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Analytic explanation of spatial resolution related to bandwidth and detector aperture size
in thermoacoustic or photoacoustic reconstruction

Minghua Xu and Lihong V. Wang*
Optical Imaging Laboratory, Department of Biomedical Engineering, Texas A&M University, 3120 TAMU,

College Station, Texas 77843-3120
~Received 31 October 2002; published 9 May 2003!

An analytic explanation of the spatial resolution in thermoacoustic or photoacoustic reconstruction is pre-
sented. Three types of specific recording geometries, including spherical, planar, and cylindrical surface, as
well as other general cases, are investigated. Analytic expressions of the point-spread functions~PSF’s!, as a
function of the bandwidth of the measurement system and the finite size of the detector aperture, are derived
based on rigorous reconstruction formulas. The analyses clearly reveal that the dependence of the PSF’s on the
bandwidth of all recording geometries shares the same space-invariant expression while the dependence on the
aperture size of the detector differs. The bandwidth affects both axial and lateral resolutions; in contrast, the
detector aperture blurs the lateral resolution greatly but the axial resolution only slightly.
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I. INTRODUCTION

In the last decade, thermoacoustic or photoacoustic
mography of soft tissue utilizing excitation from a puls
electromagnetic~EM! energy source, such as radio frequen
or laser, has attracted considerable attention@1–12#. With
this technique, it is assumed that, following a short pulse
EM illumination, a spatial distribution of acoustic pressu
inside the tissue is simultaneously excited by thermoela
expansion, which acts as a source for acoustic response
intensity of the acoustic pressure is strongly related to
locally absorbed EM energy. A wide range of EM absorpti
coefficients in soft tissue contributes to a good contrast
tween different types of tissues. The effect of thermal dif
sion on thermoacoustic or photoacoustic waves in tissu
always ignored, since the EM pulse duration is often so sh
that the thermal conduction time is far greater than
acoustic transit time through the heterogeneities of the
energy depositions. The acoustic waves from the ini
acoustic source propagate toward the surface of the tis
with various time delays. Ultrasound detectors are pla
around the tissue to record the outgoing acoustic waves
ferred to as the thermoacoustic or photoacoustic sign
which carry information about EM absorption as well
about the acoustic properties of the tissue. For medical
aging and diagnostics, an appropriate reconstruction a
rithm is required to map the initial acoustic sources, or E
absorption distribution.

To detect thermoacoustic signals, one approach is to
focused ultrasound transducers, in which the lateral res
tion is determined by the focal diameter of the transdu
and the axial resolution by the bandwidth@5,6#. Another ap-
proach is to use small-aperture unfocused detectors—ide
point detectors—that can receive ultrasound from a la
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angle of acceptance. Thus far, rigorous reconstruction a
rithms have been reported with point-detector measurem
from idealized recording configurations, including the ful
enclosing spherical recording surface@7#, the planar record-
ing surface of an infinite extent@3,8#, and the cylindrical
recording surface of an infinite length@9#. In these algo-
rithms, the acoustic property of the tissue is often assume
be homogenous as the speed of sound in soft tissue is
tively constant at;1.5 mm/ms. Details can be found in Ref
@7# of the reconstruction formulas for spherical geometry a
in Refs.@8,9,11# for the planar and cylindrical geometries.

Spatial resolution is one of the most important parame
in thermoacoustic reconstruction. Acoustic inhomogene
blurs the reconstructed image, but in some cases, the blu
can be corrected. A limited view also affects spatial reso
tion due to lack of sufficient data; in this case, the reco
struction is incomplete and reconstruction artifacts oc
@12#. These two topics will not be addressed in this pap
There are two other main factors that limit spat
resolution—the finite bandwidth of the detection system a
the size of the detector aperture. Past research work has
estimated the spatial resolution in thermoacoustic tomog
phy based on measurements or numerical simulations.
theoretical analysis has been reported.

In this paper, a complete theoretical explanation of
degree of spatial resolution that results from varying
bandwidth as well as the detector aperture will be presen
Analytic expressions of point-spread functions~PSF’s! on
the spherical, planar, and cylindrical recording surfaces w
be explicitly derived. The paper is organized as follows.
Sec. II, the inverse problem and the reconstruction formu
for thermoacoustic tomography will be briefly reviewed. D
tailed derivations of bandwidth-limited PSF’s in the abo
three measurement geometries as well as more general
will be presented in Secs. III A, III B, III C, and III D, respec
tively; and resolution will be discussed in Sec. III E. In Se
IV, detailed derivations of PSF’s as a function of detec
aperture size will be shown in Secs. IV A, IV B, and IV C
Section V will provide discussion and conclusions.

:
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II. RECONSTRUCTION FORMULAS

We will first briefly review the inverse problem and th
rigorous reconstruction formulas for thermoacoustic tom
raphy. It is well known that, in response to a heat source,
pressurep(r ,t) at positionr and time t in an acoustically
homogeneous medium obeys the following equation@13#:

¹2p~r ,t !2
1

c2

]2

]t2 p~r ,t !52
b

Cp

]

]t
H~r ,t !, ~1!

whereCp is the specific heat,H(r ,t) is the heating function
defined as the thermal energy deposited by the EM radia
per time and volume,b is the isobaric volume expansio
coefficient, andc is the speed of sound. The heating functi
can be written as the product of a spatial absorption func
and a temporal illumination function:

H~r ,t !5A~r !I ~ t !. ~2!

Assuming that the illumination is a Diracd function such as
I (t)5d(t), and taking the following Fourier transform o
variable t̄ 5ct,

p̃~r ,k!5E
2`

1`

p~r , t̄ !exp~ ik t̄ !d t̃, ~3!

the solution of Eq.~1! becomes the integral

p̃~r0 ,k!52 ikc2hE E E
V
d3r A~r !G̃k~r ,r0!, ~4!

whereh5b/Cp and G̃k(r ,r0) is the Green’s function satis
fying the following equation:

~¹21k2!G̃k~r ,r0!52d~r2r0!. ~5!

In general, the Green’s function in three-dimensional f
space can be written as@14#

G̃k~r ,r0!5
exp~ ikur2r0u!

4pur2r0u
. ~6!

Actually, the initial thermoacoustic pressure excited by
d(t) EM illumination is equal top0(r )5G(r )A(r ), where
the Grüneisen parameterG(r )5h(r )c2 may be inhomoge-
neous. Then, Eq.~4! can be expressed by the following form

p̃~r0 ,k!52 ikE E E
V
d3r G̃k~r ,r0!p0~r !. ~7!

The inverse problem is to reconstruct the absorption
tribution A(r ) or the initial thermoacoustic pressure distrib
tion p0(r ) from a set of datap(r0 ,t) or p̃(r0 ,k) measured at
position r0 . In general, the Green’s function can be e
panded in terms of some appropriate functions for the co
05660
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sponding recording geometries. Then, based on the orth
nality of the appropriate functions, reconstruction formu
can be derived.

