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Abstract—In this paper, we present time-domain reconstruction used to inversely compute the distribution of the initial acoustic

algorithms for the thermoacoustic imaging of biological tissues. pressure or electromagnetic absorption, which is related to the
The algorithm for a spherical measurement configuration has re- properties of the tissue

cently been reported in another paper. Here, we extend the recon- A .

struction algorithms to planar and cylindrical measurement con- In fact, electromagnetic T'elds in the RF range. of 300 t(_) 300_0
figurations. First, we generalize the rigorous reconstruction for- MHz are the most useful in the study of soft tissues sized in
mulas by employing Green’s function technique. Then, in order centimeters. The RF penetration depth at this frequency range
to detect small (compared with the measurement geometry) but varies depending on the tissue properties and the RF frequency
deeply buried objects, we can simplify the formulas when two prac- [3], [13], [14]. For example, the penetration depths for muscle
tical conditions exist: 1) that the high-frequency components of the ’ ' : ' )

thermoacoustic signals contribute more to the spatial resolution andfatareabout1.2and9cm "’.‘t3 GHz, rESpeCt'VeW{and about4
than the low-frequency ones, and 2) that the detecting distances and 30 cm at 300 MHz, respectively; most other soft tissues have
between the thermoacoustic sources and the detecting transducerspenetration depths that fall between these values. In addition, in
are much greater than the wavelengths of the high-frequency ther- this frequency range, there is very little scattering by the tissues
moacoustic signals (i.e., those that are useful forimaging). The sim- [13].

plified formulas are computed with temporal back projections and | tvpical licati fth tic | . ino RE
coherent summations over spherical surfaces using certain spa- n a typical appiication ot thermoacouslic Imaging using kr,

tial weighting factors. We refer to these reconstruction formulas & Short-pulsed RF field illuminates the tissue. The most inves-
as modified back projections. Numerical results are given to illus- tigated and documented effect of RF power on biological tis-

trate the validity of these algorithms. sues is the transformation of energy entering the tissues into
Index TermS_A|gorithm’ geometry’ imaging, photoac()us'[ics7 increased kinetic energy in the absorbing molecules, thereby
reconstruction, thermoacoustics, time-domain, tomography. producing a general heating in the medium [13]. The heating

