Reconstructions in limited-view thermoacoustic tomography
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The limited-view problem is studied for thermoacoustic tomography, which is also referred to as
photoacoustic or optoacoustic tomography depending on the type of radiation for the induction of
acoustic waves. We define a “detection region,” within which all points have sufficient detection
views. It is explained analytically and shown numerically that the boundaries of any objects inside
this region can be recovered stably. Otherwise some sharp details become blurred. One can identify
in advance the parts of the boundaries that will be affected if the detection view is insufficient. If
the detector scans along a circle in a two-dimensional case, acquiring a sufficient view might
require covering more than, or less than ar-arc of the trajectory depending on the position of

the object. Similar results hold in a three-dimensional case. In order to support our theoretical
conclusions, three types of reconstruction methods are utilized: a filtered backprojgeBBn
approximate inversion, which is shown to work well for limited-view data, a local-tomography-type
reconstruction that emphasizes sharp defaig., the boundaries of inclusiongnd an iterative
algebraic truncated conjugate gradient algorithm used in conjunction with FBP. Computations are
conducted for both numerically simulated and experimental data. The reconstructions confirm our
theoretical predictions. €004 American Association of Physicists in Medicine.
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[. INTRODUCTION Nortanl’ an approximate modified backprojection algorithm
has been developed from an exact 3-D m&dether back-
A correlation between the electromagnetic absorption of gyrojection algorithms are also propo<ed.in these algo-
biological tissue and its physiological and pathological feavithms for TAT, it is assumed that the thermoacoustic signals
tures is reported-“ To employ this contrast mechanism, 4re detected in a fullpanoramig view. In other words, the
thermoacoustic tomograph§fAT), in which the thermoa-  jetector moves along a whole circle in the 2-D case or
coustic signals from a tissue sample are collected to map ﬂ‘@phere in the 3-D case. This means in particular that each
distribution of the radiation absorption within the sample,pomt of the scanned object is visible from the detector’s

has been developed to image biological tisSUGAT, which trajectory for 2r radians in the 2-D case ordsteradians in

is also referred to as photoacoustic or optoacoustic tomogra: | . o
phy (depending on the type of radiation usedombines %he 3-D case. However, in many applications of TAT, the

. . . ! . . signals cannot be collected from all directions. For example,
good imaging resolution with good imaging contrast.

As it will be shown below, TAT signals can be represented'l[)he sct)hds angle c;f deter::non 'S f”u mosfirt%te(;aflans l];(l)r a Al
in terms of a known circular radon transform. There exist ca>n >0, ON€ faces here an INcomplete data problem. Al-

explicit reconstruction formulas for this transform when datathough one can shhow th"’;t thgolret|cally ‘1” ﬁrt;:tranly small
are collected along a line or a full circle in a two-dimensionalSCaNNINg arci.e., the arc of a circle over which the detectors

(2-D) case and along a plane, sphere, or a cylinder in a thred©v® suffices for the uniqueness of recovéfyn practical
dimensional(3-D) caset?~5In all these cases it is assumed implementations the limited-view problems usually lead to
that the imaged objects are located either on one side of tH8SiNg some parts of the high-frequency information and
scanning line(plane, or inside the scanning circlsphere, hence blurring of some sharp details.
cylinden, without which assumption reconstruction is not al- I this paper, we present our results on the limited-view
ways possible. The available inversion formulas employ ei-TAT. Although limited-view problems have been studied ex-
ther special-function expansions, or backprojection in théensively in x-ray tomography, diffraction tomography?
case of the linear or planar data-acquisition geometry. and reflectivity tomograph$? to the best of our knowledge,
Exact reconstruction algorithms for TAT based on seriesho results on the limited-view TAT have been published. In
expansion techniques are implemented in planar, sphericdhe methods section, a formula for the forward problem is
and cylindrical configuration¥.”'® Following the line of presented. In particular, it is shown that the TAT signals can
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be represented in terms of a known circular radon transform. vBlo 9 o(r") @
This enables us to employ the known results that justify the Pi(r,t)= 27C ot é mdr’,
theoretical possibility of reconstructidh.Then results by t=|r—r'|lvg

