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The limited-view problem is studied for thermoacoustic tomography, which is also referred to as
photoacoustic or optoacoustic tomography depending on the type of radiation for the induction of
acoustic waves. We define a ‘‘detection region,’’ within which all points have sufficient detection
views. It is explained analytically and shown numerically that the boundaries of any objects inside
this region can be recovered stably. Otherwise some sharp details become blurred. One can identify
in advance the parts of the boundaries that will be affected if the detection view is insufficient. If
the detector scans along a circle in a two-dimensional case, acquiring a sufficient view might
require covering more than ap-, or less than ap-arc of the trajectory depending on the position of
the object. Similar results hold in a three-dimensional case. In order to support our theoretical
conclusions, three types of reconstruction methods are utilized: a filtered backprojection~FBP!
approximate inversion, which is shown to work well for limited-view data, a local-tomography-type
reconstruction that emphasizes sharp details~e.g., the boundaries of inclusions!, and an iterative
algebraic truncated conjugate gradient algorithm used in conjunction with FBP. Computations are
conducted for both numerically simulated and experimental data. The reconstructions confirm our
theoretical predictions. ©2004 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1644531#
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local tomography, limited view, incomplete data
f
a
,

t
le

gr

e
is
ta
a
re
d

f t

l-
e
th

es
ic

m

als

or
ach
r’s

he
le,

. Al-
all
rs

to
nd

ew
x-

,
In
is
an
I. INTRODUCTION

A correlation between the electromagnetic absorption o
biological tissue and its physiological and pathological fe
tures is reported.1–4 To employ this contrast mechanism
thermoacoustic tomography~TAT!, in which the thermoa-
coustic signals from a tissue sample are collected to map
distribution of the radiation absorption within the samp
has been developed to image biological tissue.5–9TAT, which
is also referred to as photoacoustic or optoacoustic tomo
phy ~depending on the type of radiation used!, combines
good imaging resolution with good imaging contrast.

As it will be shown below, TAT signals can be represent
in terms of a known circular radon transform. There ex
explicit reconstruction formulas for this transform when da
are collected along a line or a full circle in a two-dimension
~2-D! case and along a plane, sphere, or a cylinder in a th
dimensional~3-D! case.10–15 In all these cases it is assume
that the imaged objects are located either on one side o
scanning line~plane!, or inside the scanning circle~sphere,
cylinder!, without which assumption reconstruction is not a
ways possible. The available inversion formulas employ
ther special-function expansions, or backprojection in
case of the linear or planar data-acquisition geometry.

Exact reconstruction algorithms for TAT based on seri
expansion techniques are implemented in planar, spher
and cylindrical configurations.5–7,16 Following the line of
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a
-

he
,

a-

d
t

l
e-

he

i-
e

-
al,

Nortan,17 an approximate modified backprojection algorith
has been developed from an exact 3-D model.6 Other back-
projection algorithms are also proposed.8,18 In these algo-
rithms for TAT, it is assumed that the thermoacoustic sign
are detected in a full~panoramic! view. In other words, the
detector moves along a whole circle in the 2-D case
sphere in the 3-D case. This means in particular that e
point of the scanned object is visible from the detecto
trajectory for 2p radians in the 2-D case or 4p steradians in
the 3-D case. However, in many applications of TAT, t
signals cannot be collected from all directions. For examp
the solid angle of detection is at most 2p steradians for a
breast. So, one faces here an incomplete data problem
though one can show that theoretically an arbitrarily sm
scanning arc~i.e., the arc of a circle over which the detecto
move! suffices for the uniqueness of recovery,22 in practical
implementations the limited-view problems usually lead
losing some parts of the high-frequency information a
hence blurring of some sharp details.

In this paper, we present our results on the limited-vi
TAT. Although limited-view problems have been studied e
tensively in x-ray tomography,19 diffraction tomography,20

and reflectivity tomography,21 to the best of our knowledge
no results on the limited-view TAT have been published.
the methods section, a formula for the forward problem
presented. In particular, it is shown that the TAT signals c
724…Õ724Õ10Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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be represented in terms of a known circular radon transfo
This enables us to employ the known results that justify
theoretical possibility of reconstruction.22 Then results by
Quinto and Louis developed for sonar are applied to de
mine the ‘‘stably visible’’ parts of the objects in TAT.23 In
particular, a piece of the boundary of an object~i.e., inter-
faces between objects! can be stably reconstructed as soon
at any point on the boundary at least one of its two norm
directions passes through a detector position. On an intu
level, this is because an arbitrary interface can be consid
as a combination of small flat interface segments, and e
segment transmits acoustic waves identically in the two
posite directions perpendicular to the interface segment. T
means that we need to collect signals at only one of the
directions to obtain information about the boundary segm
More complicated sharp details~‘‘singularities’’! could be
considered as well, which would entail using the notion o
wavefront of a function and other tools of microlocal ana
sis. However, among all possible singularities, tissue in
faces are of the most interest for TAT.