results from both ionic conduction and vibration of the dipole
molecules of water and proteins [13]. The energy absorbed by
the tissue produces a temperature rise that is dependent on the
ECENT research has suggested that thermoacousiimling mechanism of tissue [13]. Human exposure to RF power
tomography using either pulsed radio-frequency (Ripust be limited for safety reasons, and within the mandated
[1]-[8] or pulsed laser [9]-[12] can be a powerful imagingafety limits, the temperature rise per short pulse (suchya$ 1
technology with good spatial resolution. Within this techniguén soft tissue is very small (on the order of milli-degrees) [6].
when a pulsed electromagnetic irradiation is absorbed by aNevertheless, this small temperature rise causes linear expan-
tissue, the heating and subsequent expansion of the tissue gigé of the tissue. The heating and expansion are greatest in
rise to an instantaneous acoustic stress or pressure distributi@se regions of the tissue that absorb the most RF power. There-
inside the tissue. Directly following the pulse irradiation, théore, a distribution of acoustic pressure or stress inside the tissue
induced pressure distribution prompts acoustic wave propagginduced immediately during the short RF-pulse irradiation pe-
tion toward the surface of the tissue with various time delaysod due to heterogeneities of the RF energy deposition and the
Ultrasound detectors are placed around the tissue to record @réineisen parameter inside the inhomogeneous tissue. Thermal
outgoing acoustic waves. These detected acoustic waves caejgansion due to energy deposition is commonly referred to as
the thermoelastic effedtl5]. The generated acoustic pressure
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referred to aghermoacoustic or photoacoustic signalhese agation is about 3 dB, and the corresponding amplitude atten-
thermoacoustic signals carry information about the RF absormates approximately to 70% of the initial value. Such attenua-
tion or initiated stress as well as about the acoustic propertiegioh is still acceptable, although the spatial resolution will be
the tissue. Since the RF absorption or initiated stress is diredblyrred at a certain level due to the loss of the high-frequency
related to certain tissue properties (i.e., ionic conductivity arsignal. For simplicity, the acoustic attenuation is neglected here.
water components, etc.), the key problem is how to reconstrirure acoustic property differentiation should appeal to conven-
the distribution of the RF absorption or initiated stress from th@nal ultrasound imaging [16]. The unique advantage of ther-
measured thermoacoustic signals around the tissue surfacemoacoustic imaging is its ability to detect the inhomogeneous
The short duration of the RF pulse allows one to restrict tHeF absorption property of tissues when the acoustic property is
RF energy deposition within the absorbing volume and mintomogeneous. An obvious application is the detection of breast
mize the thermal diffusion effect on the thermoacoustic wavesancer tumors. People have observed that tumors in the breast
In thermoacoustic imaging, the RF pulse duratig,is typ- have a stronger rate of RF absorption than the surrounding tis-
ically shorter than the thermal transport time of absorbed Rles; by contrast, the ultrasonic contrast in soft tissues is quite
energy in thermal conductiory,, the condition that is com- low [8].
monly referred to ashermal confinementL7]. The condition In previous papers [2]-[4], the authors have presented
for thermal confinement can be expressea.as. 7, ~ lf,/a, studies on scanning thermoacoustic tomography using focused
whereq is the thermal diffusivity of the irradiated material andultrasonic transducers as in conventional pulse-echo ultrasound
I, is the RF penetration depth or the size of the absorbing strumtaging [16]. Each scan line is converted into a one-dimen-
ture. For most soft tissues, ~ 103 cm? - s~! [14]. For ex- sional (1-D) image along the axis of the focused transducer, and
ample, we are interested in the detection of small absorbersoimy a simple calculation is required to construct cross-sectional
sizes from submillimeters to centimeters inside the tissue. Weages from all of the scan lines. However, the lateral resolu-
choosel,, ~ mm to underestimate the thermal transport timéon of this approach is determined by the focal diameter of the
Ttn ~ 10 us. The RF pulse used,, is typically less than Ls, transducer as with conventional ultrasound, and the imaging
which is much less than,,. Moreover, the time required for anregion is also limited to the focal length of the transducer. To
acoustic wave to traverse the absorption déptipproximates obtain a larger imaging view, we use unfocused wide-band
to~ 1,/c ~ 0.7 us, which is also much shorter thapn,, where point transducers to record the thermoacoustic signals. In this
c is the sound speed that is around 1.5 pmih most soft tis- approach, a complicated reconstruction algorithm has to be
sues [14]. In other words, even ingks of RF pulse duration, derived for computing the images from a set of data measured
the heat transports a length gfa7, ~ 0.3 mm, while in the around the tissue under study. Different recording geometric
same amount of time, the acoustic wave propagates a distaogsfigurations result in different reconstruction formulas.
of ¢r, ~ 1.5 mm, which is far away from the thermal diffu- The puzzle of finding good reconstruction algorithms has not
sion region of 0.3 mm. Of course, thermal diffusion will slightlyyet been resolved. Some researchers have resorted to approxi-
blur the reconstructed images. But, when we try to investigatgated reconstruction algorithms, such as the Radon transformin
targets that are bigger than the thermal diffusion region, for ithe far-field approximation [7], [9], the weighted delay-and-sum
stance;> 0.3 mm, if the RF pulse duration is less than<l the method with experiential weighting factors [10], or the optimal
thermal effect on the thermoacoustic waves in soft tissue candtatistical approach [18]. To date, some rigorous reconstruction
ignored. In addition, the thermoacoustic signal excited by a Rifgorithms have been reported for idealized measurement con-
pulse with finite width can be regarded as a convolution witfigurations, such as for the fully enclosing spherical recording
the RF pulse profile and the thermoacoustic signal excited byarface [5], the planar recording surface of an infinite extent
6(t) RF irradiation. For theoretical analysis, the short pulse c§i®9], [20] and the cylindrical recording surface of an infinite
be regarded as a delta function. length [21]. However, in practical applications, the recording
In general, thermoacoustic imaging can be used for the invasifaces are generally finite and partially enclosing.
tigation of soft tissues with inhomogeneous RF absorption butin this paper, we will first discuss the inverse problem of ther-
relatively homogeneous acoustic properties including the spewadacoustic imaging. Then, by employing the Green'’s function
of sound and low acoustic attenuation. For practical purposés;hnique, we will generalize the rigorous reconstruction for-
speed dispersion can be neglected in soft tissues; typically, thelas for three types of recording surfaces: a planar, a spherical,
speed increases by about 0.0MAlz ! [16]. In most soft tis- and a cylindrical surface, which enclose the sample under studly.
sues, the speed of sound is relatively constant &t5 mm/us  In order to detect small but relatively deeply buried targets, we
with a small variation about 5% [14], [16]. Acoustic attenuawill introduce the following two conditions (details given in
tion in soft tissues is primarily due to the spectra of the relagection Il): the high-frequency components of thermoacoustic
ation processes, which account for the nearly linear frequergignals contribute more to spatial resolution than the low-fre-
dependence [16]. The total acoustic attenuation in soft tissupgency ones, and the detecting distances between the thermoa-
results from combined losses due to absorption and scatter@ogistic sources and the detecting transducers are much larger
[14], [16]. Inthe low megahertz range, acoustic scattering in saftan the wavelengths of the high-frequency thermoacoustic sig-
tissues accounts for only about 10% of the total acoustic atterals that are useful for imaging. Taking these conditions into
uation [14]. A mean value of the acoustic energy attenuationatcount, we will simplify the rigorous formulas and present
soft tissue is equal ©.6 dB-cm~"-MHz "' [16]. Typically, the time-domain reconstruction algorithms, which can be computed
total energy attenuation for a 1-MHz signal after a 5-cm projpy temporal back projections and coherent summations over
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spherical surfaces with certain spatial weighting factors. Finalby,here@k(r, ro) isthe Green'’s function of the nonhomogeneous
numerical experiments will be conducted to demonstrate the uation
lidity of these formulas. B
(V2 + k3G (r,r9) = —6(r — 10). (8)
II. INVERSE PROBLEM