Quinto and Louis developed for sonar are applied to deter-

mine the “stably visible” parts of the objects in TAP.In  wherep(r,t) is the deconvolution op(r,t) with respect to

particular, a piece of the boundary of an objéct., inter-  the profile of the electromagnetic pulse and can be inter-

faces between objegtsan be stably reconstructed as soon agreted as the detected pressure when the electromagnetic

at any point on the boundary at least one of its two normapulse is a deltéimpulse function. The physical meaning of

directions passes through a detector position. On an intuitivéhis equation is that, in an acoustically homogeneous me-

level, this is because an arbitrary interface can be consideraflum, the pressure, at a spatial point and timet is pro-

as a combination of small flat interface segments, and eagbortional to the time derivative of the integral of the ab-

segment transmits acoustic waves identically in the two opsorbed electromagnetic energy over a spherical surface

posite directions perpendicular to the interface segment. Thisircle in the 2-D casecentered at and with a radius ofv:

means that we need to collect signals at only one of the two ,

directions to obtain information about the boundary segment. r=r'l=tos. &)

More complicated sharp detail$singularities”) could be 2-D TAT is studied in our numerical simulations and ex-

considered as well, which would entail using the notion of aperiments. It should be pointed out that 2-D TAT is valid for

wavefront of a function and other tools of microlocal analy- experimental configurations where thermoacoustic sources

sis. However, among all possible singularities, tissue interare approximately located within a thin slab or the ultrasonic

faces are of the most interest for TAT. transducers are cylindrically focused to select thermoacoustic
Exact reconstruction formulas for the limited-view TAT sources from a thin slab.

are not yet known. We derive an approximate filtered back-

projection(FBP) algorithm that works well quantitatively. A B. Analysis of singularities in circular radon

version of this method that emphasizes singularf@éedocal  transform and limited-view TAT

tomography”(LT)_ recqnstru_ctioﬂl is also_tested. The FBP 1. Circular radon transform

results are then iteratively improved using a truncated con-

jugated gradienTCG) method. Besides using numerical It can be seen from Ed2) that p,(r,t) can be obtained

phantoms for calculations, we also conducted experimentd[om ¢(r’) after applying three linear operations: circular

measurements on physical phantoms and applied our recofPherical in 3-D radon transfornR, multiplication by 1f,

struction methods to the obtained data. The results of afnd differentiationD; with respect tot. The circular radon

these reconstructions confirm our theoretical predictionstransform defined as

These are addressed in the Sec. Ill.

Re(r,t)= jg @(r’)dr’ 4

=lr=r'l/
Il. METHODS i
A. Formulas for the forward problem is similar to the conventional linear radon transform, except

. . that the integration here is over a circle or a sphere rather
We begin by presenting the forward problem for an acous; 9 P

tically h del In th £ th | f. than a line or a plane. In this paper, the Betf centersr of
icafly homogeneous model. In the case of thermal continey, circles(spheres of integration coincides with the set of
ment, the spectrum of the acoustic wave prespirek) at a

detect " . lated to th tial distributi f positions of the detector, and the set of r4thiat are propor-
etector positior 1S refate ,05 € spatial distroution ot 4ional to time t) is unrestricted. We call these circles
electromagnetic absorptiap(r’),

(spheres “projection curves” (“projection surfaces] and

_ ivgBlokn(k) the setX the “scanning curve”(or “detector curve’). We
pirk)=—7—5— assume that the source functiptr) is zero outsid& and in
a neighborhood okE. In other words, the scanned object is
y jg o(r) exp(—ik|r—r'|/vy) dr’ n strictly inside the scanning detector traject@ryin this case
[r—r’] ' it is known that data collected from an arbitrarily small arc of

the detector trajectory are theoretically sufficient for a com-
Herek is the angular frequency with respectttov, is the  plete reconstructioff This result, however, neither provides
acoustic speed? is the specific heai is the coefficient of reconstruction algorithms, nor guarantees that the reconstruc-
volumetric thermal expansiony is a scaling factor propor- tion can be achieved in any practically stable manner. In-
tional to the incident radiation intensity;(r’) describes the deed, it is well known that solving incomplete data problems
to-be-reconstructed electromagnetic absorption property afsually leads to operations like Fourier filtrations with fast
the medium at’; andp(r,k) and 7(k) are the temporal growing filters'® which implies high sensitivity to errors in
Fourier transforms of the pressupér,t) and the shape of data. This in turn requires cutting high frequencies and hence

the irradiating pulsey(t), respectively. blurring the images. Sacrifices in high frequencies naturally
Defining p4(r,k)=p(r,k)/7(k) and applying inverse lead to destroying sharp detaiisterfaces between different
Fourier transform, one obtains tissue$ in the reconstruction. The question of what parts of
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Fic. 1. WavefrontW § ¢) of an imagey consisting of pairsi(’,£), where
pointr’ belongs toL (a jump interface in the imageand ¢ is a nonzero
vector normal taL atr’.