Exact reconstruction formulas for the limited-view TA
are not yet known. We derive an approximate filtered ba
projection~FBP! algorithm that works well quantitatively. A
version of this method that emphasizes singularities@a ‘‘local
tomography’’ ~LT! reconstruction# is also tested. The FBP
results are then iteratively improved using a truncated c
jugated gradient~TCG! method. Besides using numeric
phantoms for calculations, we also conducted experime
measurements on physical phantoms and applied our re
struction methods to the obtained data. The results of
these reconstructions confirm our theoretical predictio
These are addressed in the Sec. III.

II. METHODS

A. Formulas for the forward problem

We begin by presenting the forward problem for an aco
tically homogeneous model. In the case of thermal confi
ment, the spectrum of the acoustic wave pressurep̄(r ,k) at a
detector positionr is related to the spatial distribution o
electromagnetic absorptionw(r 8),5

p̄~r ,k!5
ivsbI 0kh̄~k!

4pC

3 R w~r 8!
exp~2 ikur2r 8u/vs!

ur2r 8u
dr 8. ~1!

Herek is the angular frequency with respect tot; vs is the
acoustic speed;C is the specific heat;b is the coefficient of
volumetric thermal expansion;I 0 is a scaling factor propor
tional to the incident radiation intensity;w(r 8) describes the
to-be-reconstructed electromagnetic absorption property
the medium atr 8; and p̄(r ,k) and h̄(k) are the tempora
Fourier transforms of the pressurep(r ,t) and the shape o
the irradiating pulseh(t), respectively.

Defining p̄1(r ,k)5 p̄(r ,k)/h̄(k) and applying inverse
Fourier transform, one obtains
Medical Physics, Vol. 31, No. 4, April 2004
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p1~r ,t !5
vsbI 0

4pC

]

]t R w~r 8!

ur2r 8u
dr 8, ~2!

t5ur2r8u/vs

wherep1(r ,t) is the deconvolution ofp(r ,t) with respect to
the profile of the electromagnetic pulse and can be in
preted as the detected pressure when the electromag
pulse is a delta~impulse! function. The physical meaning o
this equation is that, in an acoustically homogeneous m
dium, the pressurep1 at a spatial pointr and timet is pro-
portional to the time derivative of the integral of the a
sorbed electromagnetic energy over a spherical surfac~a
circle in the 2-D case! centered atr and with a radius oftvs :

ur2r 8u5tvs . ~3!

2-D TAT is studied in our numerical simulations and e
periments. It should be pointed out that 2-D TAT is valid f
experimental configurations where thermoacoustic sou
are approximately located within a thin slab or the ultraso
transducers are cylindrically focused to select thermoacou
sources from a thin slab.

B. Analysis of singularities in circular radon
transform and limited-view TAT

1. Circular radon transform

It can be seen from Eq.~2! that p1(r ,t) can be obtained
from w(r 8) after applying three linear operations: circul
~spherical in 3-D! radon transformR, multiplication by 1/t,
and differentiationDt with respect tot. The circular radon
transform defined as

Rw~r ,t !5 R w~r 8!dr 8 ~4!

t5ur2r8u/vs

is similar to the conventional linear radon transform, exc
that the integration here is over a circle or a sphere ra
than a line or a plane. In this paper, the setS of centersr of
the circles~spheres! of integration coincides with the set o
positions of the detector, and the set of radii~that are propor-
tional to time t) is unrestricted. We call these circle
~spheres! ‘‘projection curves’’ ~‘‘projection surfaces’’! and
the setS the ‘‘scanning curve’’~or ‘‘detector curve’’!. We
assume that the source functionw~r ! is zero outsideS and in
a neighborhood ofS. In other words, the scanned object
strictly inside the scanning detector trajectoryS. In this case
it is known that data collected from an arbitrarily small arc
the detector trajectory are theoretically sufficient for a co
plete reconstruction.22 This result, however, neither provide
reconstruction algorithms, nor guarantees that the recons
tion can be achieved in any practically stable manner.
deed, it is well known that solving incomplete data proble
usually leads to operations like Fourier filtrations with fa
growing filters,15 which implies high sensitivity to errors in
data. This in turn requires cutting high frequencies and he
blurring the images. Sacrifices in high frequencies natura
lead to destroying sharp details~interfaces between differen
tissues! in the reconstruction. The question of what parts
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726 Xu et al. : Reconstructions in limited-view thermoacoustic tomography 726
the singularities~i.e., sharp details! of the image can be sta
bly reconstructed depending on the scanning geometry is
dressed for the planar radon transform,24 and for the circular
one in connection with sonar.23 Local tomography recon
structions also address similar issues.25–28

