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Analytic explanation of spatial resolution related to bandwidth and detector aperture size
in thermoacoustic or photoacoustic reconstruction
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An analytic explanation of the spatial resolution in thermoacoustic or photoacoustic reconstruction is pre-
sented. Three types of specific recording geometries, including spherical, planar, and cylindrical surface, as
well as other general cases, are investigated. Analytic expressions of the point-spread fR&Egsas a
function of the bandwidth of the measurement system and the finite size of the detector aperture, are derived
based on rigorous reconstruction formulas. The analyses clearly reveal that the dependence of the PSF’s on the
bandwidth of all recording geometries shares the same space-invariant expression while the dependence on the
aperture size of the detector differs. The bandwidth affects both axial and lateral resolutions; in contrast, the
detector aperture blurs the lateral resolution greatly but the axial resolution only slightly.
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[. INTRODUCTION angle of acceptance. Thus far, rigorous reconstruction algo-
rithms have been reported with point-detector measurements
In the last decade, thermoacoustic or photoacoustic tofrom idealized recording configurations, including the fully
mography of soft tissue utilizing excitation from a pulsed enclosing spherical recording surfacd, the planar record-
electromagneti¢EM) energy source, such as radio frequencying surface of an infinite exteri3,8], and the cylindrical
or laser, has attracted considerable attenfibn12]. With recording surface of an infinite lengfl®]. In these algo-
this technique, it is assumed that, following a short pulse ofithms, the acoustic property of the tissue is often assumed to
EM illumination, a spatial distribution of acoustic pressurebe homogenous as the speed of sound in soft tissue is rela-
inside the tissue is simultaneously excited by thermoelastitively constant at~1.5 mmjus. Details can be found in Ref.
expansion, which acts as a source for acoustic response. The] of the reconstruction formulas for spherical geometry and
intensity of the acoustic pressure is strongly related to thén Refs.[8,9,11] for the planar and cylindrical geometries.
locally absorbed EM energy. A wide range of EM absorption  Spatial resolution is one of the most important parameters
coefficients in soft tissue contributes to a good contrast bem thermoacoustic reconstruction. Acoustic inhomogeneity
tween different types of tissues. The effect of thermal diffu-blurs the reconstructed image, but in some cases, the blurring
sion on thermoacoustic or photoacoustic waves in tissue isan be corrected. A limited view also affects spatial resolu-
always ignored, since the EM pulse duration is often so shoiion due to lack of sufficient data; in this case, the recon-
that the thermal conduction time is far greater than thestruction is incomplete and reconstruction artifacts occur
acoustic transit time through the heterogeneities of the EM12]. These two topics will not be addressed in this paper.
energy depositions. The acoustic waves from the initialThere are two other main factors that limit spatial
acoustic source propagate toward the surface of the tissuessolution—the finite bandwidth of the detection system and
with various time delays. Ultrasound detectors are placedhe size of the detector aperture. Past research work has only
around the tissue to record the outgoing acoustic waves, restimated the spatial resolution in thermoacoustic tomogra-
ferred to as the thermoacoustic or photoacoustic signalphy based on measurements or numerical simulations. No
which carry information about EM absorption as well astheoretical analysis has been reported.
about the acoustic properties of the tissue. For medical im- In this paper, a complete theoretical explanation of the
aging and diagnostics, an appropriate reconstruction algalegree of spatial resolution that results from varying the
rithm is required to map the initial acoustic sources, or EMbandwidth as well as the detector aperture will be presented.
absorption distribution. Analytic expressions of point-spread functio@SF’'9 on
To detect thermoacoustic signals, one approach is to us@e spherical, planar, and cylindrical recording surfaces will
focused ultrasound transducers, in which the lateral resolube explicitly derived. The paper is organized as follows. In
tion is determined by the focal diameter of the transduceSec. Il, the inverse problem and the reconstruction formulas
and the axial resolution by the bandwid6]. Another ap-  for thermoacoustic tomography will be briefly reviewed. De-
proach is to use small-aperture unfocused detectors—ideallyailed derivations of bandwidth-limited PSF’s in the above
point detectors—that can receive ultrasound from a largehree measurement geometries as well as more general cases
will be presented in Secs. Il A, I B, Il C, and 1l D, respec-
tively; and resolution will be discussed in Sec. Il E. In Sec.
* Author to whom all correspondence should be addressed. FAXLV, detailed derivations of PSF's as a function of detector
979-845-4450; electronic address: LWang@tamu.edu; URLaperture size will be shown in Secs. IVA, IVB, and IV C.
http://oilab.tamu.edu Section V will provide discussion and conclusions.
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Il. RECONSTRUCTION FORMULAS sponding recording geometries. Then, based on the orthogo-

_— . . . nality of the appropriate functions, reconstruction formulas
We will first briefly review the inverse problem and the can be derived.

rigorous reconstruction formulas for thermoacoustic tomog- In spherical recording geometry. it is assumed that the
raphy. It is well known that, in response to a heat source, th?ecordiﬁg surface is a Spﬁerical s)l/jrf (fo.00.,¢0) i

pressurep(r,t) at ppsmonr and timet In an acoulstlcfally the spherical polar coordinates=(r,6,¢), where @ is the
homogeneous medium obeys the following equafib3i: : . . i
polar angle from the axis andg is the azimuthal angle in

1 2 3 the x-y plane from thex axis. The sample under study lies
V2p(r,t)— — =5 p(r,t)=— ﬁ—H(r,t), (1) inside the sphere, i.eA(r)=A(r,0,¢) wherer<r, and
¢ dat Cp at A(r)=0 whenr>ry. The rigorous reconstruction formula

_ - . _ _ for A(r) can be written a$7]
whereC, is the specific heatli(r,t) is the heating function

defined as the thermal energy deposited by the EM radiation
per time and volumeg is the isobaric volume expansion
coefficient., anct is the speed of sound._The heatiljg functiqn A(r)= 21 . f f dﬂofmdk“p(ro,k)
can be written as the product of a spatial absorption function 2mecy Q 0
and a temporal illumination function: .
2m+1)j(kr
«S ( )i m(KT)

Pm(No-n), )
H(r,t)=A(r)I(t). ) =0 h{(kro) 0

Assuming that the illumination is a Diragfunction such as
[(t)=4(t), and taking the following Fourier transform on

variablet =ct,

where dQ)y=sin6,d6ydey; n=r/r and ng=ry/r are unit
vectors;j (), hfnl)('), andP,,(-) are the spherical Bessel
function of the first kind, the spherical Hankel function of the
first kind, and the Legendre polynomial function, respec-