In spherical recording geometry, it is assumed that
recording surface is a spherical surfacer05(r 0 ,u0 ,w0) in
the spherical polar coordinatesr5(r ,u,w), whereu is the
polar angle from thez axis andw is the azimuthal angle in
the x-y plane from thex axis. The sample under study lie
inside the sphere, i.e.,A(r )5A(r ,u,w) where r ,r 0 and
A(r )50 when r .r 0 . The rigorous reconstruction formul
for A(r ) can be written as@7#

A~r !5
1

2p2c2h E E
V0

dV0E
0

1`

dk p̃~r0 ,k!

3 (
m50

`
~2m11! j m~kr !

hm
~1!~kr0!

Pm~n0•n!, ~8!

where dV05sinu0 du0dw0; n5r /r and n05r0 /r are unit
vectors; j m(•), hm

(1)(•), andPm(•) are the spherical Besse
function of the first kind, the spherical Hankel function of th
first kind, and the Legendre polynomial function, respe
tively. In addition, the integral range over variablek in Eq.
~8! can extend to from2` to 0 by simply taking the com-
plex conjugate and using the following propertie
p̃* (r0 ,k)5 p̃(r0 ,2k), @ j n(z)#* 5 j n(z), and @hn

(1)(z)#*
5hn

(2)(z) whenz is real and positive, where ‘‘* ’’ stands for
the complex conjugate.

In planar recording geometry, it is assumed that the m
surement surface is thez50 plane, i.e.,r05(x0 ,y0,0) in the
Cartesian coordinatesr5(x,y,z). The sample lies above th
plane, i.e.,A(r )5A(x,y,z) wherez.0 andA(r )50 when
z,0. The rigorous reconstruction formula forA(r ) can be
written as@8,11#

A~x,y,z!5
1

4p3c2h E E
2`

1`

dx0dy0E
2`

1`

dk p̃~r0 ,k!

3E E
r50

r5uku
du dn

3exp@2 iz sgn~k!Ak22r2#exp@ iu~x02x!

1 in~y02y!#, ~9!

wherer5Au21v2, sgn(k)51 whenk.0, and sgn(k)521
whenk,0.

In cylindrical recording geometry, it is assumed that t
measurement surface is a circular cylindrical surfacer0
5(r0 ,w0 ,z0) in the circular cylindrical coordinatesr
5(r,w,z). The sample lies in the cylinder, i.e.,A(r )
5A(r,w,z) when r,r0, and A(r )50 when r.r0 . The
rigorous reconstruction formula forA(r ) can be written as
@9,11#
5-2
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A~r,w,z!5
1

2p3c2h E
0

2p

dw0E
2`

1`

dz0E
0

1`

dkp̃~r0 ,k!

3E
2k

1k

dg exp@ ig~z02z!#

3 (
n52`

1`

exp@ in~w02w!#
Jn~rAk22g2!

Hn
~1!~r0Ak22g2!

,

~10!

whereJn(•) andHn
(1)(•) are the Bessel function of the firs

kind and the Hankel function of the first kind, respective
In addition, the integral range over variablek in Eq. ~10! can
extend to from2` to 0, by simply taking the complex con
jugate and using the following properties:p̃* (r0 ,k)5 p̃(r0 ,
2k), @Jn(z)#* 5Jn(z), and @Hn

(1)(z)#* 5Hn
(2)(z) whenz is

real and positive.

III. BANDWIDTH-LIMITED PSF

As shown in Fig. 1, assuming a point sourceA(r )5d(r
2ra) at ra , the pressure at the recording pointr0 can be
expressed as

p̃~r0 ,k!52 ikc2hG̃k~ra ,r0!. ~11!

Suppose the detection system is bandlimited in
temporal-frequency domain and characterized by a low-p
function H̃(k). The amplitude of the acoustic wave vect
k5v/c, wherev is the acoustic angular frequency. The d
tected signal at the recording surfacer0 becomesp̃8(r0 ,k)
5H̃(k) p̃(r0 ,k) instead ofp̃(r0 ,k). But the reconstruction
formulas, Eqs.~8!–~10!, for point-detector measurements
the spherical, planar, and cylindrical recording geometr
respectively, remain the same. Replacingp̃(r0 ,k) by
p̃8(r0 ,k) in these reconstruction formulas will give us th

FIG. 1. Diagram of the recording geometry: a recording surf
S1 completely encloses another recording surfaceS0 ; there is a
point sourceA at ra insideS0 ; R is the distance between an arb
trary point atr and the point sourceA; r0 andr1 point to a detection
element on the surfacesS0 andS1 , respectively.
05660
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bandwidth-limited analytic expressions of the PSF’s to
derived below for the different geometries.

A. Spherical geometry

The point source atra5(r a ,ua ,wa) in the spherical co-
ordinates can be written as

A~r !5
1

r 2 d~r 2r a!d~w2wa!d~cosu2cosua!. ~12!

The Green’s function can be expanded according to
following identity (r 0.r a ,k.0) @14#:

G̃k~ra ,r0!5
ik

4p (
l 50

`

~2l 11! j l~kra!hl
~1!~kr0!Pl~na•n0!,

~13!

wherena5ra /r a .
Replacingp̃(r0 ,k) by p̃8(r0 ,k) in Eq. ~8! and considering

the following identity@14#:

E E
V0

dV0Pl~na•n0!Pm~n0•n!5
4p

2l 11
d lmPl~na•n!,

~14!

the resulting reconstruction forA(r ) is

Ab~r !5
1

2p2 E
0

1`

H̃~k!k2dk(
m50

`

~2m11!

3Pm~na•n! j m~kra! j m~kr !. ~15!

Further, taking into account the following identity@15#:

(
m50

`

~2m11!Pm~na•n! j m~kra! j m~kr !5
sin~kR!

kR
5 j 0~kR!,

~16!

whereR5Ar a
21r 222r ar cos(na•n), one can obtain

Ab~r !5
1

2p2 E
0

1`

H̃~k! j 0~kR!k2dk. ~17!

Particularly, if H̃(k)[1 for k50→`, considering the
following identities@14#:

E
0

1`

j m~kr ! j m~kra!k2dk5
p

2r 2 d~r 2r a!, ~18!

(
m50

`

~2m11!Pm~na•n!54pd~w2wa!d~cosu2cosua!,

~19!

Eq. ~15! reduces to a point source the same as the expres
in Eq. ~12!, which actually verifies the reconstruction Eq.~8!.

e
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B. Planar geometry

The point source atra5(xa ,ya ,za) in the Cartesian coor
dinates can be written as

A~x,y,z!5d~x2xa!d~y2ya!d~z2za!. ~20!

The Green’s function can be expanded as@14#

G̃k~ra ,r0!5
1

~2p!3 E E E
2`

1`

d3K
exp@ iK•~r02ra!#

K22k2 ,

~21!

whereK5(Kx ,Ky ,Kz).
Using the detected signal at the recording surfacer0 ,

p̃8(r0 ,k)5H̃(k) p̃(r0 ,k), to replacep̃(r0 ,k) in the recon-
struction Eq.~9!, and considering the following identities:

E
2`

1`

exp@ i ~u1Kx!x0#dx052pd~Kx1u!, ~22!