As discussed in Section |, in typical thermoacoustic measurlg_general, Green’s function in three dimensions can be written

ments, the RF pulse duration is so short that the thermal condaé-[zz]

tion time is far greater than the thermoacoustic transit time and _

the effect of thermal diffusion on the thermoacoustic wave in the Gr(r,ro) =
tissue can be ignored. We focus on small-amplitude thermoa-

coustic propagation using safe levels of RF irradiation. Thus, tR@y, the inverse problem is to reconstruct the absorption dis-
inverse problem that we want to solve is a linear acoustic-wayghytion A(r) from a set of data(ro, t) or p(ro, k) measured
equation. at positionry. Equation (7) shows a linear mapping connecting

The pressure(r, ?) at positionr and timet in an acousti-  4(r) andp(r,, k). The solution ofA(r) can be expected in a
cally homogeneous medium in response to a heat S@lifee!)  similar form—a linear integral

obeys the following equation [5], [23]:

exp (ik|r — ro)) ©)

4r|r — 1|

1 92 ‘ A(r) = [ [ dSo [ dkp(ro, k) Ky (ro, 10
V(e ) - g omple )=~ T Q) @ = [[ds [ ateoDFstzor) a0

02 8t2 So k
Wh_ereC’p is the specific heatH(r./t)_is the heating function wheredS, = d’ro, So is the total recording surface, and the
defined as the thermal energy deposited by the energy SOUrCeiR&iqral kernel, (ro, ) needs to be determined. As shown in
time and volumegj is the isobaric volume expansion coefficientgection |11, the integral kernel is complicated. But under most

andc is the speed of sound. The heating function can be writt@n, -fical conditions, as discussed below, it can be simplified to
as the product of a spatial absorption function and a tempo&afinear relation with the Green’s function.