_ to — tively. In addition, the integral range over variatden Eq.
p(r.k)= fﬁx p(r,t)explikt)dt, () (8) can extend to from-o to 0 by simply taking the com-
plex conjugate and using the following properties:
~ o~ . _ 1
the solution of Eq(1) becomes the integral P*(ro.K)=PB(ro,—k), [in(2]*=ja(2), and [h{(R)]*

=h{®(z) whenzis real and positive, wherex"” stands for
_ the complex conjugate.
P(ro.k)= —ikCZWJ j f d*rA(NG(r.ro), (4 In planar recording geometry, it is assumed that the mea-
v surement surface is tte=0 plane, i.e.ry=(Xq,Y0,0) in the
~ ) . ~ Cartesian coordinates=(x,y,z). The sample lies above the
where 7;=,8/Cp_and Gk(r,.ro) is the Green’s function satis- plane, i.e. A(r)=A(x,y,z) wherez>0 andA(r)=0 when
fying the following equation: z<0. The rigorous reconstruction formula f&(r) can be
written as[8,11]

(V24+K2)Gy(r,ro)=—8(r—ry). (5)
In general, the Green’'s function in three-dimensional free 1 +oo Heo
space can be written 4%4] A(Xy,2)= ol B I dxodyo | dkB(ro.K)
~ explik|r—rg|) J' fp—lkl
=~ X
Gy(r,ro) Al —ro| (6) o dudv
Actually, the initial thermoacoustic pressure excited by the X ex] —iz sgr(k) vk*— p*Jexpiu(xo—X)

S(t) EM illumination is equal tope(r)=T(r)A(r), where
the Grineisen parametdr (r)= 5(r)c?> may be inhomoge-
neous. Then, Eq4) can be expressed by the following form:

+iv(yo—y)], €)

where p=\/u?+v?, sgnk)=1 whenk>0, and sgr{)=—1
P(ro,k =—ikf ffd%é r,ro)Po(r). 7)  whenk<O.
Pro.k) v (7. To)Polr) " In cylindrical recording geometry, it is assumed that the
measurement surface is a circular cylindrical surfage
The inverse problem is to reconstruct the absorption dis=(pg,¢,29) in the circular cylindrical coordinates
tribution A(r) or the initial thermoacoustic pressure distribu- =(p,¢,z). The sample lies in the cylinder, i.eA(r)
tion po(r) from a set of datg(rq,t) orp(rq,k) measured at =A(p,¢,z) when p<py, and A(r)=0 when p>p,. The
position ry. In general, the Green’s function can be ex-rigorous reconstruction formula fok(r) can be written as
panded in terms of some appropriate functions for the correl9,11]
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derived below for the different geometries.
A. Spherical geometry

The point source at,=(r,,0,,¢,) in the spherical co-
ordinates can be written as

1
A(r)= 2 S(r—ry) 8(¢—¢,) 8(cosh—cosh,). (12

following identity (ro>r,,k>0) [14]:

~ ik
FIG. 1. Diagram of the recording geometry: a recording surface Ck(la To)= EIZEO (21+ 1) (kra)hi (kro) Py(ng- o),
S, completely encloses another recording surf&e there is a (13
point sourceA atr, inside Sy; R is the distance between an arbi-
trary point atr and the point sourcé; ry andr, point to a detection

! wheren,=r_/r,.
element on the surface®, andS,, respectively. a 'a a

Replacindp(rq,k) by P’ (rg,k) in Eq.(8) and considering
the following identity[14]:

2m
Alp,¢,2)= Scﬂf <Pof dzof dKp(ro k ff dQoP(Ny-Ng)Prm(Ng-Nn)= 2| 5|m 1(Na-n),

+k
xf dyexdiy(zo—2)] (14
—k

o the resulting reconstruction fak(r) is
. (pVK* = %7
x 2 extin(eo—e)l 7

Hi (oI =72) 1 (e -
Ap(r)=5— | H(kk?dk 2m+1
10 o(N=52 | HKdk >, (2m+1)
whereJ,(-) and Hgl)(-) are the Bessel function of the first X Prm(Na- M) m(Kra)jm(kr). (15)

kind and the Hankel function of the first kind, respectively.
In addition, the integral range over varialidén Eq. (10) can
extend to from—o to 0, by simply taking the complex con- sinkR)

jugate and using the following propertigs* (rq,k) =p(ro, 2m+1)P-(Nn.-n kr Kr)= —i (KR
—K), [Jn(2)]* =3n(2), and[H(2)1* =HP(z) whenz s mz ( JP(Ma WIm(kra)Jm(kn) =3 2= =1o(kR),
real and positive. (16)

Further, taking into account the following identit$5]:

_ [[Z 2 ; ;
. BANDWIDTH-LIMITED PSF whereR= \r5+r2—2r,r cosf,-n), one can obtain
As shown in Fig. 1, assuming a point sourér) = 5(r 1 [+ 5
—r,) atr,, the pressure at the recording pomtcan be Ab(r):ﬁ 0 H(k)jo(kR)k“dk. 17)
expressed as

Particularly, if H(k)=1 for k=0—, considering the

~ _ 2 =
P(ro.K)=—ike“nGy(ra.ro). (1D following identities[14]:

Suppose the detection system is bandlimited in the oo
temporal-frequency domain and characterized by a low-pass f Jm(KP)jm(kra)k?d k=5 5(f ra), (18)
function H(k). The amplitude of the acoustic wave vector 0
k= wl/c, wherew is the acoustic angular frequency. The de-

tected signal at the recording surfaggbecomesp’ (rq,k) -

~ +
=H(K)P(ro.k) instead ofp(rq,k). But the reconstruction mE— (2M+1)Pm(Na-n)=4md(p—¢a) 8(cOSH—COSb),
formulas, Eqs(8)—(10), for point-detector measurements in (29
the spherical, planar, and cylindrical recording geometries,

bandwidth-limited analytic expressions of the PSF’s to be

The Green's function can be expanded according to the

respectively, remain the same. Replacifidry,k) by  Eg.(15) reduces to a point source the same as the expression

P’ (ro,k) in these reconstruction formulas will give us the in Eg.(12), which actually verifies the reconstruction Eg).
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B. Planar geometry

The point source at,=(X,,Ya,Z) in the Cartesian coor-
dinates can be written as

A(X,y,z2)= 5(X_Xa) 5(y_ya) 5(Z_Za)- (20
The Green's function can be expanded B4
~ 1 +oo exdiK:-(ro—ra]
Gk(ra:fo):(zT)sf f f_w d*K K212 =,
(21)

whereK = (K, K, ,K,).