E
2`

1`

exp@ i ~n1Ky!y0#dy052pd~Ky1n!, ~23!

E
2`

1`

dKz

exp~2 iK zza!

Kz
21r22k2

5 ip sgn~k!
exp@ iza sgn~k!Ak22r2#

Ak22r2
, uku.r,

~24!

the resulting reconstruction forA(r ) is

Ab~x,y,z!5
1

~2p!3 E
2`

1`

k dk H̃~k!E E
r50

r5uku
du dn

3exp~2 iuDx2 inDy!

3sgn~k!
exp@2 i sgn~k!DzAk22r2#

Ak22r2
,

~25!

whereDx5x2xa , Dy5y2ya , andDz5z2za .
In the evaluation of the integral in Eq.~24!, we replacedk

with k1 ig as suggested in Ref.@14#, where g is a small
positive real number. Since there will be some damping
the wave in a physical system, we then complete a con
integral in the complex plane and letg approach zero.

Changing the integration order ofdu dv anddk, and fur-
ther lettingw5sgn(k)Ak22r2, Eq. ~25! reduces to

Ab~x,y,z!5
1

~2p!3 E E E
2`

1`

du dn dw

3exp~2 iuDx2 inDy2 iwDz!H̃~k!,

~26!

wherek25u21v21w2.
05660
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Particularly, if H̃(k)[1 for 2`,k,`, Eq. ~26! be-
comes a point source as the original one in Eq.~20!.

In general, by changing the integral from the Cartes
coordinates into the spherical coordinates,

~u,v,w!→k5~k,u,w!,

~Dx,Dy,Dz!→R5~R,a,b!,

whereR25(Dx)21(Dy)21(Dz)2, one can rewrite Eq.~26!
as

Ab~x,y,z!5
1

~2p!3 E E E exp~2 ik"R!H̃~k!d3k.

~27!

The integration of Eq.~27! can be further simplified to

Ab~x,y,z!5
1

~2p!3 E
0

1`

H̃~k!k2dk

3E
0

p

exp~2 ikR cosg!singdg2p, ~28!

whereg is the angle betweenk andR, i.e.,

Ab~x,y,z!5
1

2p2 E
0

1`

H̃~k! j 0~kR!k2dk. ~29!

C. Cylindrical geometry

The point source atra5(ra ,wa ,za) in the cylindrical co-
ordinates can be written as

A~r,w,z!5
1

r
d~r2ra!d~w2wa!d~z2za!

5
1

r
d~r2ra!

1

2p (
m52`

1`

exp@ im~w2wa!#

3
1

2p E
2`

1`

exp@ ikz~z2za!#dkz . ~30!

The Green’s function can be expanded as (k.0)
@11,14,17#

G̃k~ra ,r0!5
i

8p (
m52`

1`

exp@ im~wa2w0!#

3E
2`

1`

dkz exp@ ikz~za2z0!#

3Jm~mra!Hm
~1!~mr0!, ~31!

where m5Ak22kz
2 when kz

2,k2, and m5 iAkz
22k2 when

kz
2.k2.

Using the detected signal at the recording surfacer0 ,
p̃8(r0 ,k)5H̃(k) p̃(r0 ,k) to replace p̃(r0 ,k) in the recon-
struction Eq.~10!, and considering the following identities:
5-4
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E
0

2p

dw0 exp@ iw0~n2m!#52pdnm , ~32!

E
2`

1`

dz0 exp@ iz0~g2kz!#52pd~g2kz!, ~33!

the resulting reconstruction forA(r ) is

Ab~r,w,z!5
1

4p2 E
0

1`

k dk H̃~k!E
2k

1k

dkz exp@ ikz~za2z!#

3 (
m52`

1`

exp@ im~wa2w!#Jm~mra!Jm~mr!.

~34!

Changing the integration order of variablesk and kz and
taking into account the following identity@15#:

(
m52`

1`

exp@ im~wa2w!#Jm~mra!Jm~mr!5J0~mD !,

~35!

whereD5Ara
21r222rar cos(wa2w), one can simplify Eq.

~34! to

Ab~r,w,z!5
1

4p2 E
2`

1`

dkz exp@ ikz~za2z!#

3E
ukzu

1`

kH̃~k!dk J0~mD !. ~36!

By changing the integral variablek with m5Ak22kz
2, one

can get

Ab~r,w,z!5
1

4p2 E
2`

1`

dkz exp@2 ikzDz#

3E
0

1`

H̃~k!m dm J0~mD !, ~37!

wherek25kz
21m2, Dz5z2za .

Then, one can denoteDx5x2xa5D cosb and Dy5y
2ya5D sinb, and introducekx5m cosa and ky5m sina,
where D5A(Dx)21(Dy)2 and m5Akx

21ky
2, and rewrite

the far right integral in Eq.~37! as

E
0

1`

m dm H~k!J0~mD !5
1

2p E E
2`

1`

dkxdky

3exp~2 ikxDx2 ikxDy!H̃~k!,

~38!

wherek25kz
21m25kx

21ky
21kz

2.
Therefore, Eq.~37! can be rewritten as
05660
Ab~r,w,z!5
1

~2p!3 E E E
2`

1`

dkzdzxdkyH̃~k!

3exp~2 ikxDx2 ikzDy2 ikzDz!, ~39!

which is the same as Eq.~26!. Thus, Ab(r,w,z) takes the
same form as Eq.~29!,

Ab~r,w,z!5
1

2p2 E
0

1`

H̃~k! j 0~kR!k2dk, ~40!

where

R5A~Dx!21~Dy!21~Dz!2

5Ara
21r222rar cos~wa2w!1~Dz!2.

Particularly, ifH̃(k)[1 for k50→`, Eq.~39! reduces to
a point source the same as the original one.

D. General geometry

We have proved that the bandwidth-limited PSF’s in t
three different geometries share the same expression
shown in Eqs.~17!, ~29!, and ~40!. As described in these
equations, the PSF is independent of the position of the p
source but dependent on the distanceR from the point
source. Therefore, the PSF due to bandwidth is space inv
ant.

Actually, the space invariance of PSF due to bandwi
can be extended to more general recording geometries
mentioned in Ref.@11#, the reconstruction forA(r ) can be
expressed by a linear integral:

A~r !5E E
S0

dS0E
k
dk K̃k~r0 ,r ! p̃~r0 ,k!, ~41!

whereS0 is the recording surface, which covers the obje
under study.

The inverse problem for thermoacoustic reconstruction
to seek such an integral kernelK̃k(r0 ,r ) for a particular re-
cording surface. For the spherical, planar, and cylindrical
cording geometries, the integral kernelK̃k(r0 ,r ) can be ex-
plicitly given as shown in Eqs.~8!, ~9!, and ~10!,
respectively. For other recording geometries, the integral k
nel K̃k(r0 ,r ) is more complicated or even nonexistent an
lytically.