illumination function of the RF source The greatest challenge is to detect small (compared with mea-

surement geometry) but deeply buried targets inside the tissue.
Let us check the property of the frequency spectrum of acoustic

As discussed in Section I, the short RF pulse can be regarded'a¥es generated from a small object. Assume there is a homo-

H(r,t) = A(r)I(%). @)

a Dirac delta function geneous RF absorption sphere with a siz2«oh diameter, i.e.,
the spatial absorption functiofi(r) = U(a —r), where the step
I(t) = 6(¢). (3) functionU(€) =1,¢ > 0andU (&) =0,¢ < 0. With aé(t) RF

o . . ) illumination, the radiated acoustic wave from this sphere can
Substituting (2) and (3) into (1) and taking the Fourier transforge expressed agr,t) = nctU(a — |r — ct|)(r — ct)/(2r)
on variablel = ct of (1), one gets [23]. Applying the Fourier transform gives the frequency spec-
2, 2~ ) trum ~ j;(ka), whereji(ka) is the spherical Bessel function
(V=4 B)p(r, k) = ikcnA(r) “) of the first kind. The main beam of the above spectrum is in a
wheren = 3/C,, and the following Fourier transform pair ex-belly shape with maximum amplitude at _the cgntral f_requency
ists: fe = 0.7¢/(2a). For example, for an object with a size of 1

. mm, f. = 0.7 x 1.5 (mm/ps)/(1 mm) =~ 1 MHz. Below

B 100 KHz, the spectrum amplitude is less than 0.1 of the max-
p(r. k) = / p(r,t) exp(ikt)dt, (5)  imum value, and particularly at 0 Hz, the spectrum amplitude
S is zero, which can be proved using (7) lettihg= 0. In gen-
+o0 eral, the frequency spectrum of acoustic waves generated from
p(r,t) = 1 / p(r, k) exp(—ikt)dk (6) asmall object concentrates in the relatively high-frequency re-
2 ' gion. The dominating frequency or central frequeriggan be

approximated by the reciprocal of the required timéor an
where the acoustic wave number= w/c andw is the an- acoustic wave to traverse the object lengthe., f. ~ 1/7 =
gular frequency and equal for f; andp(r, k) is the frequency ¢/I. In addition, the boundaries of large objects can also be re-
spectrum of the thermoacoustic sigpét, ¢). Equation (4) is garded as small structures, which are also determined by rel-
a nonhomogeneous Helmholtz equation. Assume that the thatively high-frequency signals. In other words, only the rela-
moacoustic signals are measured on a surfacthat encloses tively high-frequency thermoacoustic signals can restore small
the sample under study, the frequency spectrum of the thermabsorbers as well as the boundaries of big absorbers.
coustic pressure measured at the positipon surfaceS, can During measurement, the transducer for ultrasonic imaging
be expressed as [22] [16] can be employed to receive thermoacoustic signals. The
_ ideal transducer for receiving ultrasound would have a wide dy-
p(ro, k) = —ikc®n / / /d3rA(r)Gk(r,r0) (7) namic range and a wide frequency response. Most commonly,
Ty transducers are operated over a band of frequencies containing
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a resonant frequency, which is determined by the physical prc
erty of the transducer [16]. A transducer with a resonant or ce
tral frequency of 1-3 MHz could be perfectly matched to mil
limeter-sized small absorbers in soft tissues. The real-time |