Fic. 2. (a) An illustration of the “detection regions{shaded areaf cir-
cular radon transform, when the detector moves along a singlsalid) of
a circle.(b) Two arcs.(c) Three arcs.

the singularitiedi.e., sharp detai)sof the image can be sta- _ _ _ _
bly reconstructed depending on the scanning geometry is adben, this clearly requires cutting those frequencies off,
dressed for the p|anar radon transfo?ﬁmnd for the circular which causes blurrlng. The conclusion is that the “visible”

one in connection with sonat. Local tomography recon- parts of the interfaces should be possible to recover, while
structions also address similar issgeg? the others should blur independently of the reconstruction

method used. A discussion of the related issues of stability of
reconstruction would be too lengthy; one can find the rel-
2. TAT evant considerations in the literatiffeln a nutshell, more
We would like to note that in Eq(2) the presence of a stable tomographic problems allow one to estimate the error
temporal derivative in the TAT dat@vhich is equivalent to a in the reconstructiofiin a Sobolev normby the error in the
radial derivative after the circular radon transforoan only  data in a somewhat smoother norm. This, however, is impos-
emphasize singularities and hence should not lead to addsible when the information about the wavefront is lost.
tional blurring in comparison with the circular radon trans-  Let us make this geometry more explicit for our circular
form itself (this can be shown rigorouslyln fact, as it will  (spherical trajectory of detectors. We pose the following
be seen later in this paper, this derivative is a natural part ofjuestion: Assume that only a part of the detector circle
the reconstruction procedure for the circular radon transform(sphere is used for collecting data; at what locations then, all
We will now apply to TAT the known results of integral interfaces in the image will be completely recoverable? We
geometry concerning singularity reconstructidr? The ex-  will call the set of all such “good” locations the “detection
act description would require the notions of microlocal region.” For images outside this region, one needs to apply
analysis, in particular the one of a wavefront set of athe tangent-circle test as described in the preceding two para-
function?>2*However, in tomographic problems, in particu- graphs to predict what parts of the boundaries will not be
lar in TAT, one is mostly interested in only one type of sin- stably recoverable.
gularity: the jump of the imaged valug across an interface Assuming first that the detector moves along a single arc
(a curve in 2-D or a surface in 3)DAssuming thaty is  of the circle[Fig. 2(a)], then simple geometric consideration
smooth except for a jump across a cutvén the plane(the  shows that the “detection region” is just the convex hull of
3-D situation is analogous with being a surface then the this arc(i.e., the circular cap based on the Jartlere the
wavefrontWS ¢) of ¢ consists of pairsr(,&) where point  “detection region” is shaded, and the arc of the circle where
r' belongs toL and¢ is a nonzero vector normal o atr’ we do not position a detector is shown as a dotted line.
as shown in Fig. 1. Analogously, one can find the “detection regiofghaded
Now Louis’ results can be summarized as follof¥sine  for two arcs[Fig. 2(b)]. The situation changes, however, for
can identify that a pairr(’, ¢) belongs to the wavefront set of more complicated scanning trajectories. For instance, in the
the image by looking at the singularities of the radon data ifcase of three arcs, one can have more than just circular caps
and only if among the circlesphereyof integration(“pro- in the “detection region’[Fig. 2(c)]. Here an additional tri-
jection curves’) there exists at least one passing through theangular part of the “detection region” appears in the center.
pointr’ and normal tc¢ at this point. To put it differently, in  The situation can become even more complicated for spheri-
TAT one can see without blurring only those parts of thecal 3-D geometry. The general rule for finding the “detection
interfaces that one can touch tangentially by cir¢isheres  region” is as follows: draw all lines such that both of their
centered at detector positions. This means that one needs itdersection points with the scanning cirdigphere do not
have a detector located on the normalltaat r’ in either  coincide with detector locations. These lines cover the “in-
direction. visible” domain, so its complement forms the “detection re-
What happens to other, “invisible” parts of the interfaces?gion.” Note that in the “invisible” domain some boundaries
We provide here a nontechnical explanation. One wouldan still be recovered stably, while others blur away. Namely,
need to recover these singularities from smooth parts of ththe parts of the boundaries the normal lines to which pass
measured data. This in turn means the involvement of operdhrough a detector position, and only those can be stably
tions like filtrations in the frequency domains with filters recoverable. The above conclusions are illustrated in Fig. 3,
growing faster than any power. In order to avoid instabilitieswhere the “invisible” parts of the object boundaries, i.e., the
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Fic. 3. (a) “Visible” (solid line) and “invisible” (dashed boundaries of a '-
square object, and the “detection regiorishaded areasvhen the detector s S
moves along an ar@olid). (b) The same a) for a disk phantom(c) The Detector "':ﬁ"’
same aga) except that the detector moves along the line segrAéhaind re. 5 0
1

the objects are a square and a disk. The “visible” boundaries are expected to
be recoverable stably, while the “invisible” boundaries should be blurred

away. Fic. 4. A diagram to show the uniform rotation éfin FBP in a circular

radon transform or TAT. The dashed arrow represents the normal to the
detection curvedotted arg at r, and the dashed line is the normal to a
rojection arc centered aj}, and passing through a reconstructed poirt;
ones to be blurred during the reconstructions, are shown Wit the detection view at, i.e., the angle subtended by the detection curve as
dotted lines. For instance, in Fig(e83 one has a cap “detec- Vviewed fromr.