As shown in Fig. 1, suppose another recording surf
S1 , which could be a spherical, planar, or cylindrical recor
ing surface, can completely enclose surfaceS0 . Then, based
on Green’s theorem@17#, the pressurep̃(r1 ,k) at S1 can be
computed by the pressurep̃(r0 ,k) on surfaceS0 ,

p̃~r1 ,k!5E E
S0

dS0S p̃~r0 ,k!
]G̃k~r1 ,r0!

]n0
s

2G̃k~r1 ,r0!
] p̃~r0 ,k!

]n0
s D , ~42!
5-5
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where ]/]n0
s is the normal component of the gradient o

surface S0 and points outward away from the acous
source; andr0 and r1 represent detection positions on su
facesS0 andS1 , respectively. Since the reconstruction bas
on Eq.~41! from the measurement on surfaceS0 is exact, the
pressurep̃(r1 ,k) on surfaceS1 must be identical to the ther
moacoustic pressure directly generated by the sourceA(r ):

p̃~r1 ,k!5E E E
V0

dV0 A~r !G̃k~r1 ,r !, ~43!

whereV0 is the volume enclosed byS0 .
Now, considering the bandwidth characterized byH̃(k),

one can rewrite the reconstruction Eq.~41! as

Ab~r !5E E
S0

dS0E
2`

1`

dkK̃k~r0 ,r !@H̃~k! p̃~r0 ,k!#.

~44!

In other words, Eq.~44! gives the exact reconstruction of
new and unique sourceAb(r ) from H̃(k) p̃(r0 ,k) measured
on surfaceS0 :

H̃~k! p̃~r0 ,k!5E E E
V0

dV0 Ab~r !G̃k~r0 ,r !. ~45!

Based on Green’s theorem, the pressure on surfaceS1 can be
computed by the pressureH̃(k) p̃(r0 ,k) on surfaceS0 ,
which is found equal toH̃(k) p̃(r1 ,k) with considering Eq.
~42!:

E E
S0

dS0S @H̃~k! p̃~r0 ,k!#
]G̃k~r1 ,r0!

]n0
s

2G̃k~r1 ,r0!
]@H̃~k! p̃~r0 ,k!#

]n0
s D

5H̃~k!E E
S0

dS0S p̃~r0 ,k!
]G̃k~r1 ,r0!

]n0
s

2G̃k~r1 ,r0!
] p̃~r0 ,k!

]n0
s D

5H̃~k! p̃~r1 ,k!. ~46!

This pressure must be identical to the thermoacoustic p
sure directly generated by the new sourceAb(r ) in volume
V0 ,

E E E
V0

dV0 Ab~r !G̃k~r1 ,r !5H̃~k! p̃~r1 ,k!, ~47!

i.e.,

H̃~k! p̃~r1 ,k!5E E E
V1

dV1Ab~r !G̃k~r1 ,r !, ~48!
05660
d
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since there is no source in the volume between the surfa
S0 andS1 .

Equation~48! indicates that the new sourceAb(r ) could
be restored from the valueH̃(k) p̃(r1 ,k) on surfaceS1 , if an
exact reconstruction from data only on surfaceS1 does exist.
In other words, the reconstruction forA(r ) from the mea-
surement with the bandwidthH̃(k) on surfaceS0 is identical
to the reconstruction from the measurement with the sa
bandwidthH̃(k) on surfaceS1 that fully enclosesS0 . Fortu-
nately, we have already obtained the exact reconstruc
formulas from measurements on such a surfaceS1 as the
spherical, planar, or cylindrical recording geometries. The
fore, the PSF of the point source atra as a function of band-
width H̃(k) from the measurement on surfaceS0 is nothing
but the same expression as Eqs.~17!, ~29!, and~40! for the
above three specific recording geometries, respectively.

E. Resolution

For convenience, we can denote the PSF symbolically
Fb

PSF,

Fb
PSF~R!5

1

2p2 E
0

1`

H̃~k! j 0~kR!k2dk, ~49!

where the subscriptb represents bandwidth, andR5ur
2rau. Equation~49! can be rewritten in another form as

Fb
SPF~R!5

21

4pR FdH~R!

dR
1

dH~2R!

dR G , ~50!

if we let H(2 t̄ )5H( t̄ ) and define the following Fourie
transform:

H~ t̄ !5
1

2p E
2`

1`

H̃~k!exp~2 ik t̃ !dk, ~51!

whereH( t̄ ) is the corresponding temporal signal ofH̃(k).
If H̃(k) has a cutoff frequencykc , H̃(k)51 when k

<kc , H̃(k)50 whenk.kc , the integral in Eq.~49! can be
carried out,

Fb
PSF~R!5

1

2p2 E
0

kc
j 0~kR!k2dk

5
kc

2p2R2 S sin~kcR!

kcR
2cos~kcR! D , ~52!

i.e.,

Fb
PSF~R!5

kc
3

2p2

j 1~kcR!

kcR
5

kc
3

6p2

3 j 1~kcR!

kcR
. ~53!

By normalizing the PSF of Eq.~53!, one can get

Fb
PSF~R!5

3 j 1~kcR!

kcR
. ~54!
5-6
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FIG. 2. An example of the PSF as a result of the bandwidth~0, 4 MHz!: ~a! a gray scale view and~b! a profile through the point source
~c! Comparison of the PSF’s with different bandwidths: dashed line,~0, 2 MHz!; solid line, ~0, 4 MHz!; dotted line,~2 MHz, 4 MHz!;
dot-dashed line, 4 MHz.
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The full width at half maximum~FWHM! of the PSF is often
used to represent the spatial resolution. It is easy to s
3 j 1(x)/x50.5 whenx52.4983. Therefore,

WFWHM523
2.4983

kc
523

2.4983

2p f c /c
50.7952c/ f c'0.8lc ,

~55!

where lc is the wavelength at the cutoff frequency of th
bandwidth. For example, ifc51.5 mm/ms, f c54 MHz, then
WFWHM'0.3 mm. The correspondingFb

PSF(R) is plotted in
Figs. 2~a! and 2~b!.

Sometimes, a detection system has a finite bandw
characterized by a central frequencyf 0 with a low cutoff
frequencyf Lc and a high cutoff frequencyf Hc . For simplic-
ity, supposeH̃(k)51 is in the above frequency range, an
then the PSF can be expressed by

Fb
PSF~R!5

kHc
3

2p2

j 1~kHcR!

kHcR
2

kLc
3

2p2

j 1~kLcR!

kLcR
, ~56!

wherekLc52p f Lc /c andkHc52p f Hc /c.
05660
w
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For example, a system is withf 053 MHz, and f Lc

52 MHz and f Hc54 MHz. The corresponding PSF is plo
ted as the dotted line in Fig. 2~c!. As shown in Fig. 2~c!, the
FWHM of the PSF with a bandwidth of~2 MHz, 4 MHz! is
slightly narrower than the FWHM of the PSF with a wid
bandwidth of~0, 4 MHz! @solid line in Fig. 2~c!#. In other
words, due to the absence of a low frequency component
high frequency component will cause the FWHM to be n
rower. The minimum value of the FWHM can be estimat
in the PSF with a single frequencyf c and zero bandwidth.
The PSF in this case is nothing but the integral kernel in
~49!: the zero-order spherical Bessel functionj 0(kcR). Such
an example, withf c54 MHz, is plotted as the dash-dot lin
in Fig. 2~c!. Since j 0(1.895)'0.5, the minimumWFWHM

'0.6lc , wherelc is the wavelength at the cutoff frequenc
f c . But, as shown in Fig. 2~c!, a PSF that lacks a low fre
quency component does not concentrate in the center b
anymore, and the side beams of the PSF slowly attenua
the position gets farther away from the point source, ther
introducing significant artifacts in the investigation of larg
objects.
5-7
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In conclusion, the obtainable spatial resolution appro
mates to a value between 0.6lc and 0.8lc , wherelc is the
wavelength at the high cutoff frequencyf c . If the bandwidth
is too narrow, the reconstruction based on the wide ba
width measurement becomes inappropriate and the FW
of the reconstructed PSF does not properly describe the
spatial resolution.

