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We report results of a reconstruction algorithm for three-dimensional photoacoustic computed tomography.
A universal back-projection formula is presented for three types of imaging geometries: planar, spherical, and
cylindrical surfaces. A solid-angle weighting factor is introduced in the back-projection formula to compensate
for the variations of detection views. A method for implementing this algorithm is described. Numerical
simulation is used to demonstrate the performance of the algorithm.
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I. INTRODUCTION

PhotoacousticsPAd computed tomography is based on the
reconstruction of an internal PA source distribution from
measurements acquired by scanning small-aperture ultra-
sound detectors over a surface that encloses the source under
study f1g. The PA source is produced inside the sample by
the thermal expansion that results from a small temperature
rise, which is caused by the absorption of externally applied
radiation of pulsed electromagneticsEMd waves. This tech-
nique has great potential for applications in the biomedical
field because of the advantages of ultrasonic resolution in
combination with EM absorption contrast. In general, differ-
ent measurement geometries need different reconstruction al-
gorithms. The three geometries commonly used are planar,
cylindrical, and spherical surfaces. In the last decade,
Fourier-domain reconstruction formulas with point-detector
measurements for these geometries have been derivedssum-
marized in Ref.f1gd, but they may involve multiple integra-
tions or series summations and can be inconvenient to imple-
ment. Alternatively, some approximate time-domain back-
projection reconstruction algorithms have also been reported
f2–5g. In these algorithms, the acoustic property of the tissue
is often assumed to be homogeneous as the speed of sound in
soft tissue is relatively constant at 1.5 mm/µs. The unique
advantage of photoacoustic imaging is its ability to detect the
inhomogeneous EM absorption property of tissues when the
acoustic property is relatively homogeneous. Pure acoustic
property differentiation should appeal to conventional ultra-
sound imaging.

From a physical point of view, PA tomographysPATd rep-
resents an inverse source problem analogous to positron
emission tomographysPETd, except that PAT is based on
diffraction “optics” due to the diffraction of ultrasonic waves
and PET is based on geometric “optics” due to the straight-
line propagation ofg rays. Therefore, PAT belongs to the
field of diffraction tomography. Since acoustic waves do not
travel along straight lines, the projections are not line inte-

grals, which are in contrast to those in straight-ray tomogra-
phy such as PET and x-ray computed tomographysCTd f6g.
Nevertheless, many imaging concepts and mathematical
techniques for other imaging modalities, such as ultrasonic,
x-ray, and optical tomography, can be borrowed for PAT ap-
plications.

In this paper, we present a universal back-projectionsBPd
formula, which offers exact reconstructions for the three
common geometries and can be easily implemented in the
reconstruction. For the spherical geometry, we note that a
similar inversion formula was recently reportedf7g; how-
ever, it can be simplified to the formula that we present here.
The paper is organized as follows. In Sec. II, the universal
back-projection formula will be derived. A proof of the ex-
actness of this formula for the three common geometries will
be demonstrated. In Sec. III, a method for implementing this
algorithm will be described. In Sec. IV, numerical simula-
tions will be carried out to demonstrate the performance of
the algorithm. In Sec. V, a conclusion will be provided.

II. UNIVERSAL BACK-PROJECTION FORMULA

According to the PA generation theory, the initial photoa-
coustic pressure at positionr excited by adstd EM pulse
equalsp0sr d=Gsr dAsr d f8g, whereAsr d is a spatial EM ab-
sorption function andGsr d is the Grüneisen parameter equal
to c2b /Cp sc the speed of sound;b the isobaric volume ex-
pansion coefficient, andCp the specific heatd. The acoustic
wave,psr ,td at positionr and timet, prompted by the initial
sourcep0sr d, satisfies the wave equationf8,9g