2. TAT

We would like to note that in Eq.~2! the presence of a
temporal derivative in the TAT data~which is equivalent to a
radial derivative after the circular radon transform! can only
emphasize singularities and hence should not lead to a
tional blurring in comparison with the circular radon tran
form itself ~this can be shown rigorously!. In fact, as it will
be seen later in this paper, this derivative is a natural par
the reconstruction procedure for the circular radon transfo

We will now apply to TAT the known results of integra
geometry concerning singularity reconstruction.23,24 The ex-
act description would require the notions of microloc
analysis, in particular the one of a wavefront set of
function.23,24 However, in tomographic problems, in partic
lar in TAT, one is mostly interested in only one type of si
gularity: the jump of the imaged valuew across an interface
~a curve in 2-D or a surface in 3-D!. Assuming thatw is
smooth except for a jump across a curveL in the plane~the
3-D situation is analogous withL being a surface!, then the
wavefrontWS(w) of w consists of pairs (r 8,j) where point
r 8 belongs toL andj is a nonzero vector normal toL at r 8
as shown in Fig. 1.

Now Louis’ results can be summarized as follows:23 one
can identify that a pair (r 8,j) belongs to the wavefront set o
the image by looking at the singularities of the radon dat
and only if among the circles~spheres! of integration~‘‘pro-
jection curves’’! there exists at least one passing through
point r 8 and normal toj at this point. To put it differently, in
TAT one can see without blurring only those parts of t
interfaces that one can touch tangentially by circles~spheres!
centered at detector positions. This means that one nee
have a detector located on the normal toL at r 8 in either
direction.

What happens to other, ‘‘invisible’’ parts of the interface
We provide here a nontechnical explanation. One wo
need to recover these singularities from smooth parts of
measured data. This in turn means the involvement of op
tions like filtrations in the frequency domains with filte
growing faster than any power. In order to avoid instabilit

FIG. 1. WavefrontWS(w) of an imagew consisting of pairs (r 8,j), where
point r 8 belongs toL ~a jump interface in the image! and j is a nonzero
vector normal toL at r 8.
Medical Physics, Vol. 31, No. 4, April 2004
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then, this clearly requires cutting those frequencies
which causes blurring. The conclusion is that the ‘‘visibl
parts of the interfaces should be possible to recover, w
the others should blur independently of the reconstruct
method used. A discussion of the related issues of stabilit
reconstruction would be too lengthy; one can find the r
evant considerations in the literature.29 In a nutshell, more
stable tomographic problems allow one to estimate the e
in the reconstruction~in a Sobolev norm! by the error in the
data in a somewhat smoother norm. This, however, is imp
sible when the information about the wavefront is lost.

Let us make this geometry more explicit for our circul
~spherical! trajectory of detectors. We pose the followin
question: Assume that only a part of the detector cir
~sphere! is used for collecting data; at what locations then,
interfaces in the image will be completely recoverable?
will call the set of all such ‘‘good’’ locations the ‘‘detection
region.’’ For images outside this region, one needs to ap
the tangent-circle test as described in the preceding two p
graphs to predict what parts of the boundaries will not
stably recoverable.

Assuming first that the detector moves along a single
of the circle@Fig. 2~a!#, then simple geometric consideratio
shows that the ‘‘detection region’’ is just the convex hull
this arc ~i.e., the circular cap based on the arc!. Here the
‘‘detection region’’ is shaded, and the arc of the circle whe
we do not position a detector is shown as a dotted li
Analogously, one can find the ‘‘detection region’’~shaded!
for two arcs@Fig. 2~b!#. The situation changes, however, fo
more complicated scanning trajectories. For instance, in
case of three arcs, one can have more than just circular
in the ‘‘detection region’’@Fig. 2~c!#. Here an additional tri-
angular part of the ‘‘detection region’’ appears in the cent
The situation can become even more complicated for sph
cal 3-D geometry. The general rule for finding the ‘‘detecti
region’’ is as follows: draw all lines such that both of the
intersection points with the scanning circle~sphere! do not
coincide with detector locations. These lines cover the ‘‘
visible’’ domain, so its complement forms the ‘‘detection r
gion.’’ Note that in the ‘‘invisible’’ domain some boundarie
can still be recovered stably, while others blur away. Name
the parts of the boundaries the normal lines to which p
through a detector position, and only those can be sta
recoverable. The above conclusions are illustrated in Fig
where the ‘‘invisible’’ parts of the object boundaries, i.e., t

FIG. 2. ~a! An illustration of the ‘‘detection regions’’~shaded areas! of cir-
cular radon transform, when the detector moves along a single arc~solid! of
a circle.~b! Two arcs.~c! Three arcs.
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727 Xu et al. : Reconstructions in limited-view thermoacoustic tomography 727
ones to be blurred during the reconstructions, are shown
dotted lines. For instance, in Fig. 3~a! one has a cap ‘‘detec
tion region’’ and a rectangular object that does not fit fu
into it. Then one expects the dotted parts of the rectang
boundary to be affected by blurring artifacts during the
construction. Figure 3~b! shows the expected reconstructio
of a circular object located outside the ‘‘detection region
Let us remark that similar considerations apply to an a
trary scanning geometry. For instance, Fig. 3~c! shows the
parts ~solid! of the boundaries of a circular and a squa
object that can be stably reconstructed from the detection
a segmentAB.