IV. EFFECT OF DETECTOR APERTURE

Next, let us derive the analytic expressions of the PS
related to detector aperture size. As shown in Fig. 3, the
signal detected at positionr0 can be expressed as a surfa
integral over the detector aperture

p̃8~r0 ,k!5E E p̃~r08 ,k!W~r08!d2r08 , ~57!

whereW(r08) is a weighting factor, which represents the co
tribution from different elements of the detector surface
the total signal of the detector.

Sincer085r01r 8, Eq. ~57! can be rewritten as

p̃8~r0 ,k!5E E p̃~r01r 8,k!W~r 8!d2r 8. ~58!

One can assume a point source atra and then get the
detected signal at positionr0 using Eq.~57! or ~58!. If the
signal is not bandlimited, by substitutingp̃8(r0 ,k) for
p(r0 ,k) in the rigorous reconstruction formulas such as E
~8!–~10!, one can get analytic expressions of the PSF’s
the spherical, planar, and cylindrical geometries, resp
tively. In general, the analytic expressions cannot be th
oughly simplified for arbitrary detector apertures. In order
explicitly demonstrate the effects of the detector apertures
spatial resolution, we will make some assumptions about
detector apertures.

A. Spherical geometry

As shown in Fig. 4~a!, r0 represents the center of detect
o8 in the global spherical coordinates (r ,u,w) with the origin
at the recording geometry centero. A local spherical coordi-
nate system aligned withr0 is used as well. Assume that th
detector is circularly symmetric about its centero8; in this
case, the weighting factor depends only onu8, W(r 8)

FIG. 3. Diagram of the detector surfacer 8 with origin o8. The
vector r0 represents the center of detectoro8 in the recording ge-
ometry with origin o. The vectorr08 points to an element of the
detector aperture.
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5W(u8), where the angleu8 betweenr08 and r0—the polar
angle ofr08 in the local coordinate system—varies from 0
U depending on the size of the detector. The azimuthal an
w8 of r08 in the local coordinate system varies from 0 to 2p.
The normal of the detector surface at pointo8 is assumed to
point to the center of the recording geometryo. The surface
integral in Eq.~58! can be transformed into an integral ov
a curve radiating from the centero8 on the surfacel 8 and the
azimuthal anglew8:

p̃8~r0 ,k!5E E p̃~r01r 8,k!W~u8!r 8A12~n0•n8!2dw8dl8

5E
l 8

W~u8!A12~n0•n8!2r 8dl8

3E
0

2p

p̃~r01r 8,k!dw8, ~59!

wheren85r 8/r 8 and

FIG. 4. ~a! Diagram of the spherical recording geometry:u8 is
the angle betweenr0 and r08 ; dl8 is an integral element on the
detector surface;Q is the angle of the radius of the detector apertu
to the recording geometry origino; the extension of the PSF at poin
A is indicated; other denotations of the symbols are the same a
Figs. 1 and 3.~b! Perspective view of the lateral extension of th
PSF’s of all the point sources along a radial axis in the spher
recording geometry.
5-8
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ANALYTIC EXPLANATION OF SPATIAL RESOLUTION . . . PHYSICAL REVIEW E67, 056605 ~2003!
p̃~r01r 8,k!52 ikc2h
exp~ ikura2r02r 8u!

4pura2r02r 8u
. ~60!

Considering the expansion in the local spherical coordina
and denotingn085r08/r 08 , n085(u8,w8), and na5(ua8 ,wa8),
one obtains

exp~ ikura2r08u!
4pura2r08u

5
ik

4p (
l 50

`

~2l 11! j l~kra!

3hl
~1!~kr08!Pl~na•n08!, ~61!

wherePl(na•n08) can be expanded as@14#

Pl~na•n08!5Pl~cosua8!Pl~cosu8!

12 (
m51

l
~ l 2m!!

~ l 1m!!
Pl

m~cosua8!Pl
m~cosu8!

3cos@m~wa82w8!#. ~62!

Then, one can evaluate the following integral:

E
0

2p

Pl~na•n08!dw852pPl~cosu8!Pl~cosua8!. ~63!

Actually, ua8 is the angle betweenr0 and ra , i.e., cosua8
5na•n0 .

Combining the results of Eqs.~61!–~63!, Eq. ~59! can be
rewritten as

p̃8~r0 ,k!5
k2c2h

2 E
l 8

W~u8!A12~n0•n8!2r 8dl8

3(
l 50

`

~2l 11!Pl~cosu8!Pl~na•n0! j l~kra!

3hl
~1!~kr08!. ~64!

By replacingp(r0 ,k) with p̃8(r0 ,k) in the reconstruction
formula Eq.~8! and considering identity~14!, one obtains the
reconstruction forA(r ):

Aa~r !5
1

p E
l 8

W~u8!A12~n0•n8!2r 8dl8

3 (
m50

`

~2m11!Pm~na•n!Pm~cosu8!

3E
0

1`

j m~kra! j m~kr !
hm

~1!~kr08!

hm
~1!~kr0!

k2dk. ~65!

Letting ũ and w̃ be the polar and azimuthal angles
vector n with respect to vectorna , and using an identity
similar to the one shown in Eq.~63!, one can rewrite Eq.~65!
as
05660
s,

Aa~r !5E E W~u8!r 8A12~n0•n8!2dw8dl8

3
1

2p2 (
m50

`

~2m11!Pm~cosg̃ !

3E
0

1`

j m~kra! j m~kr !
hm

~1!~kr08!

hm
~1!~kr0!

k2dk, ~66!

where cosg̃5cosũ cosu81sinũ sinu8 cos(w̃2w8).

1. Special spherical aperture

For simplicity, assume that the detector is a small sect
of the spherical measurement surface, i.e.,r 085ur08u5ur0

1r 8u5ur0u5r 0 . Therefore, one obtains

A12~n0•n8!2r 8dl85r 0
2 sinu8du8, ~67!

and

hm
~1!~kr08!/hm

~1!~kr0!51. ~68!