S=2 −
1

c2

]2

] t2
Dpsr ,td = − p0sr d

ddstd
dt

. s1d

In this paper, we define the Fourier transform pair on

variable t̄=ct as F̃skd=e−`
+`Fst̄dexpsikt̄ddt̄ and Fst̄d

=s1/2pde−`
+`F̃skdexps−ikt̄ddk, wherek=v /c andv is an an-

gular frequency and equal to 2pf. As shown in Fig. 1, we
assume thatS0 is the measurement surface. Particularly, for
the planar geometry, we assume there is another planar sur-
faceS08 sparallel toS0d at infinity and that the combination of
S08 and S0 encloses the sourcep0sr 8d. For convenience, we
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denoteS=S0+S08 for the planar geometry andS=S0 for the
other two geometries. Based on Green’s theorem, the spec-
trum p̃sr 0,kd of the pressurepsr 0, t̄d detected atr 0 can be
written in the frequency domainf10–12g as

p̃sr 0,kd = − ikE E E
V8

d3r8G̃k
soutdsr 8,r 0dp0sr 8d, s2d

where V8 is the volume of the sourcep0sr 8d and

G̃k
soutdsr 8 ,r 0d is a Green’s function: G̃k

soutdsr 8 ,r 0d
=expsikur 8−r 0ud / s4pur 8−r 0ud, which corresponds to an out-
going wave.

In principle, we can construct a Dirichlet Green’s function

G̃k
sDdsr ,r 1d f11,12g, which satisfies the boundary condition

G̃k
sDdsr ,r 1d=0 for r 1 on S andr insideS. Then, according to

Green’s theorem, the acoustic pressurep̃sr ,kd inside surface
S can be computed by the surface integral:p̃sr ,kd
=eSdSp̃sr 0,kdfn0

s ·=0G̃k
sDdsr ,r 0dg, where=0 denotes the gra-

dient over variabler 0 and n0
s is the normal of surfaceS

pointing to the source. Sincep0sr d=psr , t̄=0d, we getp0sr d
=1/s2pde−`

+`dkeSdSp̃sr 0,kdfn0
s ·=0G̃k

sDdsr ,r 0dg. For the three

common geometries,G̃k
sDdsr ,r 1d can be written in some ex-

plicit expressionsf13g, with which we can directly write
down the reconstruction formulas that are identical to the
Fourier-domain formulas summarized in Ref.f1g.

Our further study shows that the Fourier-domain recon-
struction formulas for the three common geometries can be
further simplified into a universal back-projection formula;
however, the derivations on a case-by-case basis are too ex-
tensive. For readability, we first propose the BP formula and
then demonstrate the exactness of the formula. The new
back-projection formula takes the following form:

p0
sbdsr d =

1

p
E

S

dSE
−`

+`

dkp̃sr 0,kdfn0
s · =0G̃k

sindsr ,r 0dg, s3d

where G̃k
sindsr ,r 0d is a Green’s function, G̃k

sindsr ,r 0d
=exps−ikur −r 0ud / s4pur −r 0ud, which corresponds to an in-
coming wave. In addition, it is straightforward to rewrite Eq.
s3d in the time domainsto be detailed laterd.

Now, we begin to prove thatp0
sbdsr d;p0sr d for the three

common geometries. With considering Gauss’s theoremf10g,
substituting Eq.s2d into s3d gives

p0
sbdsr d =E E E

V8
d3r8p0sr 8dPsr 8,r d, s4d

where Psr 8 ,r d is a point-spread functionsPSFd, expressed by

Psr 8,r d =
1

p
E

−`

+`

ikdkE
V0

dV0=0 · fG̃k
soutdsr 8,r 0d=0G̃k

sindsr ,r 0dg,

s5d

whereV0 is the volume enclosed by surfaceS.
For convenience, we denote=8 and = as the gradients

over the variablesr 8 and r , respectively. Since=0ur 8−r 0u
=−=8ur 8−r 0u and=0ur −r 0u=−= ur −r 0u, we have

=0 · fG̃k
soutdsr 8,r 0d=0G̃k

sindsr ,r 0dg

= s=8 · = dG̃k
soutdsr 8,r 0dG̃k

sindsr ,r 0d

+ G̃k
soutdsr 8,r 0d=2G̃k

sindsr ,r 0d. s6d

The Green’s functionsG̃k
soutdsr 8 ,r 0d andG̃k

sindsr ,r 0d satisfy the
following equations, respectively:

=82G̃k
soutdsr 8,r 0d + k2G̃k

soutdsr 8,r 0d = − dsr 8 − r 0d s7d

and

=2G̃k
sindsr ,r 0d + k2G̃k

sindsr ,r 0d = − dsr − r 0d. s8d

Multiplying Eq. s7d by G̃k
sindsr ,r 0d and Eq. s8d by

G̃k
soutdsr 8 ,r 0d, then subtracting them and rearranging, we ob-

tain

G̃k
soutdsr 8,r 0d=2G̃k

sindsr ,r 0d

= s1/2dfs=2 + =82dG̃k
soutdsr 8,r 0d

3G̃k
sindsr ,r 0d + dsr 8 − r 0d

3G̃k
sindsr ,r 0d − dsr − r 0dG̃k

soutdsr 8,r 0dg. s9d

We then substitute Eq.s9d into Eq. s6d and further substi-
tute Eq.s6d into Eq. s5d and rewrite Psr 8 ,r d as a summation

FIG. 1. sad In the measurement, an ultrasonic detector at posi-
tion r 0 on a surfaceS0 receives PA signals emitted from source
p0sr 8d. In the reconstruction, a quantity related to the measurement
at positionr 0 projects backward on a spherical surface with respect
to positionr 0. sbd In the planar geometry, assume there is another
surfaceS08 at infinity and that the combination ofS0 andS08 encloses
the source inside.

M. XU AND L. V. WANG PHYSICAL REVIEW E 71, 016706s2005d

016706-2



of two terms, Psr 8 ,r d=Ps1dsr 8 ,r d+Ps2dsr 8 ,r d, where the first
term is

Ps1dsr 8,r d =
1

p
E

−`

+`

ikdkE
V0

dV0s1/2dfdsr 8 − r 0dG̃k
sindsr ,r 0d

− dsr − r 0dG̃k
soutdsr 8,r 0dg s10d

and the second term is

Ps2dsr 8,r d =
1

2p
s= + =8d2E

−`

+`

ikdk

3E
V0

dV0G̃k
soutdsr 8,r 0dG̃k

sindsr ,r 0d. s11d

The first term reduces to a delta function:Ps1dsr 8 ,r d
=dsur 8−r ud / s2pur 8−r u2d=dsr 8−r d. The second term involves
a volume integral that depends on the measurement geom-
etry. Particularly, whenr 8=r , Ps2dsr 8 ,r d=0. The second term
can also be rewritten as

Ps2dsr 8,r d =
1

2p
s= + =8d2f«+ + s«+d*g, s12d

where p denotes the complex conjugate and«+

= ie0
+`F̃ksr 8 ,r dkdk with

F̃ksr 8,r d =E
V0

dV0G̃k
soutdsr 8,r 0dG̃k

sindsr ,r 0d. s13d

In the planar geometry, we havef1g sDz.0d

G̃k
sindsr ,r 0d =

1

s2pd3 E E
−`

+`

dudv exps− iuDx − ivDyd

3H− xS r

2k
Dip sgnskd

expf− iDzsgnskdwg
w

− xS2k

r
Dp

exps− Dzwd
w

J , s14d

and G̃k
soutdsr 8 ,r 0d=fG̃k

sindsr 8 ,r 0dg* with the replacements ofr
=sx,y,zd by r 8=sx8 ,y8 ,z8d, r by r8, and su,v ,wd by
su8 ,v8 ,w8d, whereDx=x−x0, etc.xsjd=1 for uju,1/2 and 0
otherwise, sgnskd=1 for k.0 and −1 fork,0, r=Îu2+v2,
andw=Îuk2−r2u. Here, we assume that the source is above
the measurement planez0=0. Since dV0=dx0dy0dz0 and
the identity ee−`