Using the detected signal at the recording surfage
B’ (ro.K)=H(K)P(ro.k), to replacep(rq.k) in the recon-
struction Eq.(9), and considering the following identities:

—+ oo
f exgdi(u+K,)Xgldxg=2m (K +u), (22
+
J exfdi(v+Ky)yoldy,=278(K,+v), (23
+oo exp —iK,z,)
f—w di; Kg-l-pz—k2
i sqr(k) exfliz, sgn(k) Vk*—p?] K>
=irws , .
9 W=7 P
(24)
the resulting reconstruction fak(r) is
A S kadkﬁkjfp_lkld d
b(X,y,Z)—W B (k) _, dudv
Xexp(—iuAx—ivAy)
exg —i sgr(k)Az\/kz—pz]
X sgr(k) — :
k=p
(25)

whereAx=x—X,, Ay=y—Vy,, andAz=z—z,.
In the evaluation of the integral in E(R4), we replaced
with k+ivy as suggested in Refl4], where vy is a small

positive real number. Since there will be some damping of
the wave in a physical system, we then complete a contour

integral in the complex plane and Igtapproach zero.
Changing the integration order diu dv anddk, and fur-

ther lettingw=sgnK)vk?— p?, Eq. (25) reduces to

1 + oo
Ab(X,y,Z): (27)3f f f_oc dudvdw
xexp(—iuAx—ivAy—iwAz)H(k),
(26)

wherek?=u?+v2+w?2.

PHYSICAL REVIEW E 67, 056605 (2003

Particularly, if H(k)=1 for —oo<k<w, Eq. (26) be-
comes a point source as the original one in &f).

In general, by changing the integral from the Cartesian
coordinates into the spherical coordinates,

(u,v,wW)—k=(k,0,¢),
(Ax,Ay,Az)—~R=(R,a,B),

whereR?= (Ax)?+ (Ay)?+(Az)?, one can rewrite Eq26)
as

1 ~
- Cilk. 3
Ab(x,y,z)—(zw)3f ff exp —ik-R)H(k)d>k.
(27)
The integration of Eq(27) can be further simplified to

1 Yo
Ab(X:Y:Z):WfO H(k)k?dk

xf exp —ikRcosy)sinydy2w, (28
0

wherey is the angle betweek andR, i.e.,

1 [+
Ab(x,y,z)zﬁfO H(K)jo(kR)k?dk. (29

C. Cylindrical geometry

The point source at,=(p,,¢a,Z,) in the cylindrical co-
ordinates can be written as

1
A(p,p,2)= ;5(p—pa) o(@— @a) 6(2—2,)

1
- I—)ﬁ(p—pa)ﬁm;m exdim(e—¢a)]

1 [+
xzﬁx exdik,(z—z,)]dk,. (30

The Green's function can be expanded ds>0)
[11,24,17

+ oo

Gufalo)= o >

57 2 exlim(g.—¢o)]

+ oo
XJ dk, exfik,(za—2p)]

X I mpa) H (1p0), (31)

where = \k?—kZ when k2<k?, and u=ik?—k? when
k2>K2,

Using the detected signal at the recording surfage
"p’(ro,k)=ﬁ(k)"[5(r0,k) to replacep(rg,k) in the recon-
struction Eq.(10), and considering the following identities:
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fzwdsooexlii¢o(n—m)]=2775nm. (32
0

f_tdzo exflizo(y—k)1=2m6(y—k,), (33

the resulting reconstruction fak(r) is

1 +oo - +k )
Ab(p’(P’Z):Wfo k dk H(k)fﬁkdkzexp[lkz(za—z)]

X m;_m exdim(¢ea— @) | Im(wpa)Im(mp).
(34

Changing the integration order of variabl&sand k, and
taking into account the following identityl15]:

+ oo

2 exilim(ga= ¢)n(ipa)In( 1) =Jo(1D),
(35

whereD = \/p3+ p%—2p.p COS(pa—¢), One can simplify Eq.

(34) to
1 too .
Av(p,¢,2)= A2 f_w dk;exfik,(za—2)]

xrmkﬁ(k)dk Jo(uD). (36)

kel

By changing the integral variable with x= \/kz—kzz, one
can get

1 [+ .
Ape)= 5z | dkexi—ikAz]

to
xfo Akudedo(uD), (37

wherek?=k2+ u?, Az=z—z,.
Then, one can denotAx=x—x,=D cosB and Ay=y
—Ya=Dsing, and introducek,= u cose and k,= u sine,

where D=/(Ax)%+(Ay)? and u= \/kxz+ k2, and rewrite

the far right integral in Eq(37) as

+o 1 +o
J'o ,ud,uH(k)Jo(,uD)ZZJ'fﬁxdkxdky
X exp( — ik Ax—ikAy)H(K),
(38)

wherek?=k;+ u?=kZ+kj+ k2.
Therefore, Eq(37) can be rewritten as

PHYSICAL REVIEW EG67, 056605 (2003

Ab(p-qo,z):%gffﬁ:dkzdzxdkyﬁ(k)

X exp(— ik Ax—ik,Ay—ik,AZ), (39)

which is the same as E@26). Thus,Ay(p,¢,2z) takes the
same form as Eq29),

+

1 *
Anpie =52 | ARIG(kRIK?K (40

where

R=\(Ax)*+(Ay)*+(A2)

=\patp?—2pap cod pa— @) +(A2)%.

Particularly, ifH(k)=1 for k=0—o, Eq.(39) reduces to
a point source the same as the original one.

D. General geometry

We have proved that the bandwidth-limited PSF’s in the
three different geometries share the same expression as
shown in Egs.(17), (29), and (40). As described in these
equations, the PSF is independent of the position of the point
source but dependent on the distarRefrom the point
source. Therefore, the PSF due to bandwidth is space invari-
ant.

Actually, the space invariance of PSF due to bandwidth
can be extended to more general recording geometries. As
mentioned in Ref[11], the reconstruction foA(r) can be
expressed by a linear integral:

A(r>=ff%dsofkdkkkuo,rm(ro,k), 1)

where S, is the recording surface, which covers the object
under study.
The inverse problem for thermoacoustic reconstruction is

to seek such an integral kernié|(ro,r) for a particular re-
cording surface. For the spherical, planar, and cylindrical re-

cording geometries, the integral kerrfi€l(r,,r) can be ex-
plicitly given as shown in Egs.(8), (9), and (10),
respectively. For other recording geometries, the integral ker-
nel K,(ro.r) is more complicated or even nonexistent ana-
lytically.

