k), we first compute S2(ro,D
ramp filterk in the frequency domain. The ramp filter de- =F {W(K)F,(k)p4(ro,k)] and then%l)(ro,t_):fESZZ)(ro,t_)dT
presses the low-frequency signal. It is not surprising that thehus, the back-projection term isb(ro,t_):2§zl)(r0,t_)
relatively high-frequency components of the PA signal play_2t—5<22>(ro,t—)_ In addition, instead of the above frequency-
the primary role in the reconstruction of the acoustic sourcgjomain filters, we can directly construct the corresponding
inside the tissue. In the special case l"“‘*n_ﬁﬂ >1, time-domain filters.
tap(ro,t)/dt>p(ro,t); therefore,b(ro,t) ~=2tap(ro,t)/ it. In practical measurement, only a limited space around the
tissue sample is available for ultrasound detection. For ex-
ample, it is only possible to use a half-spherical measure-
lll. IMPLEMENTATION OF THE ALGORITHM ment surface to image a human breast, in which the solid
angle for all detectors on the half spherical surface with re-
spect to a location inside the breast is often less thaawd

FIG. 2. Diagram of the solid anglé(), for a detection element
dS,) with respect to a poinP atr.

Next, we discuss how to implement the BP algorithm.
L.Jsi:'ta”yti thef EM(BUIT‘de(% 'I: not laé mcuo?.)gm?}c}?e may also vary at different locations. Thus, for sources at
ngnt side ot £q.(1) should be replaced bypgir)dle ' different locations but with the same intensities, the ampli-

since thlesthgrmqldd|ﬁus(j|on EﬁeCt.'ﬁ negl|g|blle In most SOft{udes in the reconstruction image will vary at different loca-
tissueg15]. Consider a detector with an impulse response ofj, s 4 well, which will cause a reconstruction distortion. A

l4(t); the measurement can be written pgro,)=H(t) straightforward way to compensate for this kind of recon-
®p(ro,t), whereH(t)=1(t) @ 14(t) and® denotes a convolu- - girction distortion resulting from the limited view is to nor-
tion. Thus, the spectrum of the measurement can be exngjize the reconstruction at each location by a total solid
pressed byp(rq,k) =H(K)P(ro,k), whereH(K) is the Fourier angle as shown in Eq20).
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Without loss of generality, we can take the planar mea-
surement surface as an example. As shown in Fig. 3, a
rectangular-shaped detector 2 @ mm, scans the
samples in theg=0 plane along both the andy axes from
-30 mm to 30 mm with a spatial sampling period of
2/3 mm, where the center of the detector surface represents
its position. In the computation of the PA signal of the de-
tector, for simplicity, we evenly divide the detector surface
(2 mmx 2 mm) into 25 small elements. Then, the total sig-
nal received by the detector ei=(Xgi,Yqi,0) can be com-

FIG. 3. Diagram of planar measurement geometry. See the teRUted by a summation as

for detail. 5 5 U(Ls
5-|R; —ct)(R; - ct
) - IR ilz (L5 -[R; ~cl)(R; ~cb
uppose there ardl detection positions with small- m—2n=—2 29| j=1 2R;;
aperture detectors in which tliéh measurement is located at .
positiond; on the measurement surfacg and occupies an 5 U4 -|R; —ct)(R; - cp) 23
areaAs (i=1,...,N) andp/(d;,t) is the corresponding pres- e 2R; '

sure measured by thénh detector. Then, the back-projection

formula, Eq.(20), can be rewritten in a discrete formas | . o Raj=|di(m’n)—faj|, di(m’n)z(xdi+0-4mvydi+0-4na0)1 and