tion region” and a rectangular object that does not fit fully

ggﬁr:ga-lr—hig gzeaﬁzzfgésbthili(r):itﬁd gzirftascg ;Z?irzeciﬁggrlg_ﬁnes (or the normal vectopsto the projection curves at the
y y 9 9 given point, for exampled in Fig. 4, rather than the centers

construction. Figure (®) shows the expected reconstruction of the projection curveswhich coincide with detector posi-

E];tau(;lrf‘:::g;rﬁt)tjﬁ;: Isci)r(;aillta(?rdC?)l:}ts,sigj:ratlzgnsdzteclnotno rsg'c;?t')i_tions), rotate at a constant speed. Differentiation with respect
. : _apply to the radius is already contained in the TAT data, as shown
trary scanning geometry. For instance, Figc)3hows the

. . : in Eq. (2), so this step can be simplified in 2-D reconstruc-
parts (solid) of the boundaries of a circular and a squarey, (it is still required in a 3-D TAT. Based on this, we

object that can be stably reconstructed from the detection Of rive in the Appendix at an approximate FBP reconstruction

a segmenAB. formula for the 2-D TAT,
C n-(r—r
C. Reconstruction methods o(r)~ W ﬁ; ds|r(_—r|3)H(p1(r9,|r(,—r|/vs)
. . . . 0 4
As it has already been mentioned before, exact inversion °
procedures are known for circular and spherical radon trans- XIr=r gl +pa(rg,|rg—r|lvg)), )

forms in some special detection configuratiofis™® How-  \\nereH is a Hilbert transformp,(r,t) =v<f5py (r,)dt; nis
ever, for the cirf:ular trajectories of detector; only specialine inward normal to the detection curvergt dsis the arc
function-expansion methods are known, while formulas Ofigngth differential; and the integration is along a complete
the FBP type are available for the I_me(@ﬂanab trajectories. ~ detection curvdi.e., the one that runs around the objgcis

Our approach is to use an approximate FBP formula, whichhe case of incomplete data, one just replaces the missing
happens to work well under most circumstances and can bgya with zerogpossibly gradually phasing off the existing
improved in conjunction with post-processing by an iterativeyaa closely to the missing data region to reduce the artifacts
method. Namely, for objects not too close to the detectors,5;sed by the missing datand then applies the formula.
one can think of projection lines as close to_straight "”eSAlthough this is not an exact inversion, one can show using
and hence the circular radon transform as being close to thejicrolocal analysis that it preserves all “visible” singulari-
standard radon transform. In this approach, the centef  (ies (a conclusion supported by the numerical and experi-
the projection circle and its radiys(which is eroportlonal 10 mental evidences presented beJowf one is interested in
time) are analogs of the normal coordinateksd) of a line  singularities only(e.g., interfaces between different types of
r-#=s in the standard radon transform whefleis a unit  tissug, then one can drop the integral terpy(ry,|ry
vector normal to the line. FBP inversion of the standard ra—r|/v) in the last formula, since it corresponds to a pseudo-
don transform on the plane consistgp to a constant factpr  differential operator of a smaller order.

in applying the first derivative with respect ¢pthen Hilbert Let us also provide a local tomography formula for the
transform with respect tg, and finally the backprojection 2-D TAT. In order to do this we replace the Hilbert transform
operator, which averages over lines passing through a giveloy an additional time derivative. This then leads to the local
point!® We implement a similar procedure in the circular tomography reconstruction:

radon transform. This amounts to a differentiation with re- c n-(r—ry) [ ap

spect to the radius, a Hilbert transform with respect to the A o(r)= 3€ ds 0 (a—tl(re,“e—”/vs)