As shown in Fig. 1, suppose another recording surface
S, which could be a spherical, planar, or cylindrical record-
ing surface, can completely enclose surf&e Then, based
on Green’s theorerfil7], the pressur@(r,,k) at S; can be
computed by the pressufEr,,k) on surfaceSy,

IG(ry,ro)
ang

prk- | f%dso<ﬁ(ro,k)

_ék(rlvro)

ab(ro,k)) w

S
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where d/dng is the normal component of the gradient on since there is no source in the volume between the surfaces
surface S, and points outward away from the acoustic Sp ands; .

source; and, andr, represent detection positions on sur-

Equation(48) indicates that the new sour@g,(r) could

facesS, andS;, respectively. Since the reconstruction basetbe restored from the valug(k)p(r;,k) on surfaceS; , if an

on Eq.(41) from the measurement on surfa8gis exact, the
pressuré(r,,k) on surfaceS; must be identical to the ther-
moacoustic pressure directly generated by the sof(c:

ﬁ(rl,k>=f f fv dVoA(NG(ry.r), (43
0
whereV, is the volume enclosed b, .

Now, considering the bandwidth characterized Hbgk),
one can rewrite the reconstruction E41) as

A= | Jsodsof:dkkkuo,r>[ﬁ<k>b<ro,k>].
(44

In other words, Eq(44) gives the exact reconstruction of a

new and unique sourcl,(r) from H(k)P(r,,k) measured
on surfaceSy:

F'(k)"lf)(fo,k)=ffjv dVoAn(NGy(ro,r). (45
0

Based on Green’s theorem, the pressure on suSacan be
computed by the pressurtl(k)p(ro,k) on surfaceS,,
which is found equal tdH (k)p(r;,k) with considering Eq.
(42):

k(r1,ro)

| . s Rooma 0128
So p 0> ang

A K)P(ro,k
By (ry o) TRGOB(TG )])

ang
IGk(r1.70)
ang

=F|<k>J Jsodso(buo,k)

JP(ro.k)
ang

—Gy(ry,ro)

=HK)PB(r1 k). (46)

This pressure must be identical to the thermoacoustic pres-

sure directly generated by the new soufggr) in volume
Vo,

fffvdvoAbmék(rl,r>:F|<k>r><r1,k>, 47)
0

Fi(k)f»(rl,w:fﬂv AViANE(r),  (48)

exact reconstruction from data only on surf&;edoes exist.

In other words, the reconstruction féy(r) from the mea-
surement with the bandwidifi (k) on surfaceS; is identical

to the reconstruction from the measurement with the same
bandwidthH (k) on surfaceS; that fully enclosess,. Fortu-
nately, we have already obtained the exact reconstruction
formulas from measurements on such a surf&¢eas the
spherical, planar, or cylindrical recording geometries. There-
fore, the PSF of the point sourcergtas a function of band-
width H(k) from the measurement on surfaSg is nothing

but the same expression as Ek?), (29), and (40) for the
above three specific recording geometries, respectively.

E. Resolution

For convenience, we can denote the PSF symbolically as
]_-ESF,

+

1 .
ASR= 5y [ RjokRICK, @49

where the subscripb represents bandwidth, anB=|r
—r,]. Equation(49) can be rewritten in another form as

!
"~ 47R

dH(R)
dR

dH(—R)
drR |

FAR) (50)

if we let H(—t_)=H(t_) and define the following Fourier
transform:

H(t)

1 (+=_ s
f ‘H(k)exp(—lkt)dk,

7 (51
WhereH(t_) is the corresponding temporal signalté{k).

If H(k) has a cutoff frequenck., H(k)=1 whenk
<k,, H(k)=0 whenk>k,, the integral in Eq(49) can be
carried out,

1 (ke
SF — H 2
AR~ 5 | TokRkak

k sin(k:R)
e T eoskR)|. 52
C
ie.,
K2 jikR) K 3ji(kR)
SE _ ¢ Jithe __c 1\Re
Fo R)= 27 kR 67> kR (63
By normalizing the PSF of Eq53), one can get
3j1(kR
ARy = R (54
k.R

056605-6



ANALYTIC EXPLANATION OF SPATIAL RESOLUTION . .. PHYSICAL REVIEW E67, 056605 (2003

1.0

0.5

Relative amplitude (arb. units)

0.0

(b)

Relative amplitude (arb. units)

Displacement from the point source (mm)

(©

FIG. 2. An example of the PSF as a result of the bandw@ti MH2): (a) a gray scale view antb) a profile through the point source.
(c) Comparison of the PSF's with different bandwidths: dashed li@e2 MH2z); solid line, (0, 4 MH2); dotted line,(2 MHz, 4 MH2);
dot-dashed line, 4 MHz.

The full width at half maximum{FWHM) of the PSF is often For example, a system is witlip,=3 MHz, and f.
used to represent the spatial resolution. It is easy to show-2 MHz andf,.=4 MHz. The corresponding PSF is plot-

3j1(x)/x=0.5 whenx=2.4983. Therefore, ted as the dotted line in Fig(®. As shown in Fig. &), the
FWHM of the PSF with a bandwidth 2 MHz, 4 MH2) is

WFWHM:2><2.4983: % 2'4983:0_795@&%0_8}\“ slightly narrower than the FWHM of the PSF with a wider
ke 2zfclc bandwidth of(0, 4 MHz) [solid line in Fig. Zc)]. In other

(55 words, due to the absence of a low frequency component, the

where ), is the wavelength at the cutoff frequency of the Ngh frequency component will cause the FWHM to be nar-
bandwidth. For example, &= 1.5 mm/us, f.=4 MHz, then  fOwer. The minimum value of the FWHM can be estimated

Wewnn~0.3 mm. The correspondingLSR) is plotted in in the PSF with a single frequendy and zero bandwidth.
Figs. 4a) and 2b). The PSF in this case is nothing but the integral kernel in Eq.