C. Reconstruction methods

As it has already been mentioned before, exact invers
procedures are known for circular and spherical radon tra
forms in some special detection configurations.10–15 How-
ever, for the circular trajectories of detectors only spec
function-expansion methods are known, while formulas
the FBP type are available for the linear~planar! trajectories.
Our approach is to use an approximate FBP formula, wh
happens to work well under most circumstances and ca
improved in conjunction with post-processing by an iterat
method. Namely, for objects not too close to the detect
one can think of projection lines as close to straight lin
and hence the circular radon transform as being close to
standard radon transform. In this approach, the centerr of
the projection circle and its radiusr ~which is proportional to
time! are analogs of the normal coordinates (û,§) of a line
r• û5§ in the standard radon transform whereû is a unit
vector normal to the line. FBP inversion of the standard
don transform on the plane consists~up to a constant factor!
in applying the first derivative with respect to§, then Hilbert
transform with respect to§, and finally the backprojection
operator, which averages over lines passing through a g
point.15 We implement a similar procedure in the circul
radon transform. This amounts to a differentiation with
spect to the radius, a Hilbert transform with respect to
radius, and then a circular backprojection, i.e., averag
over the circles passing through a given point. One sho
also make sure that during the backprojection the tang

FIG. 3. ~a! ‘‘Visible’’ ~solid line! and ‘‘invisible’’ ~dashed! boundaries of a
square object, and the ‘‘detection regions’’~shaded areas! when the detector
moves along an arc~solid!. ~b! The same as~a! for a disk phantom.~c! The
same as~a! except that the detector moves along the line segmentAB and
the objects are a square and a disk. The ‘‘visible’’ boundaries are expect
be recoverable stably, while the ‘‘invisible’’ boundaries should be blur
away.
Medical Physics, Vol. 31, No. 4, April 2004
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lines ~or the normal vectors! to the projection curves at th
given point, for example,u in Fig. 4, rather than the center
of the projection curves~which coincide with detector posi
tions!, rotate at a constant speed. Differentiation with resp
to the radius is already contained in the TAT data, as sho
in Eq. ~2!, so this step can be simplified in 2-D reconstru
tions ~it is still required in a 3-D TAT!. Based on this, we
arrive in the Appendix at an approximate FBP reconstruct
formula for the 2-D TAT,

w~r !'
C

bI 0vs
2 R ds

n•~r2r u!

ur2r uu2 H„p1~r u ,ur u2r u/vs!

3ur2r uu1p2~r u ,ur u2r u/vs!…, ~5!

whereH is a Hilbert transform;p2(r ,t)5vs*0
t p1(r ,t)dt; n is

the inward normal to the detection curve atr u ; ds is the arc
length differential; and the integration is along a comple
detection curve~i.e., the one that runs around the objects!. In
the case of incomplete data, one just replaces the mis
data with zeros~possibly gradually phasing off the existin
data closely to the missing data region to reduce the artif
caused by the missing data! and then applies the formula
Although this is not an exact inversion, one can show us
microlocal analysis that it preserves all ‘‘visible’’ singular
ties ~a conclusion supported by the numerical and exp
mental evidences presented below!. If one is interested in
singularities only~e.g., interfaces between different types
tissue!, then one can drop the integral termp2(r u ,ur u

2r u/vs) in the last formula, since it corresponds to a pseu
differential operator of a smaller order.

Let us also provide a local tomography formula for t
2-D TAT. In order to do this we replace the Hilbert transfor
by an additional time derivative. This then leads to the lo
tomography reconstruction:

Lw~r !5
C

bI 0vs
2 R ds

n•~r2r u!

ur2r uu2 S ]p1

]t
„r u ,ur u2r u/vs…

3ur2r uu12vsp1„r u ,ur u2r u/vs…D . ~6!

to

FIG. 4. A diagram to show the uniform rotation ofu in FBP in a circular
radon transform or TAT. The dashed arrow represents the normal to
detection curve~dotted arc! at r u and the dashed line is the normal to
projection arc centered atr u and passing through a reconstructed pointr . u t

is the detection view atr , i.e., the angle subtended by the detection curve
viewed fromr .
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As before, if one wants to recover singularities only, the te
of a lower pseudo-differential order 2vsp1 in this formula
can be dropped.

One can apply a similar consideration to the 3-D TA
which leads to the approximate FBP formula:

w~r !'2
C

2pbI 0vs
3 R dS

n•~r2r u!

ur2r uu2

3S ]p1~r u ,ur u2r u/vs!