+`dx0dy0expfix0su−u8dgexpfiy0sv−v8dg
=s2pd2dsu−u8ddsv−v8d, substitutingG̃k

sind andG̃k
soutd with the

expansion of Eq.s14d into Eq. s11d givesPs2dsr 8 ,r d=0.
In the spherical geometry, we havesk.0d f10g

G̃k
sindsr ,r 0d =

− ik

4p
o
l=0

`

s2l + 1d j lskrdhl
s2dskr0dPlsn ·n0d,

s15d

and G̃k
soutdsr 8 ,r 0d=fG̃k

sindsr 8 ,r 0dg* with the replacement ofn
by n8, where j ls·d is a spherical Bessel function of the first
kind, hl

s2ds·d is a spherical Hankel function of the second

kind, Pls·d is a Legendre polynomial, andn8=r 8 / r8, n0

=r 0/ r0, and n=r / r. Since dV0=r0
2dr0dV0 and the identity

f10g eV0
dV0Plsn ·n0dPl8sn8 ·n0d=4pdll8Plsn ·n8d / s2l +1d,

substitutingG̃k
sind and G̃k

soutd with the expansion of Eq.s15d
into Eq. s13d gives

F̃ksr 8,r d =
k2

4p
o
l=0

`

s2l + 1d j lskrd j lskr8dPlsn ·n8d

3E
r0

r0
2dr0ml

2skr0d, s16d

with ml
2skr0d= j l

2skr0d+nl
2skr0d, where nls·d is a spherical

Bessel function of the second kind. Thus,F̃ksr 8 ,r d is real and
«+sr d becomes purely imaginary. Therefore, from Eq.s12d,
Ps2dsr 8 ,r d=0.

In the cylindrical geometry, we denoter 8=sr8 ,w8 ,z8d, r
=sr ,w ,zd, and r 0=sr0,w0,z0d. In this case, we havesk.0d
f1,11g

G̃k
sindsr ,r 0d =

1

4p2 o
n=−`

+`

expfinsw0 − wdgE
−`

+`

dkzexpfikzsz0 − zdg

3 F− ip

2
xS kz

2k
DJnsmrdHn

s2dsmr0d

+ xS2k

kz
DInsmrdKnsmr0dG , s17d

and G̃k
soutdsr 8 ,r 0d=fG̃k

sindsr 8 ,r 0dg* with the replacements ofn
by n8, kz by kz8, and m by m8, respectively, wherem
=Îuk2−kz

2u and m8=Îuk2−kz8
2u, Jns·d is a Bessel function of

the first kind,Hn
s2ds·d is a Hankel function of the second kind,

Ins·d is a modified Bessel function of the first kind, andKns·d
is a modified Bessel function of the second kind. Since the
identity f10g ew0

dw0expfiw0sn−n8dgez0
dz0expfiz0skz−kz8dg

=s2pd2dnn8dskz−kz8d and dV0=r0dr0dw0dz0, substituting

G̃k
sind andG̃k

soutd with the expansion of Eq.s17d into Eq. s13d
gives

F̃ksr 8,r d =
1

4p2 o
n=−`

+`

expfinsw8 − wdgE
−`

+`

dkzexpfikzsz8 − zdg

3 Fp2

4
xS kz

2k
DJnsmr8dJnsmrdE

r0

dr0Mn
2smr0d

+ xS2k

kz
DInsmr8dInsmrdE

r0

dr0Kn
2smr0dG , s18d

with Mn
2smr0d=Jn

2smr0d+Nn
2smr0d, where Nns·d is a Bessel

function of the second kind. It is easy to show thatF̃ksr 8 ,r d
is real. Thus,«+sr d is purely imaginary. From Eq.s12d,
Ps2dsr 8 ,r d=0.