Sometimes, a detection system has a finite bandwidtf*9): the zero-order spherical Bessel functigitk.R). Such
characterized by a central frequenty with a low cutoff ~ an example, wittf ;=4 MHz, is plotted as the dash-dot line
frequencyf . and a high cutoff frequenc§j,.. For simplic-  in Fig. 2(c). Since jo(1.895)~0.5, the minimumWeypy
ity, supposeH (k)=1 is in the above frequency range, and ~0-6\c, whereh is the wavelength at the cutoff frequency

then the PSF can be expressed by f.. But, as shown in Fig. @), a PSF that lacks a low fre-
quency component does not concentrate in the center beam
Sk k,ﬂc j1(KpeR) kfc j1(kcR) anymore, and the side beams of the PSF slowly attenuate as
Fo(R)= 272 KyR 272 KR (56  the position gets farther away from the point source, thereby
introducing significant artifacts in the investigation of large
wherek .=27f ./c andky.=27f./C. objects.
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Se e

Detector
Surface

FIG. 3. Diagram of the detector surfacke with origin o’. The
vectorr, represents the center of detectdrin the recording ge-
ometry with origino. The vectorry points to an element of the (a)
detector aperture.

In conclusion, the obtainable spatial resolution approxi- %
mates to a value between ®6and 0.8 ., where\, is the
wavelength at the high cutoff frequenty. If the bandwidth
is too narrow, the reconstruction based on the wide band-
width measurement becomes inappropriate and the FWHM
of the reconstructed PSF does not properly describe the real o
spatial resolution.

r,
IV. EFFECT OF DETECTOR APERTURE
Next, let us derive the analytic expressions of the PSF’s
related to detector aperture size. As shown in Fig. 3, the real -1=d
signal detected at position, can be expressed as a surface ~——et
integral over the detector aperture (b)
ﬁ'(fo,k):f fﬁ(ré ,k)W(r(’))dzr(’), (57) FIG. 4. (a) Diagram of the spht_arical r_ecording geometey:is
the angle betweemy andry; dl’ is an integral element on the

detector surface® is the angle of the radius of the detector aperture

whereW(ro) is a weighting factor, which represents the con-to the recording geometry origin the extension of the PSF at point
tribution from different elements of the detector surface toa is indicated; other denotations of the symbols are the same as in

the total signal of the detector. Figs. 1 and 3(b) Perspective view of the lateral extension of the
Sincerg=ry+r’, Eq.(57) can be rewritten as PSF's of all the point sources along a radial axis in the spherical
recording geometry.

”p’(ro,k)zf ff)(rOJrr’,k)W(r’)dzr’. (58
=W(6"), where the angl®’ betweenr; andr,—the polar
One can assume a point sourceratand then get the angle ofrg in the local coordinate system—varies from 0 to
detected signal at positiory using Eq.(57) or (58). If the ~ © depen.dmg on the size Qf the detector. Tr_le azimuthal angle
signal is not bandlimited, by substituting’(ro,k) for ¢’ Of rgin the local coordinate system varies from 0 to.2
p(ro.k) in the rigorous reconstruction formulas such as EqsThe normal of the detector surface at paiitis assumed to
(8)—(10), one can get analytic expressions of the PSF'’s fooint to the center of the recording geometryThe surface
the spherical, planar, and cylindrical geometries, respedntegral in EQ.(58) can be transformed into an integral over
tively. In general, the analytic expressions cannot be thora curve radiating from the centef on the surface¢’ and the
oughly simplified for arbitrary detector apertures. In order toazimuthal anglep’:
explicitly demonstrate the effects of the detector apertures on

spatial resolution, we will make some assumptions about th%'(ro.k)=f fT)(ro+r’,k)W(0’)r’md¢’dl’
detector apertures.

A. Spherical geometry = L,W(G’)\/l—(no-n’)zr’dl’
As shown in Fig. 4a), rq represents the center of detector o
o’ in the global spherical coordinates, ¢, ¢) with the origin % B(ro+r’,K)de’, (59
at the recording geometry centerA local spherical coordi- 0

nate system aligned with, is used as well. Assume that the
detector is circularly symmetric about its centgr, in this
case, the weighting factor depends only @&h, W(r') wheren’=r'/r’ and
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. exp(ik|ra—ro—r'])
~tke*y Aar|ra—ro—r’|

P(ro+r’ k)= (60)

Considering the expansion in the local spherical coordinates,

and denotingnj=rg/ry, ni=(60",¢'), and n,=
one obtains

(0a,94),

explik|ra—roh) ik < .
S —+
Aarlra—rgl 47T|20 (21 1)jickra)

X h(P(krg)Py(ng-ng), (61)

whereP,(n,-ng) can be expanded 4%4]

P,(n,-ng) = P,(cosé,)P,(cosh")
|

+2 Z (Ilm)): P™(cos6y,)PM(cos6’)

xcogm(e,—¢")]. (62

Then, one can evaluate the following integral:

2
J P(ng-ng)de’ =2mP,(cosh’)P\(coshy). (63
0

A

Actually, 6, is the angle betweeny andr,, i.e., cosd,
:na' no .

Combining the results of Eq$61)—(63), Eq. (59) can be
rewritten as

1—(ng-n")?r'dl’

k?c?y
Tj,(r01k): 2

xzo (21+1)P,(cos#’)P,(n,-ng)j (Kry)

X h{M(krg). (64)

By replacingp(rg,k) with

reconstruction folA(r):

1
Au(r)= ;L,W(g')\/l—(%' n’)%r'dl’

X }_‘,0 (2m+1)P(n,-n)P,(cosd’)

o h(X(krg)
X ' ' ———k?dk.
fo Jm<kra>1m<kr>hg>(kro)k dk. (65

P’ (rg,k) in the reconstruction
formula Eq.(8) and considering identit{14), one obtains the

PHYSICAL REVIEW E67, 056605 (2003
Ay(r)= JJW(G )r'\1—(ng-n')2de’dl’

1 o]
X=—5 > (2m+1)P,,(cosy)
27 M=o

h(X(krg)

— " Kk2d K,
hi(kro)

+oo
% | itttk (66
0

where co§=cosfcosé +sindsind’ cosp—¢').