]t
1

2p1~r u ,ur u2r u/vs!vs

ur u2r u D .

~7!

In the case of limited-angle detection, there is also
following possibly useful correction if one is interested
quantitative imaging. Here, we define a detection viewu t

~solid angleV t for the 3-D case! at r , which is the~solid!
angle subtended by the detection curve~surface! when
viewed from the reconstruction pointr as shown in Fig. 4.
Because of the incompleteness of data, the integral in
above equations runs over a portion of the detection cu
~surface! only. One might want to compensate for that
multiplying the value of the reconstructed function at th
point by a factor 2p/u t (4p/V t for the 3-D case!. The factor
appears when the backprojection operator is considered
proximately as an averaging over the available project
curves passing through the reconstruction pointr . It should
be noted that bothu t andV t depend onr . The effectiveness
of this compensation is shown below by our numerical sim
lation results of TAT.

There are three useful features of Eq.~5! and Eq.~7!. First
of all, they yield, as we intend to show in numerical simu
tions, acceptable quantitative results from limited-view da
Second, their computation complexity is much less than
for the iterative methods such as TCG, while they produ
images of comparable quality. Finally, if an iterative meth
is necessary, our backprojection formula can serve as a g
initial guess. This is also observed in our numerical simu
tions.

Although the above backprojection formula is shown
work well in numerical simulations, it is not exact. Neve
theless, one can show that it amounts to applying a pse
differential operator to the imagew ~this is true if the data is
gradually phased out near the areas of the missing d!.
Pseudo-differential operators are known not to shift locati
of any singularities, including boundaries.19,28,30This means
that although the backprojection formula might give imp
cise values ofw, it will present the locations of the bound
aries of all inclusions correctly.

Another reconstruction method is to apply an additio
differentiation with respect to time~the radius! without ap-
plying a Hilbert transform, as shown in Eq.~6!. This leads to
a local tomography type formula.25,28 The result of the pro-
cedure also produces an expression of the formLw, whereL
is a pseudo-differential operator defined in Eq.~6!. In this
case, however, the operator has a positive order, wh
means that all the ‘‘visible’’ interfaces and other sharp deta
not only have correct locations, but also are emphasiz
Medical Physics, Vol. 31, No. 4, April 2004
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This effect is well known in image processing, where f
instance the Laplace operator is sometimes used to em
size the edges. One can also notice that our experime
data, due to the shape of the transducer’s impulse resp
function and electromagnetic pulse shape, already car
filtration that makes the reconstruction similar to the loc
one. Then, unless an appropriate deconvolution is applie
the data during pre-processing, the interfaces are accentu
in the reconstruction. The reader will notice this in our actu
reconstructions from experimental data.

D. Numerical implementation

In the case of incomplete data discussed above, we c
plete it by concatenating with zeros~sometimes gradually
smoothing the data to zero at the boundary in order to red
the artifacts in the reconstruction!. The FBP algorithm de-
scribed above is first applied to the limited view data. Sin
the inversion formula we use is not exact even for compl
data, we improve it by employing an iterative algebra
method for solving the discretized version of Eq.~2!, starting
with the FBP reconstruction as the initial guess. We adop
such the TCG method for finding the least-squares solu
of the discretized version of the problem. No precondition
is used. We also employ local tomography procedure
scribed above. We expect in all these methods to see
reconstructions that agree with the theoretical predicti
stated in the previous section, i.e., sharp ‘‘visible’’ deta
with the ‘‘invisible’’ parts blurred.

III. RESULTS AND DISCUSSION

Our results consist of three parts:~1! inversion of simu-
lated circular radon transform data to show the theoret
predictions about the ‘‘visible’’ and ‘‘invisible’’ boundaries
~2! reconstructions from simulated TAT data to test our
construction algorithms quantitatively, and~3! images based
on experimental data collected from a physical phantom.

A. Numerical results for the limited-view circular
radon transform

Figure 5 shows the inversion of the circular radon tra
form for different detection configurations and phantom
~shown in the first column from the left! to demonstrate our
discussions on the ‘‘visible’’ and ‘‘invisible’’ boundaries. In
the second column from the left, the detection curve
shown as the solid part of the outer circle, the ‘‘detecti
region’’ is shaded, and the ‘‘visible’’~solid! and ‘‘invisible’’
~dashed! boundaries of the objects predicted by theory a
shown. The inclusion represents the object to be imaged.
third and fourth columns from the left show the FBP reco
structions and the local tomography reconstructions, resp
tively. Notice the good agreement between the three colum
on the right concerning reconstructions of the ‘‘visible’’ an
‘‘invisible’’ parts of the boundaries.