2 2
radius, and then a circular backprojection, i.e., averaging Blovs [r=ry|
over the circles passing through a given point. One should
also make sure that during the backprojection the tangent ><|r—r,,|+2vsp1(r@,|r0—r|/vs)>. (6)
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As before, if one wants to recover singularities only, the terniThis effect is well known in image processing, where for
of a lower pseudo-differential ordervp, in this formula instance the Laplace operator is sometimes used to empha-

can be dropped. size the edges. One can also notice that our experimental
One can apply a similar consideration to the 3-D TAT, data, due to the shape of the transducer’s impulse response
which leads to the approximate FBP formula: function and electromagnetic pulse shape, already carry a

filtration that makes the reconstruction similar to the local
_ § (r=ryp) one. Then, unless an appropriate deconvolution is applied to
()~ 2 ,BI 3 |r— ol the data during pre-processing, the interfaces are accentuated

in the reconstruction. The reader will notice this in our actual

X(ﬁpl(r(,,lrg—rllvs) . 2p1(r0|,|r,9—7|/vs)vs reconstructions from experimental data.
ot ro—r

D. Numerical implementation

@ In the case of incomplete data discussed above, we com-

In the case of limited-angle detection, there is also thePlete it by concatenating with zerdsometimes gradually
following possibly useful correction if one is interested in Smoothing the data to zero at the boundary in order to reduce
quantitative imaging. Here, we define a detection view the artifacts in the reconstructiprithe FBP algorithm de-
(solid angleQ), for the 3-D casgat r, which is the(solid) scribed above is first applied to the limited view data. Since
angle subtended by the detection cur(@irfacé when the inversion formula we use is not exact even for complete
viewed from the reconstruction pointas shown in Fig. 4. data, we improve it by employing an iterative algebraic
Because of the incompleteness of data, the integral in theethod for solving the discretized version of &), starting
above equations runs over a portion of the detection curv&ith the FBP reconstruction as the initial guess. We adopt as
(surface only. One might want to compensate for that by such the TCG method for finding the least-squares solution
multiplying the value of the reconstructed function at thisOf the discretized version of the problem. No preconditioner
point by a factor 2r/ 6, (41/Q, for the 3-D casg The factor is used. We also employ local tomography procedure de-
appears when the backprojection operator is considered agcribed above. We expect in all these methods to see the
proximately as an averaging over the available projectioféconstructions that agree with the theoretical predictions
curves passing through the reconstruction poinit should  stated in the previous section, i.e., sharp “visible” details
be noted that bott#, and ), depend orr. The effectiveness With the “invisible” parts blurred.
of this compensation is shown below by our numerical simu-
lation results of TAT.

There are three useful features of E5).and Eq.(7). First
of all, they yield, as we intend to show in humerical simula-”l' RESULTS AND DISCUSSION
tions, acceptable quantitative results from limited-view data. Our results consist of three par(Q_) inversion of simu-
Second, their computation complexity is much less than thafated circular radon transform data to show the theoretical
for the iterative methods such as TCG, while they producgyredictions about the “visible” and “invisible” boundaries,
images of comparable quality. Finally, if an iterative method(2) reconstructions from simulated TAT data to test our re-
is necessary, our backprojection formula can serve as a goa@énstruction algorithms quantitatively, af®) images based

initial guess. This is also observed in our numerical simulapn experimental data collected from a physical phantom.
tions.

Although the above backprojection formula is shown to
work well in numerical simulations, it is not exact. Never-
theless, one can show that it amounts to applying a pseudo- Figure 5 shows the inversion of the circular radon trans-
differential operator to the image (this is true if the data is form for different detection configurations and phantoms
gradually phased out near the areas of the missing).data(shown in the first column from the Igfto demonstrate our
Pseudo-differential operators are known not to shift locationgliscussions on the “visible” and “invisible” boundaries. In
of any singularities, including boundarit%?®3°This means the second column from the left, the detection curve is
that although the backprojection formula might give impre-shown as the solid part of the outer circle, the “detection
cise values ofp, it will present the locations of the bound- region” is shaded, and the “visible{solid) and “invisible”
aries of all inclusions correctly. (dashed boundaries of the objects predicted by theory are

Another reconstruction method is to apply an additionalshown. The inclusion represents the object to be imaged. The
differentiation with respect to timé@he radiug without ap-  third and fourth columns from the left show the FBP recon-
plying a Hilbert transform, as shown in E@). This leads to  structions and the local tomography reconstructions, respec-
a local tomography type formuf&:?® The result of the pro- tively. Notice the good agreement between the three columns
cedure also produces an expression of the fAgpmwhereA  on the right concerning reconstructions of the “visible” and
is a pseudo-differential operator defined in E6). In this  “invisible” parts of the boundaries.
case, however, the operator has a positive order, which Figure §1la—1d shows the results for a phantom contain-
means that all the “visible” interfaces and other sharp detailsng a square inclusion. The data are collected from detectors
not only have correct locations, but also are emphasizedocated on the upper half-circle. Exactly the parts of the