-
-
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calization of targets should employ transducer arrays, in whi L A(x, ¥, 2)

all of the small elements serve independent ultrasound det v

tors and simultaneously receive thermoacoustic signals at ¢ N r 7 >:irfo

ferent positions around the investigated tissue [16]. Current \ I s 0
. . . . \ / (Xb,yb, )

a linear or circular array with hundreds of small elements, i N

which each element has a size~e$ub-mm with a total length / -

SRS

of perhaps~10 cm, is available on the market or can be cus y
tomized and manufactured in a research lab [16]. In additio
the measurement geometry is relatively big compared with tl X
small targets. For example, when using a spherical measurernr
configuration with a radiugg = 5 ¢cm, even atf = 100 KHz, @)
kro &~ 20 > 1. In another example, for a target inside a tissu
with a distance to the nearest detection elemkgrt 1 cm, at A z
f = 1 MHgz, kd =~ 40 > 1 and even atf = 100 KHz,
kd =~ 4 > 1. _
Therefore, for practical applications, we introduce the fol e S \
lowing two conditions: the high-frequency components of th POt iy T A(p, ¢, 2)
thermoacoustic signals contribute more to the spatial resoluti .
than the low-frequency ones, and the detecting distances !
tween the thermoacoustic sources and the detecting transdu \
are much larger than the wavelengths of the high-frequency th RIS
moacoustic signals. Taking these conditions into account, \
will simplify the rigorous formulas and present time-domain re
construction algorithms in the following sections.

~\
N
\
\
-

2=

Y

Ill. RECONSTRUCTIONFORMULAS
A. Planar Measurement Configuration

The Cartesian coordinate systers (z,y, z) sulits this situ-
ation. As shown in Fig. 1(a), we assume that the measurem
surface is thez = 0 plane, i.e.xo = (x0,%0,0). The sample
lies above the plane, i.e4(r) = A(z,y, z) wherez > 0 and
A(r) = 0 whenz < 0. Taking Fourier transforms on both sides
of (8) on variables:, y andz, it can be shown that the Green’s
function is a triple Fourier integral [22]

+oo
~ 1
Gk(['./ro): (27)3/ / /dededKz

cexp [1Kq(z0 — ) + 1K, (yo — y) — iK.2]
K2+ K2+ K2—Fk? '

Considering the above expansion, and referencing the mat

matical techniques in Norton’s work on ultrasonic reflectivity

imaging [24], we can derive a rigorous reconstruction formul ()
in the form of (10) as (see Appendix A)

11)

(1o, 60, ®o)

oo oo Fig. 1. Diagram of the measurement: (a) planar measurement configuration,
i " _ ~ (b) cylindrical measurement configuration, and (c) spherical measurement

A(r,y,2) = // dzodyo / dkp(zo,yo, k) Ki(ro,r) (12) configuration.

—00 —00

with i) wherep = Vu2 + 2, and the sign functionsgn(k) = 1 if
- 1 / . k > 0,andsgn(k) = —-1if k£ < 0.
Ky (ro.r) = 43¢y // dudv exp [_"ZSgn(k) \ k2_p2} Under the conditiorjk||r — ro| > 1, which means that the
p=0 detecting distances between the thermoacoustic sources and the

-expliu(zo—z)+iv(yo—y)] (13) detecting transducers are much greater than the wavelengths of
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the thermoacoustic signals that are useful for imaging, (13) wheredSy = podpodzg, and

duces to (see Appendix A) Tk

~ 1
~ 2k K ,r)=——7— [ d iY(20 — 2
Ki(ro,r) ~ : - G Gl.(r, o), (14) (ro7) 2m3¢?npo / vexplin(zo = 2)]
w2 |r — ro b
wn : I Jo(p/E2 — 2)
where %" stands for the complex conjugate. . Z exp [in(po — @)] —2 p ) (19)
It can be shown that - ng = z/|r — ry|, wheren andng are e H,(f)(po k2 —~2)

unit vectors pointing along theaxis and along the line joining
r andrg, respectively. Substituting (14) into (12), we get

e

1 Adding the complex conjugate of (18) onto itself and then
// dSo - — /dk(—ik);b“(ro,k) dividing the summation by two, and further considering
7 2 . p*(ro, k) = p(ro, —k) and the approximation (20), one gets