Figure 5~1a–1d! shows the results for a phantom contai
ing a square inclusion. The data are collected from detec
located on the upper half-circle. Exactly the parts of t
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boundary of the square predicted in this paper@see the dotted
lines in Fig. 5~1b!# become blurred in Fig. 5~1c! and Fig.
5~1d!.

Figure 5~2a–2d! and Fig. 5~3a–3d! show the reconstruc
tions of circular inclusions from the data collected by t
detector located along the upper half-circle. In Fig. 5~2a–2d!,
the phantom is completely outside the ‘‘detection regio
which leads to blurring of its right and left boundaries
accordance with the theory. In Fig. 5~3a–3d!, however, the
boundaries of the disk are recovered sharply, since the in
sion is in the ‘‘detection region.’’ Notice here some deter
ration of the image near the detector circle. This can be
tributed to the fact that near the detector circle, linear, a
circular radon transform become noticeably different, and
the quality of our approximate formulas diminishes. Th
problem can be dealt with in two ways: one can make s
that the detectors do not approach the imaged objects
closely~this will be enforced in our further numerical simu
lations and experiments!, or to improve the reconstructio
quality by post-processing with an iterative algebraic rec
struction method.

Other limited-view reconstructions from the circular r
don data are shown in Fig. 5~4a–4d! and Fig. 5~5a–5d!,

FIG. 5. ~1a! A square phantom inside a circular detection curve in a circu
radon transform.~1b! The diagram showing the detection curve~solid part
of the outer circle!, the ‘‘visible’’ ~solid! and ‘‘invisible’’ ~dashed! bound-
aries of the object predicted by theory, and the ‘‘detection region’’~shaded!.
~1c! FBP reconstruction.~1d! Local tomography reconstruction, where th
boundary is emphasized.~2a-2d! A disk phantom outside the ‘‘detection
region.’’ ~3a-3d! A disk phantom inside the ‘‘detection region.’’~4a-4d! An
off-center disk phantom and a detection curve consisting of three arcs.~5a-
5d! A centered disk phantom and a detection curve consisting of three
Medical Physics, Vol. 31, No. 4, April 2004
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where there are three arcs of detection, 60 degrees each,
60 degrees intervals between them. An off-center and a c
tered circular inclusion are reconstructed in Fig. 5~4a–4d!
and Fig. 5~5a–5d!, respectively. The results agree well wi
the theory: some parts of the boundary of the off-center d
are blurred; namely, those where the normals do not p
through any detector positions. However, the in-center d
is reconstructed sharply, in spite of the fact that it does no
into the ‘‘detection region.’’ The reason is that in this ca
every normal to the boundary of the inclusion passes thro
a detector.

B. Reconstruction from simulated limited-view
TAT data

A numerical phantom that contains four sharp and o
soft inclusions is shown in Fig. 6. Among the sharp ones
have one large and two small squares and one disk.
object value, which represents the electromagnetic ene
deposition, is set to be 0.5 within the largest square and u
within other sharp inclusions and zero elsewhere. Inside
‘‘soft’’ circular inclusion, this value drops linearly with the
radius from unity at the center to zero at the interface
order to simulate a gradual interface. The imaged field of 1
mm by 154 mm is mapped with a 1283128 mesh. The de-
tection circle has a radius of 133 mm and is centered at
center of the picture. We scan 200 steps in all the simu
tions. The gray scale and the scale bar of the images
shown below the images in Fig. 7. The top row of reco
structions employs the local tomography formula that e
phasizes the boundaries. The next one uses the FBP form
and the lowest one shows the improvements achieved
running the algebraic reconstruction method~TCG! starting
with the FBP as an initial guess.

The left column uses only the data collected from thep/2
detection arc in the first quadrant. None of the phantom
clusions fits into the ‘‘detection region.’’ One can see that
parts of the inclusion boundaries the normals to which do
intersect the detector arc are blurred~even in the local to-

r

s.

FIG. 6. A diagram of inclusions in TAT~used in Fig. 7!. The value of the
imagew(r ) is set to be 0.5 in the largest square and unity within other sh
inclusions and zero elsewhere. Inside the ‘‘soft’’ circular inclusion, th
value drops linearly with the radius from unity at the center to zero at
interface.
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FIG. 7. Images reconstructed from simulated TAT da
corresponding to the phantom in Fig. 6. The three c
umns correspond from the left to the right to detectio
angles of 90 degrees~from 0° to 90°), 217 degrees
~from 219° to 198° as shown by the angleu in Fig. 6!,
and 360 degrees, respectively. The three rows co
spond from top to bottom to the local tomographic r
construction, FBP, and FBP with the consecutive TC
respectively. The values of~minimum, maximum!
of the gray scale for~a!–~i! are (20.8081, 1.0000!,
(20.8302, 1.0000!, (20.7515, 1.0000!, (22.0745,
1.7899!, (20.6385, 1.0723!, (20.1030, 1.0349!,
(20.9284, 1.2859!, (20.0326, 1.0030!, and
(20.0149, 1.0021!, respectively. The maxima of the
local reconstructions are normalized to unity.
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mography reconstruction!. Other parts of the boundaries a
sharp. This is in perfect agreement with our theoretical p
diction. The soft inclusion is not significantly affected by th
artifacts.