Substituting the identity Eq.~18! and the following identity
~see the Appendix! into Eq. ~65!,

(
m50

`

~2m11!Pm~na•n!Pm~cosu8!52d~cosu82na•n!,

~69!

one obtains

Aa~r !5
r 0

2

r 2 d~r 2r a!E
0

Q

sinu8W~u8!du8 d~cosu82na•n!.

~70!

Letting g be the angle betweenna andn, i.e., na•n5cosg,

Aa~r !5
r 0

2

r 2 d~r 2r a!E
0

Q

sinu8W~u8!du8 d~cosu82cosg!

5
r 0

2

r 2 d~r 2r a!E
0

Q

sinu8W~u8!du8
d~u82g!

sinu8

5
r 0

2

r 2 d~r 2r a!E
0

Q

W~u8!d~u82g!du8

5
r 0

2

r 2 d~r 2r a!W~g!. ~71!

If letting W(u8)51,

Aa~r !5
r 0

2

r 2 d~r 2r a!@U~g!2U~g2Q!#, ~72!

where U is the step function,U(x)51 when x.0 and
U(x)50 whenx,0.

Equation~72! indicates that, in this special case, the P
only extends along the lateral direction, which is prop
tional to the solid angle of the detector aperture to the ori
5-9
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of the measurement geometry. The perspective view of
lateral extension of all the points in a radial axis looks like
cone as shown in Fig. 4~b!. The farther the point source i
away from the origin, the more extension the PSF h
Therefore, the lateral resolution is worse when the poin
close to the detector. But, a lateral resolution superior to
aperture size can still be achieved if the object under stud
close to the center of the geometry.

2. Small flat aperture

Now, let us consider flat apertures. Sometimes, a se
small flat detectors is used to form a spherical record
surface. Suppose the detector aperture is disklike and its
dius isP. Sincen0•n850 in this case,

A12~n0•n8!2r 8dl85r 8dr8, ~73!

where r 85r 0 tanu8. If the aperture is small relative to th
radius of the detection surface, i.e.,r 8<P!r 0 , the follow-
ing approximation holds:

r 082r 05Ar 0
21r 822r 0'

r 82

2r 0
. ~74!

Neglecting the second-order and higher small quantities,
can approximatehm

(1)(kr08)/hm
(1)(kr0)'1. Then, one can fol-

low the derivation for the special spherical aperture and
tain

Aa~r !5
1

r 2 d~r 2r a!E
0

P

W~r 8!r 8dr8 d~cosu82na•n!.

~75!

Letting W(r 8)51 and approximatingr 85r 0 tanu8'r0 u8 for
the small-aperture case, one reaches

Aa~r !'
r 0

2

r 2 d~r 2r a!E
0

P/r 0
u8

d~u82g!

sinu8
du8

5
r 0

2

r 2 d~r 2r a!E
0

P/r 0
d~u82g!du8

5
r 0

2

r 2 d~r 2r a!@U~g!2U~g2P/r 0!#. ~76!

Equation~76! indicates that, for the small flat aperture, t
extension of the PSF is primarily along the lateral axis.
fact, if we substituteQ for P/r 0 , Eq. ~76! becomes identica
to Eq. ~72! for the special spherical aperture.

Particularly, at the center of the recording geometry, i
r a50, we have j m(0)5dm0 , P0(•)51, and h0

(1)(kr)5
2 i exp(ikr)/(kr). AssumingW(r 8)51, Eq. ~65! reduces to

Aa~r !5
1

p E
0

1`

j 0~kr !exp~2 ikr 0!k2dk

3E
0

P r 0

r 08
r 8dr8 exp~ ikr 08!. ~77!
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Using the relationr 085Ar 0
21r 82, one can simplify Eq.~77!

to

Aa~r !5
1

p E
0

1`

j 0~kr !k2dk
r 0@exp~ ikAP21r 0

22 ikr 0!21#

ik
.

~78!

BecauseP!r 0 , the imaginary part is much less than the re
part and hence can be neglected; as a result, one can o

Aa~r !'
r 0

p E
0

1`

j 0~kr !sin@k~AP21r 0
22r 0!#k dk. ~79!

Using the following identity@14#:

E
0

1`

j 0~ka!sin~kb!k dk5bE
0

1`

j 0~ka! j 0~kb!k2dk

5
p

2b
d~b2a!, ~80!

in the small-aperture case, i.e.,P!r 0 , Eq. ~79! reduces to

Aa~r !5
r 0

2

P2 dS r 2
P2

2r 0
D . ~81!

Equation~79! indicates that the point source at the cen
becomes a circle with a diameterP2/r 0 .

Next, we want to estimate the lateral extension at an
bitrary point. Taking the asymptotic form of the Hankel fun
tion to approximate

hm
~1!~kr08!

hm
~1!~kr0!

'
exp~ ikr 08!/~kr08!

exp~ ikr 0!/~kr0!
5

r 0

r 08
exp~ ikr 082 ikr 0!,

~82!

one can rewrite Eq.~65! as

Aa~r !5
1

p E
0

P

W~r 8!r 8dr8E
0

1` r 0

r 08
exp~ ikr 082 ikr 0!k2dk

3 (
m50

`

~2m11!Pm~na•n!

3Pm~cosu8! j m~kra! j m~kr !. ~83!

The above integral is still complicated. Here, we consid
only the spread alongra with the assumption ofW(r 8)
51. SubstitutingPm(na•n)5Pm(1)51 into Eq. ~83! and
considering identity ~16!, and further approximating
j 0(kAr a

21r 222r ar cosu8)'j0(kur2rau) for the small-
aperture case (r 8!r 0 , i.e., u8!1), one obtains

Aa~rna!5
1

p E
0

1`

j 0~kur 2r au!exp~2 ikr 0!k2dk

3E
0

P r 0

r 08
r 8dr8 exp~ ikr 08!. ~84!
5-10
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If we substituteur 2r au for r, Eq. ~84! becomes identical to
Eq. ~77!. Thus, in the small-aperture case (P!r 0), Eq. ~84!
reduces to Eq.~81! with the replacement ofr by ur 2r au:

Aa~rna!'
r 0

2

P2 dS ur 2r au2
P2

2r 0
D . ~85!

Equation~85! indicates that the point source at whichra
extends in the radial direction to a region with diame
P2/r 0 is the same as the extension of the PSF at the rec
ing geometry center as shown in Eq.~81!. But, in most cases
this extension is negligible. For example, when using a tra
ducer with even a 6 mmdiameter to image a 10-cm-siz
breast on a recording geometry surface with a 15 cm di
eter, P2/r 0532/15050.06 mm. However, the lateral exten
sion atr is on the order of 2rP/r 0 as shown in Eq.~76!. For
example, even at r 51 cm, 2rP/r 05(2)(10)(3)/150
50.4 mm.0.06 mm.