A. Numerical results for the limited-view circular
radon transform
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Fic. 6. A diagram of inclusions in TATused in Fig. 7. The value of the
imageo(r) is set to be 0.5 in the largest square and unity within other sharp
inclusions and zero elsewhere. Inside the “soft” circular inclusion, this
value drops linearly with the radius from unity at the center to zero at the
interface.

where there are three arcs of detection, 60 degrees each, with
60 degrees intervals between them. An off-center and a cen-
tered circular inclusion are reconstructed in Figdeés-4d

and Fig. %5a—-5d, respectively. The results agree well with
the theory: some parts of the boundary of the off-center disk
are blurred; namely, those where the normals do not pass
Fic. 5. (1a) A square phantom inside a circular detection curve in a circularthrough any detector positions. However, the in-center disk
radon transform(1b) The diagram showing the detection curteslid part  js reconstructed sharply, in spite of the fact that it does not fit

of the outer circlg the “visible” (solid) and “invisible” (dashed bound- ; « ; : » : ; ;
aries of the object predicted by theory, and the “detection regishadeg into the “detection region. The reason is that in this case

(10 FBP reconstruction(1d) Local tomography reconstruction, where the €VEIY normal to the boundary of the inclusion passes through
boundary is emphasized2a-2d A disk phantom outside the “detection a detector.

region.” (3a-3d A disk phantom inside the “detection region(#a-4d An

off-center disk phantom and a detection curve consisting of three (&as. . . PRSI

5d) A centered disk phantom and a detection curve consisting of three arcs;B_A_:_qz;?;Strucnon from simulated limited-view

A numerical phantom that contains four sharp and one
boundary of the square predicted in this pgsee the dotted soft inclusions is shown in Fig. 6. Among the sharp ones we
lines in Fig. 81b)] become blurred in Fig. @c) and Fig. have one large and two small squares and one disk. The
5(1d). object value, which represents the electromagnetic energy

Figure 52a—-2d and Fig. %3a—3d show the reconstruc- deposition, is set to be 0.5 within the largest square and unity
tions of circular inclusions from the data collected by thewithin other sharp inclusions and zero elsewhere. Inside the
detector located along the upper half-circle. In Fi@a&-2d,  “soft” circular inclusion, this value drops linearly with the
the phantom is completely outside the “detection region,”radius from unity at the center to zero at the interface in
which leads to blurring of its right and left boundaries in order to simulate a gradual interface. The imaged field of 154
accordance with the theory. In Fig(3&-3d, however, the mm by 154 mm is mapped with a 12828 mesh. The de-
boundaries of the disk are recovered sharply, since the incluection circle has a radius of 133 mm and is centered at the
sion is in the “detection region.” Notice here some deterio-center of the picture. We scan 200 steps in all the simula-
ration of the image near the detector circle. This can be attions. The gray scale and the scale bar of the images are
tributed to the fact that near the detector circle, linear, andghown below the images in Fig. 7. The top row of recon-
circular radon transform become noticeably different, and sstructions employs the local tomography formula that em-
the quality of our approximate formulas diminishes. Thisphasizes the boundaries. The next one uses the FBP formula,
problem can be dealt with in two ways: one can make surand the lowest one shows the improvements achieved by
that the detectors do not approach the imaged objects tawmnning the algebraic reconstruction methd@@CG) starting
closely (this will be enforced in our further numerical simu- with the FBP as an initial guess.
lations and experimentsor to improve the reconstruction The left column uses only the data collected from 2
quality by post-processing with an iterative algebraic recondetection arc in the first quadrant. None of the phantom in-

struction method. clusions fits into the “detection region.” One can see that all
Other limited-view reconstructions from the circular ra- parts of the inclusion boundaries the normals to which do not
don data are shown in Fig.(4a—4d and Fig. %5a—5d, intersect the detector arc are blurréelen in the local to-
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Fic. 7. Images reconstructed from simulated TAT data
corresponding to the phantom in Fig. 6. The three col-
umns correspond from the left to the right to detection
angles of 90 degreedrom 0° to 90°), 217 degrees
(from —19° to 198° as shown by the anglen Fig. 6),
and 360 degrees, respectively. The three rows corre-
spond from top to bottom to the local tomographic re-
construction, FBP, and FBP with the consecutive TCG,
respectively. The values ofminimum, maximum

of the gray scale fora)—(i) are (—0.8081, 1.0000
(—0.8302, 1.0000Q (—0.7515, 1.0000 (—2.0745,
1.7899, (—0.6385, 1.0728 (—0.1030, 1.034p
(—0.9284, 1.2859 (—0.0326, 1.003p and
(—0.0149, 1.002)1 respectively. The maxima of the
local reconstructions are normalized to unity.