1. Special spherical aperture

For simplicity, assume that the detector is a small section
of the spherical measurement surface, g+ |rg|=|ro
+r'|=]|ro|=ro. Therefore, one obtains

V1—(ng-n")%r'dl’=r3sing'de’, (67)
and
W(kry)/h P (krg)=1. (68

Substituting the identity Eq.18) and the following identity
(see the Appendixinto Eq. (65),

n)P(cos#’)=248(cosh’ —n,-n),
(69)

Pm(na'

ZO (2m+1)

one obtains
2
I'o e
Au(r)= 2 5(r—ra)f sin@’W(#')de’ 5(cosh’ —ny4-n).
0
(70)
Letting y be the angle betweem, andn, i.e., n,-N=cosvy,

2
r )
Au(r)= r—ga‘(r—ra) fo sing"W(0')de’' 5(cose’ —cosy)

r2

0 50" —
:r—ga(r—ra)f s:ina’W(a’)de'u
0

sing’
ra 0
:r—zéb‘(r—ra)fO W(6")5(0"— )66’

r0
= 2 0(r—ra)W(). (7D
If letting W(6')=1,
2
Aa(r)= —25(r ralU(y)—U(y=0)], (72)

where U is the step functionU(x)=1 when x>0 and
Letting @ and % be the polar and azimuthal angles of U(x)=0 whenx<0.
vector n with respect to vecton,, and using an identity Equation(72) indicates that, in this special case, the PSF
similar to the one shown in E¢63), one can rewrite Eq65  only extends along the lateral direction, which is propor-
as tional to the solid angle of the detector aperture to the origin
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of the measurement geometry. The perspective view of thesing the relation ;= \/r02+r’2, one can simplify Eq(77)
lateral extension of all the points in a radial axis looks like atg
cone as shown in Fig.(8). The farther the point source is

away from the origin, the more extension the PSF has. too 5 rolexpikyP?+r5—ikrg)—1]
Therefore, the lateral resolution is worse when the point isfa(r) = ;f jo(kr)kedk T :
close to the detector. But, a lateral resolution superior to the 0 (79)
aperture size can still be achieved if the object under study is

close to the center of the geometry. BecauseP<r,, the imaginary part is much less than the real

part and hence can be neglected; as a result, one can obtain
2. Small flat aperture

Now, let us consider flat apertures. Sometimes, a set of _To [F . 527
small flat detectors is used to form a spherical recording Aa(r)= T fo Jo(kn)sin[k(vP"+r5=ro)Jk dk  (79)

surface. Suppose the detector aperture is disklike and its ra-
dius isP. Sinceny-n’ =0 in this case, Using the following identity{ 14]:

V1—(ng-n")?r'dl’=r"dr’, (73

+ + oo
f jo(ka)sin(kb)k dk:bf jo(ka)jo(kb)k?dk
wherer’ =rytané’. If the aperture is small relative to the ° °

radius of the detection surface, i.e/<P<r, the follow- T
ing approximation holds: = 5p 9(b—a), (80)
r/2 i .
’ 7 - NS .
r—ro= /—2—ro+r 2_r0%2_r0_ (74) in the small-aperture case, i.€<r,, Eqg.(79) reduces to
2 2
Neglecting the second-order and higher small quantities, one Aa(r) =52 5( r— Z_rO) (81)

can approximaté'H(kr()/h{P(krg)~1. Then, one can fol-
low the derivation for the special spherical aperture and ob- Equation(79) indicates that the point source at the center

tain becomes a circle with a diametBf/r .
1 o Next, we want to estimate the lateral extension at an ar-
A(r)= = S(r— fa)f W(r')r'dr’ 8(cosé’ —n,-n). t_)ltrary point. T_aklng the asymptotic form of the Hankel func-
0 tion to approximate
(79 ) _
hia'(kro) explikro)/(krg) 1o
Letting W(r’)=1 and approximating’ =rqytané'~ry 6’ for D (kr )~ exp(ikr o)/ (KT o) = r—,exp(lkro—|kr0),
the small-aperture case, one reaches m 2770 o7l o 82
2 r_ .
Aa(r)wr—gﬁ(r—ra)fplroe’a(é—,wda’ one can rewrite Eq65) as
r 0 siné
1P T I o, 5
rg P/t Aa(r)z—f W(r’)r’dr’f —explikr j—ikrg)k=dk
=r—25(r—ra)f 8(6'— )86’ mJo o To
0

[

rs X >, (2m+1)Pp(ng-n)
=26(r=ra[U(y)=U(y=Plrg]. (76 m=0
X P(€0s0")jm(Kra)jm(kr). (83
Equation(76) indicates that, for the small flat aperture, the
extension of the PSF is primarily along the lateral axis. InThe above integral is still complicated. Here, we consider
fact, if we substitute® for P/r,, Eq.(76) becomes identical only the spread along, with the assumption ofV(r’)

to Eq. (72) for the special spherical aperture. =1. SubstitutingP,(n,-n)=P,(1)=1 into Eq. (83) and
Particularly, at the center of the recording geometry, i.e.considering identity (16), and further approximating
r,=0, we havejn(0)=68mo, Po(-)=1, and h{V(kr)=  jo(kyri+r2—2r,r cos®)~jyKr—r,) for the small-
—i exp(kr)/(kr). AssumingW(r’)=1, Eq.(65) reduces to aperture caser(<rg, i.e., 8'<1), one obtains
1 [+ 1 (+=
Aa(r)zgf jo(kr)exp —ikrq)k2dk Aa(rna)zgf jo(k|r—r ) exp —ikrg)k?dk
0 0
Pro . Pro -
X | —r'dr’ explikrg). (77 Xf —-r'dr" exp(ikr). (84
0o 0fg
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y’, andz’ be the differences of the coordinates betwegn

andrg, respectively. For the following two linear transla-
tions:

ro—rgo: Xo—Xot+X =Xy, Yo—VYotY =Yg, (86

I’a—>l’;1 Xa—>Xa—X’=Xé, ya_>ya_y’=yg11 (87)

there exist the following translational invariancés,—r |

=Iry=rol.
The detected signal at can be written as

o b'(ro,k>=f fwu')b(rw',k)dzw

= [ [ wocy oo x oy axay
P (89

Using P’ (rg,k) to replacep(rg,k) in the reconstruction
formula Eq.(9), and following the similar derivation shown

z
‘ in Sec. IlI B, one gets the reconstruction #(r) as
-t~ X y _ ! ! ’ !
. Aa(X,y,2)= W(X',y") 8(X—Xa) 6(Y ~¥a)
(b) X 8(z—z5)dx'dy’
FIG. 5. (a) Diagram of the planar recording geometBis the _ ., B , B ,

radius of the detector aperture; the extension of the PSF at Aoint - W(X',y") 8(X=Xa+X") (Y —Yaty’)
is indicated; other denotations of the symbols are the same as in o
Figs. 1 and 3yb) perspective view of the lateral extension of the X 8(z—z5)dx"dy’, (89)