B. Planar geometry

In this case, we reasonably assume that the detector
face is flat. As shown in Fig. 5~a!, r0 represents the center o
the detectoro8 in the global Cartesian coordinates~x,y,z!
with the origin at the recording geometry centero. Let x8,

FIG. 5. ~a! Diagram of the planar recording geometry:P is the
radius of the detector aperture; the extension of the PSF at poA
is indicated; other denotations of the symbols are the same a
Figs. 1 and 3;~b! perspective view of the lateral extension of th
PSF’s of all the point sources along a line parallel to thez axis in
the planar recording geometry.
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y8, andz8 be the differences of the coordinates betweenr08
and r0 , respectively. For the following two linear transla
tions:

r0→r08 : x0→x01x85x08 , y0→y01y85y08 , ~86!

ra→ra8 : xa→xa2x85xa8 , ya→ya2y85ya8 , ~87!

there exist the following translational invariances,ura2r08u
5ura82r0u.

The detected signal atr0 can be written as

p̃8~r0 ,k!5E E W~r 8!p̃~r01r 8,k!d2r 8

5E E W~x8,y8! p̃~x01x8,y01y8,k!dx8dy8.

~88!

Using p̃8(r0 ,k) to replacep(r0 ,k) in the reconstruction
formula Eq.~9!, and following the similar derivation shown
in Sec. III B, one gets the reconstruction forA(r ) as

Aa~x,y,z!5E E W~x8,y8!d~x2xa8!d~y2ya8!

3d~z2za!dx8dy8

5E E W~x8,y8!d~x2xa1x8!d~y2ya1y8!

3d~z2za!dx8dy8, ~89!

i.e.,

Aa~x,y,z!5W~x2xa ,y2ya!d~z2za!. ~90!

Assuming that the detector surface is a disk with radiusP,
andW(x8,y8)51 whenAx821y82,P, Eq. ~90! reduces to

Aa~x,y,z!5U~P2D !d~Dz!, ~91!

whereD5A(Dx)21(Dy)2, andDx5x2xa , etc.
Equation~91! indicates that without considering the ban

width, the PSF does not extend along the axial direction,
it greatly extends in the lateral direction. Moreover, the l
eral extension is proportional to the detector aperture. T
perspective view of the lateral extension of all the PSF’s i
line parallel with thez axis looks like a cylinder as shown i
Fig. 5~b!. Therefore, the lateral resolution is totally blurre
by the detector aperture, no matter where the point is.

C. Cylindrical geometry

1. Special cylinder aperture

We first assume that the detector surface is a section o
cylindrical measurement surface. As shown in Fig. 6~a!, r0
represents the center of the detectoro8 in the global cylin-
drical coordinates (r,w,z) with the origin at the recording
geometry centero. Let w8 be the difference between th
polar angles ofr0 andr08 , andr8 andz8 be the projections of

in
5-11
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r 8 in the x-y plane and thez axis, respectively. Two sides o
the detector are along thez axis from2Z to Z, and the other
two sides are parallel with thex-y plane and the polar angl
w8 varies from2F to F. For the following two translations

r0→r08 : w0→w01w85w08 , z0→z01z85z08 , ~92!

ra→ra8 : wa→wa2w85wa8 , za→za2z85za8 , ~93!

there exist the following translational invariances,ura2r08u
5ura82r0u.

The detected signal can be written as

p̃a~r0 ,k!5E E p̃~r01r 8,k!W~r 8!d2r 8

5E E p̃~w01w8,z01z8,k!W~w8,z8!r0dw8dz8.

~94!

FIG. 6. ~a! Diagram of the cylindrical geometry:w8 is the dif-
ference between the polar angles ofr0 and r08 ; r8 and z8 are the
projections ofr 8 in the x-y plane and thez axis, respectively;Z is
the half width of the detector aperture along thez axis andF is the
half angle of the width of the detector aperture parallel to thex-y
plane to the center of the recording geometry; the extension of
PSF at pointA is indicated; other denotations of the symbols are
same as in Figs. 1 and 3.~b! Perspective view of the lateral exten
sion of the PSF’s of all the point sources along a radial axis in
cylindrical recording geometry.
05660
Replacingp(r0 ,k) by p̃8(r0 ,k) in the reconstruction for-
mula Eq.~10!, and following the derivation shown in Sec
III C, one can get the reconstruction forA(r ) as

Aa~r,w,z!5E E 1

r
d~r2ra!d~w2wa8!

3d~z2za8!W~w8,z8!r0dw8dz8

5
r0

r
d~r2ra!E E d~w2wa1w8!

3d~z2za1z8!W~w8,z8!dw8dz8, ~95!

i.e.,

Aa~r,w,z!5
r0

r
d~r2ra!W~w2wa ,z2za!. ~96!

If W(w8,z8)51, w8 from 2F to F, andz8 from 2Z to Z,
Eq. ~96! can be rewritten as

Aa~r,w,z!5
r0

r
d~r2ra!U~F2uw2wau!U~Z2uz2zau!.

~97!

Equation~97! indicates that the extension of the PSF
the cylindrical geometry combines the properties of t
PSF’s in the spherical and planar geometries. In this spe
case, the PSF does not extend along the radial direction.
perspective view of the lateral extension of all the po
sources in a radial axis looks like a wedge of pie as show
Fig. 6~b!. In the z-axis direction, the PSF extension is pr
portional to the detector size along thez axis, just like the
planar geometry. While parallel with thex-y plane, the lateral
extension is proportional to the angle of the detector width
the z axis, just like in the spherical case. Therefore, a late
resolution that is better than the aperture size can be obta
parallel to thex-y plane if the object under study is close
the center of the geometry; however, the lateral resolut
along thez axis is determined by the detector size.

2. Small rectangle aperture

Sometimes a set of small rectangle detectors is use
form a cylindrical array. The normal of the detector at t
center pointo8 is assumed to point to the center of the r
cording geometry. Two sides of the detector are along thz
axis from2Z to Z, and the other two sides are parallel wi
the x-y plane and have a length of 2P. One can follow the
similar derivation in Sec. III C, and get the reconstruction
A(r ) as

e
e

e
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Aa~r,w,z!5
1

2p E
2Z

Z

d~za2z2z8!dz8E
2P

P

dr8 W~w8,z8!

3 (
m52`

1`

exp@ im~wa2w2w8!#

3E
0

1`

m dm

3Jm~mra!Jm~mr!
Hm

~1!~mAr0
21r82!

Hm
~1!~mr0!

, ~98!

wherer85r0 tanw8. Let W(w8,z8)51.
For the small-aperture case,r8!r0 , one can approximate

Hm
~1!~mAr0

21r82!

Hm
~1!~mr0!

'1. ~99!

Further, taking the small-aperture approximationr8
5r0 tanw8.r0w8, and considering the following identity
@14#:

E
0

1`

m dm Jm~mra!Jm~mr!5
1

r
d~r2ra!, ~100!

one can rewrite Eq.~98! as

Aa~r,w,z!5U~Z2uz2zau!
1

r
d~r2ra!

3E
2P/r0

P/r0
r0dw8 d~wa2w2w8!, ~101!

i.e.,

Aa~r,w,z!5
r0

r
d~r2ra!US P

r0
2uw2wau DU~Z2uz2zau!.

~102!

Equation~102! indicates that, for the small flat aperture, t
extension of the PSF is primarily along the lateral axis.
fact, if we substituteF for P/r0 , Eq. ~102! becomes identi-
cal to Eq.~97! in the special cylinder aperture case.