N o N the center position of theth absorberry (j=1,...,7)
pe (1) = 2 AQ X b t=[di 1)) / X AQ;, (21 =(xg),YajZy): (£18,0,15, (£9,0,19, (0,0,15,  and
i=1 i=1 (0,%12,15 mm, respectively. In practice, the detection sys-
whereb(d, T} is computed fromp;(d;,)) by the method as (€M is band limited. It is necessary to introduce a low-pass
discussed above and filter W, (k) characterized by a cutoff angular frequerigyA
Hanning window is our choice in this cage=27f/c):
AQ: = AS ns. . (r-dy) (22)
bor=dif O r-dif ]’ f .
. ) . ~ 0.5+0.5 copm— |, if |f| < f,
in which n§; is the normal of the measurement surface We(k) = fe (24)
at position d; and points to the photoacoustic source 0, otherwise.
distribution.
Here, we choosé&.=4 MHz and the data sampling frequency
as 20 MHz.
IV. NUMERICAL SIMULATION In the simulation, we first use Eq23) to compute

Next, we want to use numerical simulation to test thePd(di,t) without additional noise. Then, we calculate
proposed algorithm. For simplicity, we consider uniform b(d;,t)=2F{W.(kK)Py(d;,k)]- 2tF [ -ikW(k)P4(d;, k)] and
spherical absorbers surrounded by a nonabsorbing backirther use Eq(21) to compute the reconstruction. Figure
ground medium. Le& andr, denote the radius and center of 4(a) is a gray scale image of the reconstructed distribution in
a spherical absorber, respectively. The excited pressure dighez=15 mm plane, and Figs(#) and 4c) show a compari-
tribution caused by @& EM illumination in the absorber can son between the original and reconstructed distributions
be expressed bpy(r)=AgU(a=|r —r,|), whereAy is the in-  along the linesy=0 andx=0 mm, respectively. The recon-
tensity andU(x)=1 whenx>0 and U(x)=0 when x<O0. structed values are in good agreement with the original ones.
Then, the photoacoustic signal irradiated from this uniformDue to the limited-angle view and the limited bandwidth,
sphere can be calculated by(rg,t)=AjU(a—|R-ct|)(R  some discrepancies occur in the reconstruction, but they are
-ct)/(2R), whereR is the distance between the detectionminimal.

positionr, and the absorber centeg (R=|ry—r,|) [9]. For We also compute the reconstruction from the data with
convenience, we use the center of the absorber to denote @lditional noisepy(d;,t) «— py(d;,t) +0.1Cranp, Wherecganp
position. is a series of computer-generated random numbers in the

The numerical phantom sample is shown in Fig. 3. Fiverange of(-1,1). Since the initial pressure intensity of each
absorbers are evenly distributed at a distance of 15 mm alorgpsorber is 1, 0.1 is a significant noise level. Figu® & a
the horizontal lingy=0 andz=15 mn) that is parallel to the gray scale image of the reconstructed distribution in zhe
x axis, and each absorber has a radius of 1.5 mm and anl5 mm plane, and Figs.(|5) and 5c) show a comparison
intensity of 1. Another two absorbers are located at a disbetween the original and reconstructed distributions along
tance of 15 mm along a horizontal lin&x=0 and z  the linesy=0 andx=0 mm, respectively. The reconstructed
=15 mm) that is parallel to thg axis, and each absorber has values are also in good agreement with the original ones.
a radius of 4 mm and an intensity of ISee the detailed This example indicates that the proposed back-projection al-
positions of these absorbers in the text below 2§).] gorithm is very insensitive to the random noise.
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FIG. 5. Reconstruction with nois¢a) Gray scale image of the
reconstructed pressure distribution in the15 mm plane. Com-

parison between the originalashed lingand reconstructe¢solid
line) distributions:(b) alongy=0 mm and(c) alongx=0 mm.

FIG. 4. Reconstruction without noiséa) Gray scale image of
the reconstructed pressure distribution inzkl5 mm plane. Com-
parison between the originalashed lingand reconstructe@solid
line) distributions:(b) alongy=0 mm and(c) alongx=0 mm.

V. CONCLUSION modified algorithms that take account of the acoustic
inhomogeneity.

We have presented in this paper a unified and exact time- ' NiS BP formula can serve as a basis for time-domain
domain back-projection algorithm for the three commonPhotoacoustic reconstruction in three-dimensional space. In
measurement geometries with the assumption of constaffinciple, this algorithm can also be extended to other
sound speed. We can extend this algorithm straightforwardljverse-source diffraction tomographies.
to the Ilmlted-angle view case, in Whlch th_e reconstruction ACKNOWLEDGMENTS
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