PSF's of all the point sources along a line parallel to teis in

the planar recording geometry. 1.e.,
Aa(X,Y,2) =W(X—X5,Y—VYa)0(Z2—2,). 90

If we substitute|r —r,| for r, Eq. (84) becomes identical to a(XY,2)=WX=Xa Y~ ¥a) (2 2a) °0)
Eq. (77). Thus, in the small-aperture case<ro), Eq.(84) Assuming that the detector surface is a disk with raéius
reduces to Eq(81) with the replacement af by [r —r|: andW(x’,y’)=1 whenx'?+y'?<P, Eq.(90) reduces to

2 2 _

rg P Ay(X,y,z)=U(P—-D)é(Az), 91

Ad(INg)= 57 6 |r—ra|—2—ro). (85) )

whereD = \(Ax)2+ (Ay)?, andAx=x—Xx,, etc.
: oo : : Equation(91) indicates that without considering the band-
Equation(89) indicates that the point source at which width, the PSF does not extend along the axial direction, but

extends in the radial direction to a region with diameter.t f tends in the lateral directi M the lat
P2?/r, is the same as the extension of the PSF at the record- 9reatly extends in the fateral direction. Vioreover, the fat-

ing geometry center as shown in E81). But, in most cases, eral extension is proportional to the detector aperture. The

this extension is negligible. For example, when using a tran erspective view of the lateral extension of all the PSF's in a

ducer with eve a 6 mmdiameter to image a 10-cm-size ine parallel with thez axis looks like a cylinder as shown in

breast on a recording geometry surface with a 15 cm diamF19: 5b). Therefore, the lateral resolution is total!y blurred
eter, P%/r ;=3%/150=0.06 mm. However, the lateral exten- by the detector aperture, no matter where the point is.
sion atr is on the order of BP/ry as shown in Eq(76). For o

example, even atr=1cm, 2P/ry,=(2)(10)(3Y150 C. Cylindrical geometry

=0.4 mn™>0.06 mm. 1. Special cylinder aperture

We first assume that the detector surface is a section of the
cylindrical measurement surface. As shown in Fi¢g)6r

In this case, we reasonably assume that the detector suepresents the center of the deteatorin the global cylin-
face is flat. As shown in Fig.(8), ro represents the center of drical coordinates (, ¢,z) with the origin at the recording
the detectoro’ in the global Cartesian coordinatés,y,2 geometry centeo. Let ¢’ be the difference between the
with the origin at the recording geometry centerLet x’, polar angles of ; andr, andp’ andz’ be the projections of

B. Planar geometry
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FIG. 6. (a) Diagram of the cylindrical geometry’ is the dif-
ference between the polar anglesrgfandrg; p’ andz’ are the
projections ofr’ in the x-y plane and the axis, respectivelyZ is
the half width of the detector aperture along thaxis and® is the
half angle of the width of the detector aperture parallel toxhe

plane to the center of the recording geometry; the extension of the
PSF at poinf is indicated; other denotations of the symbols are the
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Replacingp(rg,k) by P’ (rq,k) in the reconstruction for-

mula Eg.(10), and following the derivation shown in Sec.
Il C, one can get the reconstruction f&(r) as

1
Aa(pwP,Z):f f;ﬁ(p—pa)é(so—wé)

X 8(z—Z)W(¢',2')pode’ dZ

=—5(p Paff5(¢ vate’)

X 8(z2—2,+2")W(¢',2')de’'dZ’, (95

Aa<p,<p,z>=%ap—pa)ww—cpa,z—za). (96)

If W(e',2')=1, ¢' from —® to &, andz’ from —Z to Z,

Eq. (96) can be rewritten as

|Z_Za|)-

97

Aa<p,<p,z>=$5<p—pa>U<cb—|<p—soa|>U<Z—

Equation(97) indicates that the extension of the PSF in

same as in Figs. 1 and &) Perspective view of the lateral exten- the cylindrical geometry combines the properties of the
sion of the PSF’s of all the point sources along a radial axis in the®SF’s in the spherical and planar geometries. In this special

cylindrical recording geometry.

r' in the x-y plane and the axis, respectively. Two sides of

the detector are along tleaxis from—Z to Z, and the other

two sides are parallel with they plane and the polar angle
¢’ varies from—® to ®. For the following two translations:

20— 29+t2' =2}, (92

ro—ro: @o— ot e =4,

fa=Tal Pa—@a— @' =@4, Za—2y—2 =174, (93
there exist the following translational invariancés,—r|
=lra—rol.

The detected signal can be written as

Patro k)= [ | Beror o

:j fTj(QDO"_(P,120+Z,,k)W(QD,,Z,)pOd(,D,dZ/.
(94)

case, the PSF does not extend along the radial direction. The
perspective view of the lateral extension of all the point
sources in a radial axis looks like a wedge of pie as shown in
Fig. 6(b). In the z-axis direction, the PSF extension is pro-
portional to the detector size along theaxis, just like the
planar geometry. While parallel with they plane, the lateral
extension is proportional to the angle of the detector width to
the z axis, just like in the spherical case. Therefore, a lateral
resolution that is better than the aperture size can be obtained
parallel to thex-y plane if the object under study is close to
the center of the geometry; however, the lateral resolution
along thez axis is determined by the detector size.

2. Small rectangle aperture

Sometimes a set of small rectangle detectors is used to
form a cylindrical array. The normal of the detector at the
center pointo’ is assumed to point to the center of the re-
cording geometry. Two sides of the detector are alongzthe
axis from—Z to Z, and the other two sides are parallel with
the x-y plane and have a length of”P2 One can follow the
similar derivation in Sec. Il C, and get the reconstruction for
A(r) as
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1 z P 1 +o0
Aa(p,so,2)=Eﬁzﬁ(za—z—Z’)dZ’ Jipdp’W(qJ’,Z') Aa(p,<p.2)=EU(Z—|Z—ZaI)fO pdu

+o0 P
X 2 exdim(e,—e—¢")] Xf Pdp’exr[iM(VPoz+p’2—po)]

m=—o® —

+oo +o
Xfo mdu XmZ_ Im(pa)Im(pp)

H (u\p5+p'?) xexdim(¢a—e—9¢")]. (104
X Im(mpa)Im(1p) ) , (99
Hm'(po)

Considering identity(35), Eqg. (104) can be rewritten as

wherep'=pgtane’. Let W(¢',z")=1. 1 +oo
For the small-aperture cas€,<pq, one can approximate Adlp,9,2)= ZU(Z_ |z—2,]) fo mdu

Hﬁﬁ)(prer’z)Nl 99 xfp dp’ exiw(\p2+p'2— po)]
HO(upo) -
X Jo(u\pa+p®—2pap COLpa— @ — ).
Further, taking the small-aperture approximatiop’ (105
=potane’=pye’, and considering the following identity
[14]: Equation(105) is still complicated. Here, by only consid-

ering the points along,, i.e., lettinge= ¢, and then tak-
+oo 1 ing the small-aperture approximatiop’(<1),
fo mdu In(ppa)Im(pnp) = ;5(p—pa), (100