The middle column employs the data collected from
detector arc of approximately 217 degrees~the angleu in
Fig. 6!, whose chord coincides with the bottom side of t
large square inclusion. In this case all inclusions are in
‘‘detection region,’’ and hence all the boundaries are rec
structed sharply. The third column represents the full d
reconstruction. Notice that the quality of the final reconstr
tions in the last two columns is the same.

Figures 8~a! and 8~b! show the reconstructed imagew~r !
along the dashed–dotted line in Fig. 6 using the FBP@Figs.
7~d!–7~f!# and TCG reconstructions@Figs. 7~g!–7~i!#, re-
spectively. The exact value is also shown for comparison
can be found in Fig. 8~a! that the results of FBP are in goo
agreement with the real value for the case of 217-degree
360-degree detection, where all objects are in the ‘‘detec
region.’’ Iteration improves the results further as shown
Fig. 8~b!. Even for the case of a 90-degree detection cur
the profile of the objects is reconstructed. Comparing~a! and
~b!, one can find that the significant overshoot and und
shoot in FBP can be considerably reduced by TCG iterati
~we remind the reader that FBP is only an approximat
rather than the implementation of an exact formula!.
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C. Dependence of reconstruction on scanned
angular range

Figure 9 shows the relative error of each reconstruction
a function of the scanned angular range with respect to
center of the scan. We study the mean reconstruction va
in the hard sphere, the central square, and the backgro
The errors of reconstruction are normalized to the cor
sponding real values in the cases of the hard sphere and
central square and to the real value of the hard sphere in

FIG. 8. ~a! The graphs of FBP reconstructions shown in Figs. 7~d!–7~f! and
the corresponding exact value along the dashed–dotted line in Fig. 6~b!
The graphs corresponding to TCG reconstructions, Figs. 7~d!–7~f!, along
the same line as in~a!.
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case of the background~because its real value is zero!. When
the scanned angular range is less thanp, the errors decreas
sharply with the increasing scanned angular range. On
other hand, when the scanned angular range is larger thap,
the errors change much more slowly as the scanned ang
range increases. The results agree with our theoretical
clusions. However, there are some fluctuations added to
trends of the curves. By comparing the three curves in Fig
we find that these fluctuations depend strongly on the lo
tion of the object with respect to the detection curve. A mo
extensive study is needed to understand these fluctuat
There are some residual errors even in the full-view de
tion in Fig. 9. This is because we use an approximate ba
projection algorithm, which is widely employed in exper
ments due to its better computation efficiency and stab
when compared to the more accurate iteration algorithm

D. Experimental results

The experimental setup is described in our previous pa
and will not be repeated here.6 The sample and the pola
coordinate system describing the scanning orbit are show
Fig. 10~a!. The sample consists of a muscle cylinder of 4 m
in diameter and 5 mm in length embedded in a chunk of p
fat of 1.2 cm in radiusr f . There is a 10-mm fat layer below
the muscle and another 7-mm one above it. An electrom
netic pulse is delivered to the sample from below~i.e., from
behind the picture plane!. With a scanning radius ofr d

57.1 cm, thermoacoustic data are collected around
sample over a 2p angular span with 161 steps. As it is me
tioned above, the electromagnetic pulse profile and the
pulse response function of the ultrasonic transducer impo
filter on the thermoacoustic signals. We attempted to cor
this effect using deconvolution but found that the resul
images were distorted, due to the lack of precise knowle
of the filter. Therefore, we do not use deconvolution in t
reconstruction. This leads, as is explained above, to so
what emphasized interfaces.

Figures 10~b!–10~d! show the reconstructed images usi
FBP with three sets of data. In the first of them, we cho
the data collected along a circular detector arc of 92 deg

FIG. 9. The dependence of the relative errors of the mean values in the
sphere~circle markers!, the central square~square markers!, and the back-
ground~asterisks! on the scanned angular range.
Medical Physics, Vol. 31, No. 4, April 2004
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located at the top of the picture and almost symmetric w
respect to its vertical axes. One sees that the left and r
boundaries of the muscle cylinder and of the pork chunk
blurred away, since their normal lines do not touch the
tector arc, while the rest of the boundary is sharp. The n
figure shows reconstruction obtained with the data collec
from a 202-degree arc@which is about 18012* a sin(r f /rd)
obtained in the same way asu in Fig. 6#, when the whole
phantom fits into the detection region. All boundaries a
sharp now. Finally, the last figure shows the reconstruct
with the full-view data.