In conclusion, we get Psr 8 ,r d=dsr 8−r d for all three com-
mon geometries. Therefore, from Eq.s4d, we provep0

sbdsr d
=p0sr d. Particularly for the planar geometry, by taking the
limit S08→` in Eq. s3d, we find that the integral overS08 gives
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p0sr d /2. Since the relationship =0G̃k
sindsr ,r 0d=−=

3G̃k
sindsr ,r 0d, by taking the inverse Fourier transform of

p̃sr 0,kd, we rewrite Eq.s3d in the time domain as

p0
sbdsr d = −

2

V0
= ·E

S0

n0
sdS0Fpsr 0, t̄d

t̄
G

t̄=ur−r 0u
, s19d

whereV0 is a solid angle of the whole surfaceS0 with re-
spect to the reconstruction point insideS0:V0=2p for the
planar geometry andV0=4p for the spherical and cylindrical
geometries. In addition, as mentioned before, a similar inver-
sion formula for the spherical geometry was reported in Ref.
f7g. We find that it can be simplified to Eq.s19d f14g.

Further, we can rewrite Eq.s19d in a clear back-projection
form as

p0
sbdsr d =E

V0

bsr 0, t̄ = ur − r 0uddV0/V0, s20d

where bsr 0, t̄d=2psr 0, t̄d−2t̄]psr 0, t̄d /]t̄ is the back-
projection term related to the measurement at positionr 0 and
dV0=dS0/ ur −r 0u2·fn0

s ·sr −r 0d / ur −r 0ug is the solid angle for
a detection elementdS0 with respect to a reconstruction point
P at r sFig. 2d. The termdV0/V0 is a factor weighting the
contribution to the reconstruction from the detection element
dS0. The reconstruction simply projects the quantitybsr 0, t̄d
backward on a spherical surface with respect to positionr 0.
The first derivative over timet actually represents a pure
ramp filter k in the frequency domain. The ramp filter de-
presses the low-frequency signal. It is not surprising that the
relatively high-frequency components of the PA signal play
the primary role in the reconstruction of the acoustic source
inside the tissue. In the special case whenkur −r 0u@1,
t̄]psr 0, t̄d /]t̄@psr 0, t̄d; therefore,bsr 0, t̄d<−2t̄]psr 0, t̄d /]t̄.

III. IMPLEMENTATION OF THE ALGORITHM

Next, we discuss how to implement the BP algorithm.
Usually, the EM pulseIestd is not a d function. Thus, the
right side of Eq.s1d should be replaced by −p0sr ddIestd /dt,
since the thermal diffusion effect is negligible in most soft
tissuesf15g. Consider a detector with an impulse response of
Idstd; the measurement can be written aspd8sr 0,td=Hstd
^ psr 0,td, whereHstd= Iestd ^ Idstd and ^ denotes a convolu-
tion. Thus, the spectrum of the measurement can be ex-

pressed byp̃d8sr 0,kd=H̃skdp̃sr 0,kd, whereH̃skd is the Fourier

transform ofHst̄d. SinceHst̄d is real, H̃s−kd=fH̃skdg* . Re-
placingp̃sr 0,kd with p̃d8sr 0,kd in Eq. s3d introduces the factor

H̃skd in the PSF expressed by Eq.s5d, or both in the first term
of the PSF by Eq.s10d and in the second term by Eq.s11d. If
H̃skd is even fH̃s−kd=H̃skdg, it is easy to showPs2dsr 8 ,r d
=0. Thus, the PSF equalsPs1dsr 8 ,r d=−s1/2pRddHsRd /dR
swith R= ur −r 8ud, which is identical to the result in Ref.f1g.
If H̃skd is odd fH̃s−kd=−H̃skdg, Ps1dsr 8 ,r d=0. Usually, how-
ever, Ps2dsr 8 ,r dÞ0. In this case, the BP formula, Eq.s19d,
gives a “bad” reconstruction, becausePs2dsr 8 ,r d does not
converge to a point asPs1dsr 8 ,r d does. In other words, be-
cause acoustic pressure is phase sensitive, the reconstruction
may be seriously destroyed due to the phase distortions that
are introduced in the measured PA signals byH̃skd. More-
over, the ramp filterk clearly indicates the contribution of
each frequency component in the reconstruction. If thek
weighting in the different frequency components is not fol-
lowed, the reconstruction will also be distorted.