Jo(UN 3+ p?—2pap cO @a— o — ¢ ))=Jo( | p—pal),

(106)
one can rewrite Eq98) as
and
A =U(z Ls p'?
alp,¢,2)=U( |z Za|)p (p—pa) 1/p3+p,2_p0%2_p0' (107
Plpg
Xf / pode’ 8(ea—¢—¢"), (101)  one can rewrite Eq105 as
—Plp
P + o
ie. Aa(Pa‘Pa1Z):U(Z_|Z_Za|)J dp’f pndu
' -p 0

X Jo(ulp—pal)expliwp’?12po). (108

Po P
Aa(P:‘PaZ):_5(P_Pa)u<__|¢_¢a|)U(Z_lz_za|)- ) ) )
p Po Becausep’ <p,, the imaginary part is much less than the
(102 real part and hence can be neglected,

Equation(102) indicates that, for the small flat aperture, the P [
extension of the PSF is primarily along the lateral axis. In  Aa(P¢a:2)=U(Z~|z=2,) 7PdP o pdu
fact, if we substituteb for P/pq, Eq. (102 becomes identi-

cal to Eq.(97) in the special cylinder aperture case. X Jo( | p— pal)cog mp'?12pg)
Next, we want to estimate the lateral extension of the PSF.
One can also take the asymptotic form of the Hankel func- —U(Z—|z-2 |)fp dp’(@)i
tion to approximate A7) p p'|ap’
+ o
HY (up2+p'?) . Xf du Jo( el p—pal)Sin(up'?12po).
mH<1>( ) ~exfin(Vpotp'?=po)l, (103 0
m (MPo (109)

and then rewrite E(98) as Using the following identity{ 15]:
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FIG. 7. An example of the PSF due to the detector apertayea gray scale view antb) a lateral profile through the point source.

Finally, we attempt to analyze the combined effects of

+oo _ > 0<a<b bandwidth and detector size together. Assume that the de-
fo dt Jo(ta)sin(tb)=9 vb"—a tected signal is bandlimited, characterized k) with a
0 otherwise, cutoff frequencyk., and the detectors have the same geom-

(110  etries as the recording surfaces. One can then follow the
derivations in Secs. Il and IV and reach the following re-
one can get the integral in E¢L09), sults.
(1) Spherical geometry:

P [Po| 9 ; -
f_Pdp (p—?)—,[\/(p *12p0)*=[p—pal 171

i Aba<r>=f fW(0’)fﬁSF(R’)r§sin0’de’d<p’,

(112

Po .
) \/( r2/2 )2_ _ 2 lE ~
(P'>[ P 1200l lp=pal"] e where  R’=\r?+r5—2rr,cosy, cosy=cosfcosd

P 0o +sin@sing’ cos@p—¢'), andd and% are the polar and azi-
—J P[\/(P'Z/ZPo)Z— |P_Pa|2]_1d(17)- muthal angles of vectan with respect to vecton,, respec-
B tively.
(112 (2) Planar geometry:
The integral of Eq.(111) only exists in the rangé?/2p, Apa(X,Y Z):f JW(X/ y PSR )dx'dy’, (113
>|p—pal. Therefore, the PSF extends to a region with a ama ’ b '

. ) L oy
extonsion a we discussedn the spherical geometry explereR’ = VO Xa T XY (y=yat y)F (2 7o)
nation. (3) Cylindrical geometry:

So far, we have derived the analytic PSF’s due to the sk
detector apertures for the specific spherical, planar, and cy- Aba(P:‘PaZ):f f W(e',2) F™(R)pode'dZ,
lindrical recording geometries. The explicit expressions can (114
be given when the detector surfaces are assumed to have the
same geometric properties as the recording geometries. OtihereR’ =/p?+ p3—2pp, COSle— @at¢') +(z2—2,+2)%.
erwise, it appears that explicitly carrying out the analytic ~Equations(112—(114) clearly reveal that the PSF can be
derivations is impossible. But, in reality, the detector aperfegarded as a convolution of the detector aperture with the
ture is very small compared to the recording surface. Wespace invariant/,>". However, in the spherical geometry
have also estimated axial extension in this case and founchse, the convolution becomes complicated as shown in Eq.

that it was negligible compared to lateral extension. (112. Further, we can imagine how complicated the convo-
lution could be with an arbitrary recording geometry using
V. DISCUSSION AND CONCLUSIONS arbitrary-aperture detectors.

Let us take the PSF in the planar geometry case as an
In Sec. lll, we proved that the PSF as a function of band-example, which is shown in Fig. 7. The detector aperture is
width is space invariant. In Sec. IV, we demonstrated that theassumed to be a disk with a radius of 1 mm and a cutoff
finite aperture of the detector extends the PSF for differenfrequencyf.=4 MHz. In the axial direction, the extension of
recording geometries. the PSF is similar to that shown in Fig(l, which is deter-
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mined by the bandwidth. However, as shown Fith)7the  where
PSF greatly expands in the lateral direction, and its corre-

spondingWewnm=~2 mm, which is physically limited by the 2041 (I-m)! _
detector size. Yim(0,0) =\ —— TTmt P"(cos@)expime).

In conclusion, spatial resolution as a function of band- (A2)

width is space invariant for any recording geometry when the
reconstruction is linear and exact. The bandwidth limits the Then, do an integral oves from O to 2 of both sides of
obtainable spatial resolution. The detector aperture blurs lag

. ; , d. (A1),
eral resolution greatly at different levels for different record-
ing geometries but the effect on axial resolution is slight. The = | 204+1 (I—m)!
results offer clear instruction for designing appropriate ther- :
moacoustic imaging systems with predefined spatial resolu=o0 m=—1 4 (I+m)!
tions.

P"(cos@)P"(cos#’)

2
XJ exdim(e—¢')]de
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= 5(0056—0050’)f S(o—¢')de=5(cosf—cosb’),
APPENDIX 0

A3
The completeness relation of the spherical harmonics (A3)

Y|m(0,§0) [14116 is ie.,

.
;o m:z—l Yim(6",¢")Yim( 0, ¢) IZO (21+1)P,(cosh)P,(cosh’ ) =28(cosf—cose’).

=8(¢—¢')S(cosf—cosh’), (A1) (A4)
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