Next, we want to estimate the lateral extension of the P
One can also take the asymptotic form of the Hankel fu
tion to approximate

Hm
~1!~mAr0

21r82!

Hm
~1!~mr0!

'exp@ im~Ar0
21r822r0!#, ~103!

and then rewrite Eq.~98! as
05660
F.
-

Aa~r,w,z!5
1

2p
U~Z2uz2zau!E

0

1`

m dm

3E
2P

P

dr8 exp@ im~Ar0
21r822r0!#

3 (
m52`

1`

Jm~mra!Jm~mr!

3exp@ im~wa2w2w8!#. ~104!

Considering identity~35!, Eq. ~104! can be rewritten as

Aa~r,w,z!5
1

2p
U~Z2uz2zau!E

0

1`

m dm

3E
2P

P

dr8 exp@ im~Ar0
21r822r0!#

3J0„mAra
21r222rar cos~wa2w2w8!….

~105!

Equation~105! is still complicated. Here, by only consid
ering the points alongra , i.e., lettingw5wa , and then tak-
ing the small-aperture approximation (w8!1),

J0„uAra
21r222rar cos~wa2w2w8!…'J0~mur2rau!,

~106!

and

Ar0
21r822r0'

r82

2r0
, ~107!

one can rewrite Eq.~105! as

Aa~r,wa ,z!5U~Z2uz2zau!E
2P

P

dr8E
0

1`

m dm

3J0~mur2rau!exp~ imr82/2r0!. ~108!

Becauser8!r0 , the imaginary part is much less than th
real part and hence can be neglected,

Aa~r,wa ,z!5U~Z2uz2zau!E
2P

P

dr8E
0

1`

m dm

3J0~mur2rau!cos~mr82/2r0!

5U~Z2uz2zau!E
2P

P

dr8S r0

r8D ]

]r8

3E
0

1`

dm J0~mur2rau!sin~mr82/2r0!.

~109!

Using the following identity@15#:
5-13
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FIG. 7. An example of the PSF due to the detector aperture:~a! a gray scale view and~b! a lateral profile through the point source.
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f

E
0

1`

dt J0~ ta!sin~ tb!5H 1

Ab22a2
, 0,a,b

0 otherwise,
~110!

one can get the integral in Eq.~109!,

E
2P

P

dr8S r0

r8D ]

]r8
@A~r82/2r0!22ur2rau2#21

5S r0

r8D @A~r82/2r0!22ur2rau2#21u2P
P

2E
2P

P

@A~r82/2r0!22ur2rau2#21dS r0

r8D .

~111!

The integral of Eq.~111! only exists in the rangeP2/2r0
.ur2rau. Therefore, the PSF extends to a region with
diameterP2/r0 , which is negligible compared to the later
extension as we discussed in the spherical geometry ex
nation.

So far, we have derived the analytic PSF’s due to
detector apertures for the specific spherical, planar, and
lindrical recording geometries. The explicit expressions c
be given when the detector surfaces are assumed to hav
same geometric properties as the recording geometries.
erwise, it appears that explicitly carrying out the analy
derivations is impossible. But, in reality, the detector ap
ture is very small compared to the recording surface.
have also estimated axial extension in this case and fo
that it was negligible compared to lateral extension.

V. DISCUSSION AND CONCLUSIONS

In Sec. III, we proved that the PSF as a function of ba
width is space invariant. In Sec. IV, we demonstrated that
finite aperture of the detector extends the PSF for differ
recording geometries.
05660
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Finally, we attempt to analyze the combined effects
bandwidth and detector size together. Assume that the
tected signal is bandlimited, characterized byH̃(k) with a
cutoff frequencykc , and the detectors have the same geo
etries as the recording surfaces. One can then follow
derivations in Secs. III and IV and reach the following r
sults.

~1! Spherical geometry:

Aba~r !5E E W~u8!Fb
PSF~R8!r 0

2 sinu8du8dw8,

~112!

where R85Ar 21r a
222rr a cosg̃, cosg̃5cosũ cosu8

1sinũ sinu8 cos(w̃2w8), and ũ and w̃ are the polar and azi
muthal angles of vectorn with respect to vectorna , respec-
tively.

~2! Planar geometry:

Aba~x,y,z!5E E W~x8,y8!Fb
PSF~R8!dx8dy8, ~113!

whereR85A(x2xa1x8)21(y2ya1y8)21(z2za)2.
~3! Cylindrical geometry:

Aba~r,w,z!5E E W~w8,z8!Fb
PSF~R8!r0dw8dz8,

~114!

whereR85Ar21ra
222rra cos(w2wa1w8)1(z2za1z8)2.

Equations~112!–~114! clearly reveal that the PSF can b
regarded as a convolution of the detector aperture with
space invariantFb

PSF. However, in the spherical geometr
case, the convolution becomes complicated as shown in
~112!. Further, we can imagine how complicated the conv
lution could be with an arbitrary recording geometry usi
arbitrary-aperture detectors.

Let us take the PSF in the planar geometry case as
example, which is shown in Fig. 7. The detector aperture
assumed to be a disk with a radius of 1 mm and a cu
frequencyf c54 MHz. In the axial direction, the extension o
the PSF is similar to that shown in Fig. 2~b!, which is deter-
5-14
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mined by the bandwidth. However, as shown Fig. 7~b!, the
PSF greatly expands in the lateral direction, and its co
spondingWFWHM'2 mm, which is physically limited by the
detector size.

In conclusion, spatial resolution as a function of ban
width is space invariant for any recording geometry when
reconstruction is linear and exact. The bandwidth limits
obtainable spatial resolution. The detector aperture blurs
eral resolution greatly at different levels for different recor
ing geometries but the effect on axial resolution is slight. T
results offer clear instruction for designing appropriate th
moacoustic imaging systems with predefined spatial res
tions.
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APPENDIX

The completeness relation of the spherical harmon
Ylm(u,w) @14,16# is

(
l 50

`

(
m521

l

Ylm* ~u8,w8!Ylm~u,w!

5d~w2w8!d~cosu2cosu8!, ~A1!
er

.

. P

.

J

.

05660
-

-
e
e
t-

-
e
r-
u-

.
t
i-
as

s

where

Ylm~u,w!5A2l 11

4p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!exp~ imw!.

~A2!

Then, do an integral overw from 0 to 2p of both sides of
Eq. ~A1!,

(
l 50

`

(
m52 l

l
2l 11

4p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!Pl
m~cosu8!

3E
0

2p

exp@ im~w2w8!#dw

5(
l 50

`

(
m52 l

l
2l 11

4p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!Pl
m~cosu8!2pdm0

5(
l 50

`
2l 11

4p
Pl~cosu!Pl~cosu8!2p

5d~cosu2cosu8!E
0

2p

d~w2w8!dw5d~cosu2cosu8!,

~A3!

i.e.,

(
l 50

`

~2l 11!Pl~cosu!Pl~cosu8!52d~cosu2cosu8!.

~A4!
g

.
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