~20 mm

Minimum Maximum
Energy deposition

mography reconstructignOther parts of the boundaries are C. Dependence of reconstruction on scanned
sharp. This is in perfect agreement with our theoretical preangular range

diction. The soft inclusion is not significantly affected by the Figure 9 shows the relative error of each reconstruction as

artifacts. a function of the scanned angular range with respect to the
The middle column employs the data collected from theggnter of the scan. We study the mean reconstruction values

detector arc of approximately 217 degreéése angled in  j, the hard sphere, the central square, and the background.

Fig. 6), whose chord coincides with the bottom side of thetpe errors of reconstruction are normalized to the corre-

large square i_nclusion. In this case all inclusi_ons are in th%ponding real values in the cases of the hard sphere and the
detection region,” and hence all the boundaries are reconyenra| square and to the real value of the hard sphere in the
structed sharply. The third column represents the full data
reconstruction. Notice that the quality of the final reconstruc-

tions in the last two columns is the same.

Figures &) and &b) show the reconstructed image€r) . ' e
along the dashed—dotted line in Fig. 6 using the FBigs. ; Hi=
7(d)-7(f)] and TCG reconstructionfFigs. 7g)—7(i)], re- 5 05
spectively. The exact value is also shown for comparison. It§ 0

dep:

can be found in Fig. @) that the results of FBP are in good

|
Energy deposition (a.u.)

agreement with the real value for the case of 217-degree an‘g o3 — 2:’7°

360-degree detection, where all objects are in the “detectioni -1 - g‘jg;t

region.” Iteration improves the results further as shown in 45 05

Fig. 8b). Even for the case of a 90-degree detection curve, ¢ xsfxis (mm) 100 o xsfxis (mm) 100
the profile of the objects is reconstructed. Compartagnd () )

(b), one can find that the significant overshoot and under- _ o
shoot in FBP can be considerably reduced by TCG iteration IG. 8. (a) The graphs of FBP reconstructions shown in Figs)#7(f) and
e corresponding exact value along the dashed—dotted line in Fig) 6.

(we remind the_ reader that' FBP is only an approximationrye graphs corresponding to TCG reconstructions, Fi¢g$—7(f), along
rather than the implementation of an exact formula the same line as ifg).
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1.5

—— Central square
—— Hard sphere
—— Background
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Fic. 9. The dependence of the relative errors of the mean values in the hard
sphere(circle markery the central squarésquare markejsand the back-
ground (asterisky on the scanned angular range.

case of the backgrounecause its real value is zg¢rovhen
the scanned angular range is less thaithe errors decrease
sharply with the increasing scanned angular range. On the Minimum Maximum

other hand, when the scanned angular range is largerithan Energy deposition

the errors change much more slowly as the scanned angulal[; 10. () A photograph of the experimental samE)—(d) TAT recon
range increases. The results agree with ou_r theoretical Corgt_ﬂ;ctio'ns usir?g det%ctir:)n arcs of 92 degrdesm 50° to 142° in(a)], 202
clusions. However, there are Sqme fluctuations add_ed t'O tm"egrees(from —18° to 184°), and 360 degrees, respectively. The blurred
trends of the curves. By comparing the three curves in Fig. Qarts of the boundaries ifb) due to the limited view agree with the theo-
we find that these fluctuations depend strongly on the |oca_r.etical predictiops. Ir(c)_all the boundaries are resolved, since the object fits
tion of the object with respect to the detection curve. A morgt© the “detection region.”

extensive study is needed to understand these fluctuations.

There are some residual errors even in the full-view detecpycated at the top of the picture and almost symmetric with

tion in Fig. 9. This is because we use an approximate backpgpect to its vertical axes. One sees that the left and right

projection algorithm, which is widely employed in experi- hoyndaries of the muscle cylinder and of the pork chunk are

ments due to its better computation efficiency and stabilityy)rred away, since their normal lines do not touch the de-

when compared to the more accurate iteration algorithms. tector arc, while the rest of the boundary is sharp. The next
figure shows reconstruction obtained with the data collected

D. Experimental results from a 202-degree arwhich is about 188 2*asin(r¢/ry)

. . . . . obtained in the same way akin Fig. 6], when the whole
The experimental setup is described in our previous papep;hantom fits into the detection region. All boundaries are

and W'II not be repeateq 'he?eThe sample anq the polar sharp now. Finally, the last figure shows the reconstruction
coordinate system describing the scanning orbit are shown i the full-view data