Therefore, to accurately recover the source distribution, in
principle we need to find a filter to adjust the measurement.
Two types of filters are possible. One is to restore the pres-
sure by F̃1skd such that F̃1skdH̃skd=1 and F̃1skdp̃d8sr 0,kd
= p̃sr 0,kd, and the other is to restore the derivative of the

pressure by F̃2skd such that F̃2skdH̃skd=−ik and

F̃2skdp̃d8sr 0,kd=−ikp̃sr 0,kd. Since the real measurement is
band limited, we need to add a low-pass filter, such as a
Hanning window, to dampen the noisy high-frequency com-
ponents. Sometimes, we also need to remove a small portion
of the low-frequency components if the ultrasound detectors
are not sensitive in that frequency range. For convenience,

we denote the additional bandpass filter asW̃skd. With the

filter F̃1skd, we computeS1
s1dsr 0, t̄d=F−1fW̃skdF̃1skdp̃d8sr 0,kdg

and S1
s2dsr 0, t̄d=F−1f−ikW̃skdF̃1skdp̃d8sr 0,kdg, where the Fou-

rier transformF−1fs·dg=s1/2pde−`
+`s·dexps−ikt̄ddk can be per-

formed by the fast Fourier transform algorithm. Thus, the
back-projection term isbsr 0, t̄d=2S1

s1dsr 0, t̄d−2t̄S1
s2dsr 0, t̄d.

With the filter F̃2skd, we first compute S2
s2dsr 0, t̄d

=F−1fW̃skdF̃2skdp̃d8sr 0,kdg and thenS2
s1dsr 0, t̄d=e0

t̄ S2
s2dsr 0, t̄ddt̄.

Thus, the back-projection term isbsr 0, t̄d=2S2
s1dsr 0, t̄d

−2t̄S2
s2dsr 0, t̄d. In addition, instead of the above frequency-

domain filters, we can directly construct the corresponding
time-domain filters.

In practical measurement, only a limited space around the
tissue sample is available for ultrasound detection. For ex-
ample, it is only possible to use a half-spherical measure-
ment surface to image a human breast, in which the solid
angle for all detectors on the half spherical surface with re-
spect to a location inside the breast is often less than 4p and
may also vary at different locations. Thus, for sources at
different locations but with the same intensities, the ampli-
tudes in the reconstruction image will vary at different loca-
tions as well, which will cause a reconstruction distortion. A
straightforward way to compensate for this kind of recon-
struction distortion resulting from the limited view is to nor-
malize the reconstruction at each location by a total solid
angle as shown in Eq.s20d.

FIG. 2. Diagram of the solid angledV0 for a detection element
dS0 with respect to a pointP at r .
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Suppose there areN detection positions with small-
aperture detectors in which theith measurement is located at
position di on the measurement surfacer 0 and occupies an
areaDSi si =1,… ,Nd andpd8sdi , t̄d is the corresponding pres-
sure measured by theith detector. Then, the back-projection
formula, Eq.s20d, can be rewritten in a discrete form as

p0
sbdsr d = o

i=1

N

DVi 3 bsdi, t̄ = udi − r udYo
i=1

N

DVi , s21d

wherebsdi , t̄d is computed frompd8sdi , t̄d by the method as
discussed above and

DVi =
DSi

ur − diu2
·Fn0i

s ·
sr − did
ur − diu

G , s22d

in which n0i
s is the normal of the measurement surface

at position di and points to the photoacoustic source
distribution.

IV. NUMERICAL SIMULATION

Next, we want to use numerical simulation to test the
proposed algorithm. For simplicity, we consider uniform
spherical absorbers surrounded by a nonabsorbing back-
ground medium. Leta andr a denote the radius and center of
a spherical absorber, respectively. The excited pressure dis-
tribution caused by ad EM illumination in the absorber can
be expressed byp0sr d=A0Usa− ur −r aud, whereA0 is the in-
tensity andUsxd=1 when x.0 and Usxd=0 when x,0.
Then, the photoacoustic signal irradiated from this uniform
sphere can be calculated bypsr 0,td=A0Usa− uR−ctudsR
−ctd / s2Rd, where R is the distance between the detection
position r 0 and the absorber centerr a sR= ur 0−r aud f9g. For
convenience, we use the center of the absorber to denote its
position.