Under the conditions introduced in Section I, i.ggk > 1,
(19) approximates to (see Appendix B)

A(r)

* ~ 12k — 2)2
B(ro, k)G (r, o) [n - ng] Ky(rg,r) =~ 10277, 1-— (;0 r7|)2 GL(r, 10). (20)
T — 1o

w2y

o eXP (—ik|r — rol)

[n - ng) (15)
|I‘—I‘0| p7<,07 //dSO / )
wheredSy = dxydyy. Recalling the inverse Fourier transform
of (6), (15) reduces to exp (—ik|r—ro|) ) (z0—2)2
4rr|r—ry| [r—rg)|2
1 1
r)=— //dS[n.n]_M R
i lrp=r

0 0
wedn | t ot _ g 1 (z0—2)2
= —_ Aoy 12020
% 2mc2n /5/ 0 |r—ro|?
0

This is a modified back projection formula of quantity

—(1/t)(9p(ro,t)/0t) with a weighting factor[n - ng]. The 1 ‘ B exp (—ik|r—rq))
required condition igk||r — ro| >> 1. o (=ik)dkp(ro, k)W'
B. Cylindrical Measurement Configuration (21)
In this case, a circular cylindrical coordinate system= |t can be shown that
(p, ¢, z) is convenient. As shown in Fig. 1(b), we assume that o — py|
the measurement surface is a circular cylindrical surface: n-ng= 10— Pol
(po, o, z0). The sample (of afinite size) lies inside the cylinder. v — ro
The Green’s function can be expressed in the cylindrical coor- [+ p§ — 2ppo cos(po — @)
dinates(k > 0) (see Appendix B for detail) - Ir — 1|2
+oo 2
~ 1 (20 — 2)
- ; _ =4/1— — 22

Gi(r,ro) = — m;oo exp [im (¢ — ¢o)] Ir —ro|? 22)

+oo wherep andp, are the projections af andr, on z plane, re-

joining p and p, and along the line joining andr,, respec-
tively. Recalling the inverse transformation (6), we can rewrite
(21) as

,t
Alp,p,2) = 27rc4 //ngn no (81? )

. / dk. exp [ik.(z — 20)] gmr(p, po, k.) (17) Spectively, anch andn, are unit vectors pointing along the line

where if2 < k2, g (p, po, k) = (i7/2).Tm (p) i (s100)
with p = VE2—k2 if k2 > F, gmi(p,po k) =
Ln(=ipp) K (—ippo) With o = in/KZ = k2. J (), H (),
I,(-) and K,,,(-) are the Bessel function of the first kind, the

_Ir—rol
t=1"rol

Hankel function of the first kind, the modified Bessel function (23)
of the first kind, and the modified Bessel function of the secont"iS 1§ @ modified back projection formula of quantity
kind, respectively. —(1/t)(9p(ro,t)/Ot) with a weighting factor[n - ng]. The

After some deduction (see Appendix B), we get the recofgduired condition ipolk| > 1 and|k|r —ro| > 1.

struction formula in the form of (10) as C. Spherical Measurement Configuration

+2o This instance has been reported in another paper [5]. As a

A(pyp,2) = // dSo / dkp(ro, k) Ky (ro, 1) (18) consequence, we only briefly review the results here for com-
) 0 pleteness.
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We use the spherical polar coordinate system (r, 0, ¢).
As shown in Fig. 1(c), we assume that the recording surface is
a spherical surface) = (7o, 6o, vo). The sample lies inside the
sphere, i.e.A(r) = A(r,0,¢) wherer < roandA(r) = 0
whenr > rq. The Green’s function can be expanded as a series
based on the spherical Bessel function of the first kjf(d),
the spherical Hankel function of the first kirfd(-), and the
Legendre polynomiaP;(-)

oo

Gr(r,10)= fl—k > @+ 1) (kr) AP (ko) Po(n - mp), (k> 0)
T =0
(24)
wheren = r/r, andng = ro/ro.
We find the rigorous reconstruction formula as (a)