Fig. 10a). The sample consists of a muscle cylinder of 4 mm Notice that although no local reconstruction algorithms

in diameter a’?d 5 mmn length _embedded in a chunk of po”?:lre applied, the boundaries are somewhat emphasized. The
fat of 1.2 cm in radius . There is a 10—mm_fat layer below reason for this is the presence in the data of the impulse
the_muscle .and a_mother 7-mm one above it Ar_1 eIGCtrom"’Igr'esponse function of the ultrasonic transducer, which has an
netic pulse is _dellvered to th? sample fro_m berw., from effect similar to the application of an additional derivative
behind the picture plane With a scanning radius of g with respect to the radius of the circle of integration. The

=7.1cm, thermoacoustic data. are collected "i‘“.’“”d thﬁresence of such a derivative emphasizes high frequencies
sfample over a# angular span W't,h 161 steps.' As itis MEN" and makes the reconstruction similar to a version of a local
tioned above, the electromagnetic pulse profile and the 'mt'omography algorithm.
pulse response function of the ultrasonic transducer impose a
filter on the thermoacoustic signals. We attempted to correc
this effect using deconvolution but found that the resulte
images were distorted, due to the lack of precise knowledge As mentioned above, although circular scanning is used in
of the filter. Therefore, we do not use deconvolution in theboth our numerical and experimental studies, our conclu-
reconstruction. This leads, as is explained above, to someions can be applied to other configurations as well. In TAT
what emphasized interfaces. with a planar configuratiotf*1~33 detections are imple-
Figures 10b)—10(d) show the reconstructed images usingmented on a part of a line or a plane where the scanning view
FBP with three sets of data. In the first of them, we chooses quite limited; consequently, artifacts and interface blurring
the data collected along a circular detector arc of 92 degreesppear in the reconstructed images. In fact, in planar and

. Discussion
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linear scanning geometries one can never have an object inwe definep,(r,t) =v¢ftp.(r,t)dt. Then we have
mersed entirely into the “detection region” because the nor-

: . 47 Ctp,(r,t)
mal lines to any interfaces that are orthogonal to the detector —— ="~ _R, (A2)
plane(line) never pass through a detector. As a consequence, Blovs

those parts of the interfaces will be blurred in any kind of|f the detector is not very close to the objects, we can ap-
reconstruction. For a sufficiently large view, these parts willproximate the circular radon transform by the standard radon

be small, but theoretically will never disappear. For exampletransform. The forward and inverse formulas for the standard
2-D planar detection is utilized to image artificial blood (adon transform até

vessels® the scanning view is about 2.18 steradians. There-

fore, it is not surprising that only the interfacgs more—oT—Iess (5,0)= J f(r)dr, (A3)
parallel to the plane of detection are well imaged. Linear

scanning detection is used to image a 2-D phantoBe-

cause the view of the linear scsannihig much larger than and
that of planar scannint, the interfaces are recovered much
more completely. However, due to a limited view, artifacts F(r)= ifhdaH am(r- 0,0)’ (Ad)
and interface blurring similar to those demonstrated in our 4w ds

irxzr;qg]eergzal and experimental studies still appear in theWhereH is the Hilbert transform. Although the circular ra-

. . . don transform is different, one can write down an approxi-
By comparing Figs. 7 and 10, we observe that the quality , . .
. . mate inversion formula modeled after E&4). By combin-
of images reconstructed from incomplete data when an ob- : .
T . S : ing an analog of Eq(A4) with Eqg. (A2), one obtains an
ject is in the detection region, is comparable with those from .
. . approximate formula,
the full-view data. Scanning a smaller range has the advan-
tages of reducing the scanning time or the size of the acous- C 2m
tic transducer array. It should be pointed out that this advan- #(F)~ Blow? Jo dOH(p(r g, [rp—rlIvg)|rs—r]
tage usually exists in the case when both the sample and

medium are relatively acoustically homogeneous. When +po(rg,re—1)), (A5)
strong wavefront distortion caused by acoustic heterogen%hereg is defined as in Fig. 4. According to Fig. 4, we have
ities occurs, it might be beneficial to collect the signal from,[he relation '

all directions.

r-6=s

n-(r—rg)
do=ds———-,
IV. CONCLUSIONS [r—ryl

It is explained theoretically what parts of the image can bevheren is the inward normal to the detection curver gand
stably recovered in the limited-view TAT. Analytic and alge- ds is the arc length differential of the detection curve. After
braic reconstruction methods are developed and applied t@ubstituting this identity into Eq(A5) we obtain Eq.(5).
numerical phantoms and experimental data. Both numericdfquation(7) can be derived in a similar way.
and experimental results agree perfectly with the theoretical
conclusions. The results can be applied practically to quanf")Author to whom correspondence should be addressed. Telephone: 979-
" ) . S 847-9040; fax: 979-845-4450; electronic mail: LWang@tamu.edu; URL:
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