The numerical phantom sample is shown in Fig. 3. Five
absorbers are evenly distributed at a distance of 15 mm along
the horizontal linesy=0 andz=15 mmd that is parallel to the
x axis, and each absorber has a radius of 1.5 mm and an
intensity of 1. Another two absorbers are located at a dis-
tance of 15 mm along a horizontal linesx=0 and z
=15 mmd that is parallel to they axis, and each absorber has
a radius of 4 mm and an intensity of 1.fSee the detailed
positions of these absorbers in the text below Eq.s23d.g

Without loss of generality, we can take the planar mea-
surement surface as an example. As shown in Fig. 3, a
rectangular-shaped detector 2 mm32 mm, scans the
samples in thez=0 plane along both thex andy axes from
−30 mm to 30 mm with a spatial sampling period of
2/3 mm, where the center of the detector surface represents
its position. In the computation of the PA signal of the de-
tector, for simplicity, we evenly divide the detector surface
s2 mm32 mmd into 25 small elements. Then, the total sig-
nal received by the detector atdi =sxdi ,ydi ,0d can be com-
puted by a summation as

pdsdi,td = o
m=−2

2

o
n=−2

2
1

25Fo
j=1

5
Us1.5 −uRij − ctudsRij − ctd

2Rij

+ o
j=6

7
Us4 − uRij − ctudsRij − ctd

2Rij
G , s23d

where Rij = udi
sm,nd−r aju, di

sm,nd=sxdi+0.4m,ydi+0.4n,0d, and
the center position of thej th absorber r aj s j =1,… ,7d
=sxaj ,yaj ,zajd : s±18,0,15d , s±9,0,15d , s0,0,15d, and
s0, ±12,15d mm, respectively. In practice, the detection sys-
tem is band limited. It is necessary to introduce a low-pass

filter W̃cskd characterized by a cutoff angular frequencyfc. A
Hanning window is our choice in this casesk=2pf /cd:

W̃cskd = 50.5 + 0.5 cosSp
f

fc
D, if uf u , fc,

0, otherwise.
6 s24d

Here, we choosefc=4 MHz and the data sampling frequency
as 20 MHz.

In the simulation, we first use Eq.s23d to compute
pdsdi , t̄d without additional noise. Then, we calculate

bsdi , t̄d=2F−1fW̃cskdp̃dsdi ,kdg−2t̄F−1f−ikW̃cskdp̃dsdi ,kdg and
further use Eq.s21d to compute the reconstruction. Figure
4sad is a gray scale image of the reconstructed distribution in
thez=15 mm plane, and Figs. 4sbd and 4scd show a compari-
son between the original and reconstructed distributions
along the linesy=0 andx=0 mm, respectively. The recon-
structed values are in good agreement with the original ones.
Due to the limited-angle view and the limited bandwidth,
some discrepancies occur in the reconstruction, but they are
minimal.

We also compute the reconstruction from the data with
additional noise:pdsdi , t̄d←pdsdi , t̄d+0.1cRAND, wherecRAND

is a series of computer-generated random numbers in the
range ofs−1,1d. Since the initial pressure intensity of each
absorber is 1, 0.1 is a significant noise level. Figure 5sad is a
gray scale image of the reconstructed distribution in thez
=15 mm plane, and Figs. 5sbd and 5scd show a comparison
between the original and reconstructed distributions along
the linesy=0 andx=0 mm, respectively. The reconstructed
values are also in good agreement with the original ones.
This example indicates that the proposed back-projection al-
gorithm is very insensitive to the random noise.

FIG. 3. Diagram of planar measurement geometry. See the text
for detail.
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V. CONCLUSION

We have presented in this paper a unified and exact time-
domain back-projection algorithm for the three common
measurement geometries with the assumption of constant
sound speed. We can extend this algorithm straightforwardly
to the limited-angle view case, in which the reconstruction
may be incomplete and reconstruction artifacts may occur.
The solid-angle weighting factor in the BP formula, however,
can compensate for the variations in the detection views. It
has to be pointed out that significant acoustic inhomogeneity
of the sample may introduce reconstruction distortions,
which, however, may be corrected or minimized using

modified algorithms that take account of the acoustic
inhomogeneity.