Notice that although no local reconstruction algorithm
are applied, the boundaries are somewhat emphasized.
reason for this is the presence in the data of the impu
response function of the ultrasonic transducer, which has
effect similar to the application of an additional derivativ
with respect to the radius of the circle of integration. T
presence of such a derivative emphasizes high frequen
and makes the reconstruction similar to a version of a lo
tomography algorithm.

E. Discussion

As mentioned above, although circular scanning is use
both our numerical and experimental studies, our conc
sions can be applied to other configurations as well. In T
with a planar configuration,18,31–33 detections are imple-
mented on a part of a line or a plane where the scanning v
is quite limited; consequently, artifacts and interface blurri
appear in the reconstructed images. In fact, in planar

rd

FIG. 10. ~a! A photograph of the experimental sample.~b!–~d! TAT recon-
structions using detection arcs of 92 degrees@from 50° to 142° in~a!#, 202
degrees~from 218° to 184°), and 360 degrees, respectively. The blur
parts of the boundaries in~b! due to the limited view agree with the theo
retical predictions. In~c! all the boundaries are resolved, since the object
into the ‘‘detection region.’’
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linear scanning geometries one can never have an objec
mersed entirely into the ‘‘detection region’’ because the n
mal lines to any interfaces that are orthogonal to the dete
plane~line! never pass through a detector. As a conseque
those parts of the interfaces will be blurred in any kind
reconstruction. For a sufficiently large view, these parts w
be small, but theoretically will never disappear. For examp
2-D planar detection is utilized to image artificial bloo
vessels;18 the scanning view is about 2.18 steradians. The
fore, it is not surprising that only the interfaces more-or-le
parallel to the plane of detection are well imaged. Line
scanning detection is used to image a 2-D phantom.32 Be-
cause the view of the linear scsanning32 is much larger than
that of planar scanning,18 the interfaces are recovered mu
more completely. However, due to a limited view, artifac
and interface blurring similar to those demonstrated in
numerical and experimental studies still appear in
images.32

By comparing Figs. 7 and 10, we observe that the qua
of images reconstructed from incomplete data when an
ject is in the detection region, is comparable with those fr
the full-view data. Scanning a smaller range has the adv
tages of reducing the scanning time or the size of the ac
tic transducer array. It should be pointed out that this adv
tage usually exists in the case when both the sample
medium are relatively acoustically homogeneous. Wh
strong wavefront distortion caused by acoustic heteroge
ities occurs, it might be beneficial to collect the signal fro
all directions.

IV. CONCLUSIONS

It is explained theoretically what parts of the image can
stably recovered in the limited-view TAT. Analytic and alg
braic reconstruction methods are developed and applie
numerical phantoms and experimental data. Both numer
and experimental results agree perfectly with the theoret
conclusions. The results can be applied practically to qu
titative reconstructions with incomplete data, as well as
designing efficient scanning geometries in TAT and interp
ing the obtained images.
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APPENDIX: DERIVATION OF EQ. „5…:

Equation~2! can be rewritten as

p1~r ,t !5
bI 0

4pC
Dt

Rw

t
. ~A1!
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We definep2(r ,t)5vs*0
t p1(r ,t)dt. Then we have

4pCtp2~r ,t !

bI 0vs
5Rw. ~A2!

If the detector is not very close to the objects, we can
proximate the circular radon transform by the standard ra
transform. The forward and inverse formulas for the stand
radon transform are15

m~§,u!5 E f ~r !dr , ~A3!

r •u5§

and

f ~r !5
1

4p E
0

2p

duH
]m~r•u,u!

]§
, ~A4!

whereH is the Hilbert transform. Although the circular ra
don transform is different, one can write down an appro
mate inversion formula modeled after Eq.~A4!. By combin-
ing an analog of Eq.~A4! with Eq. ~A2!, one obtains an
approximate formula,

w~r !'
C

bI 0vs
2 E

0

2p

duH„p1~r u ,ur u2r u/vs!ur u2r u

1p2~r u ,ur u2r u!…, ~A5!

whereu is defined as in Fig. 4. According to Fig. 4, we ha
the relation

du5ds
n•~r2r u!

ur2r uu2
, ~A6!

wheren is the inward normal to the detection curve atr u and
ds is the arc length differential of the detection curve. Aft
substituting this identity into Eq.~A5! we obtain Eq.~5!.
Equation~7! can be derived in a similar way.
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University, Linköping, Sweden, 1997.

13A. Denisjuk, ‘‘Integral geometry on the family of semi-spheres,’’ Fra
Calc. Appl. Anal.2, 31–46~1999!.

14V. P. Palamodov, ‘‘Reconstruction from limited data of arc means,’
Fourier Anal. Appl.6, 25–42~2000!.

15F. Natterer and F. Wuebbeling,Mathematical Methods in Image Recon
struction ~SIAM, Philadelphia, PA, 2001!, Sect. 2.5.3.
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