-

o

arly
|

, +oo
A(r,0,¢) = / / S, / dkp(ro, k) Ky (ro,T) (25)
"5, 0

;: 084
wheredS, = 1§ sin fydfydypg, and ~:¥ ]
oo . S 0.6
-~ 1 2m + 1 Im kr = B
Ki(ro.r) = 555 Z ( 1) Vit )Pm(n~n0). S ]
2mecinry 0 hen’ (ko) g 0.4
(26) © ]
Under the conditiorkro > 1, one can approximate 2 027
= ]
~ 2k ~ - k
Ki(ro,r) ~ ——5-G(r,1o). 27) ¢ 007
wctn ]
LN BN LN BLELELLE BLELEL LN LR LA
Adding the complex conjugate of (25) onto itself and then 15 -10 5 0 5 10 15

dividing the summation by two, and further considering
p*(ro, k) = p(ro, —k) and the approximation (27), we get

1
A(T/e/(p):—m//d;s'o
So
—+oo

1

o / dkp(ro, k)(—ik)

Recalling the inverse Fourier transform (6), (28) reduces to ~ We consider uniform spherical absorbers surrounded by a
1 1 9p(ro.t) nonabsorbing background medium. For convenience, we use the
A(r,0,¢9) = — // dSo, o) . (29) centers of the absorbers to denote their positions. The uniform
J. p=Iro—rl
So €

Horizontal center line {mm)

(b)

Fig. 2. Original sample. (a) Cross-sectional image. (b) Profile along the
horizontal center line.

exp (—ik|rg —r|)

lro — 1]

(28)

2metn ot spherical absorber can be writtend@) = AU (a—|r —r,]),

Equation (29) shows that the absorption distribution Ce\l/}/]herer Is the absorption intensity, amcandr, are the radius

be calculated by means of back projection of the quanti?ndthe center of the sphere., respect!vely. As showni_n Fig. 2(a),
—(1/1)(3p(ro, £)j0t). The required condition ibk|ry > 1. a}gsume'asgmple'(:.ontalns five spherical absorbers with dlf_fer_ent
As expectéd all of the reconstruction formulas—(16) for tq%bsorptlon mtensmes_ and the cent(_ars of these sph_er(_as lie in a

' , . LN ine parallel to ther axis. For convenience, we call this line the
planar measurement configuration, (23) for the cylindrical meg . ntal center line. As shown in Fig. 2(b), from the smallest
surement configuration, and (29) for the spherical measurem?onghe biggest, the radii are05 1.2 4 -and 1’2 mm, respectively,
configuration—can be carried out in the time domain. Thegn ' S . ¥

share a similar expression, except for the weighting fajstor d the relative absorption intensities are 1, 1, 0.75, 0.5, and
P ’ P gniing 0.2, respectively. We also assume that the RF pulse duration is

no]. These formulas can be referred to as modified back-proz 'y o+ o nd can be regarded as a delta function, and, conse-
jections. Compared with (16), (23) and (29) have an additionaEgntl that the thermofcoustic sigpét, t) irradiatéd fr(;m
factor 1/2. This is because the planar measurement configu(ﬂa— Y. gpeto,

; . ; a‘uniform sphere can be calculatedipy U (a — |R — ct|)(R —

tion can cover a solid angle of up 2@ only while the other two . . N .
) : . ct)/(2R), whereR is the distance between the detection posi-

configurations can cover a fullr solid angle.

tion ro and the absorber centef(R = |ro — r,|) [23]. The

quantitydp(rg, t) /0t in the reconstruction formulas (16), (23),

and (29) can be calculated through the Fourier transform
Now we want to conduct some numerical experiments to

demonstrate the validity of the above time-domain reconstruc- ap(ro, t) '

tion formulas for thermoacoustic imaging. 5 = FFT{—iwp(ro,w)Wa(w)} (30)

IV. NUMERICAL EXPERIMENTS
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where IFFT denotes the inverse fast Fourier transfé#fa(w)
is a window function, and the Fourier transform defines

oo

o(w)= / o(t) exp(iwt)dt. (32)