This BP formula can serve as a basis for time-domain
photoacoustic reconstruction in three-dimensional space. In
principle, this algorithm can also be extended to other
inverse-source diffraction tomographies.
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FIG. 4. Reconstruction without noise.sad Gray scale image of
the reconstructed pressure distribution in thez=15 mm plane. Com-
parison between the originalsdashed lined and reconstructedssolid
lined distributions:sbd alongy=0 mm andscd alongx=0 mm.

FIG. 5. Reconstruction with noise.sad Gray scale image of the
reconstructed pressure distribution in thez=15 mm plane. Com-
parison between the originalsdashed lined and reconstructedssolid
lined distributions:sbd alongy=0 mm andscd alongx=0 mm.
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sDdsr ,r 1d=s1/4pd

3fexps−ikR−d /R−−exps−ikR+d /R+g sp. 430 inf12gd. By taking
the limit S08→`, the integral over surfaceS08 gives p0sr d /2.

For the other two geometries, we constructG̃k
sDdsr ,r 1d

=G̃k
sindsr ,r 1d+c̃ksr ,r 1d, where c̃ksr ,r 1d satisfies

s=2+k2dc̃ksr ,r 1d=0 sp. 320 in f11gd. In the spherical

geometrysS0: r1=r0d, for k.0, G̃k
sDdsr ,r 1d=s−ik /4pdol=0

` s2l
+1d j lskrdPlsn ·n1dfhl

s2dskr1d−hl
s1dskr1dhl

s2dskr0d /hl
s1dskr0dg. In

the cylindrical geometry sS0:r1=r0d, denoting m

=Îk2−kz
2sk.kzd and m= iÎkz

2−k2 sk,kzd, for

k.0, G̃k
sDdsr ,r 1d=s1/4p2don=−`

` expfinsw1−wdge−`
+`dkz

expfikzsz1−zdgg̃nsr ,r1,r0;md, where g̃ns r ,r1,r0;md
=s−ip /2dJnsm*rdfHn

s2dsm*r1d−Hn
s1dsmr1dHn

s2dsm*r0d/Hn
s1dsmr0dg.

Wronskian relations should be used for computing the deriva-
tives of Bessel or Hankel functions.

f14g We rewrite Eq.s2d as t̄e0
t̄ psr 0, t̄ddt̄=s1/4pdeeeVd3rp0sr ddsur

−r 0u− t̄d. If we denoteCsr 0, t̄d= t̄e0
t̄ psr 0, t̄ddt̄, the reconstruc-

tion formula for the spherical geometry can be written asf7g
p08sr d=−2/sr0V0d=2eS0

dS0Csr 0, ur −r 0ud / ur −r 0u. Since =ur
−r 0u=sr −r 0d / ur −r 0u, the above formula reduces top08sr d
=p0

sbdsr d−2/sr0V0d= ·rFsr d, where Fsr d=eS0
dS0psr 0, ur

−r 0u d / ur −r 0u = 2eV8d
3r8p0s r 8 d e−`

+` s−ikddkeS0
dS0G̃k

soutdsr 8 ,r 0d
3G̃k

sindsr ,r 0d. Similarly to provePs2dsr 8 ,r d=0, we find Fsr d
=0. Therefore,p08sr d=p0

sbdsr d.
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fusion length:dT=2ÎDTtp fA. C. Tam, Rev. Mod. Phys.58,
381 s1986dg, whereDT is the thermal diffusivity. For most soft
tissues,DT,1.4310−3 cm2/s fF. A. Duck, Physical Proper-
ties of TissuesAcademic, London, 1990dg. For a pulse oftp

=0.5 ms, dT<0.5 mm, which is typically much less than the
spatial resolution of most PA imaging systems.
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