As we discussed in [6], the factarin (30) actually represents

a pure ramp filter, which will significantly depress the low-fre-
guency signal. It is helpful for guaranteeing the validity of the
reconstruction (16), (23), and (29). It also indicates that the rela-
tively high-frequency component of the signals play the primary
role in the restoration of the RF absorption distribution inside
the tissue. But, the ramp filter can also amplify the high-fre-
guency noise in such a way that the reconstructed image is not
acceptable from the physical point of view. In order to avoid
this effect, it is necessary to introduce a relatively low-pass filter ()
Wa(w) characterized by a cutoff angular frequefity= 2« fq,.
A Hanning window is our choice in this case

0.540.5¢0s (1), if lw| < €, B
W, = Q7 Y 32 L
2(w) {0, otherwise. (32) <
In addition, Wa(w) also reflects the limited bandwidth of the B
detected thermoacoustic signals that is due to the finite band- cg
width of the detector. We assume the thermoacoustic waves to $
be in a frequency range below 4 MHz, and chofise- 4 MHz; 2 ;
then the dominative frequencydriV, (w) is 1.7 MHz. Here, the ® G0 Redanshuated
data sampling frequency is 20 MHz. i 1 T Criginal
R T A RRREE TS L s
A. Planar Measurement Configuration 15 10 50 5 10 15
We use the planar measurement configuration as shown in Horizontal center line (mm)
Fig. 1(a). Assume that the measurement area is 120ir20 (b)

mm in thez = 0 plane and that the thermoacoustic signals are _ ‘ ‘ _
collected at 3600 total detection positions that are evenly dggg. 3. Reconstructed image from planar measurement configuration using

. . 600 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional
tributed in the measurement area. Such a measurement caB& at the: = 30 mm plane. (b) Comparison of the original and

realized by using a rectangular ultrasonic array or by scanniregonstructed absorption profiles along the horizontal center line.

a linear array or even by scanning a single detector to cover the

measurement area. The center of the measurement area ipléhe and Fig. 4(b) shows the comparison of the original and
0, 0). The sample center (0, 0, 30) lies 30 mm above the meaeonstructed absorption profiles along the horizontal center
surement area. Fig. 3(a) shows the reconstructed RF absorplioe.

distribution of thez = 30 mm plane, and Fig. 3(b) shows the

comparison of the original and reconstructed absorption profiles Spherical Measurement Configuration

along the horizontal center line. Fig. 1(c) shows the spherical measurement configuration. To
simulate a practical condition, we adopt only a half-spherical
measurement area in the upper half space- 0). Suppose a

We employ the cylindrical measurement configuratioquarter circular array has 30 elements and the radius of the array
as shown in Fig. 1(b). Assume the measurement area iss®0 mm. Then one can rotationally scan the array along its ra-
cylindrical surface with a length of 90 mm and a radius of 58ius with a step size of°3o cover a half spherical measurement
mm. One can use a linear ultrasound array, which is verticallyea. In this way, the, the measurement contains 3600 detec-
placed and has 30 elements evenly distributed a length of #@@h positions, which are approximately evenly distributed in the
mm, to horizontally scan the sample, with a step size°ofo3 measurement area. The sample center lies (0, 0, 12 mm) inside
cover the measurement area. One can also vertically scath@measurement surface. Fig. 5(a) shows the reconstructed RF
circular ultrasound array with a step size of 3 mm, where tlabdsorption distribution of the = 12 mm plane, and Fig. 5(b)
circular array may have 120 elements evenly distributed in tehows the comparison of the original and reconstructed absorp-
array. In these ways, the measurement covers 3600 detection profiles along the horizontal center line.
positions, which are approximately evenly distributed in the The above examples demonstrate the performance of the
measurement area. The sample center lies at (0, O, 0), the cetimee-domain formulas for different measurement configura-
of the measurement cylindrical surface. Fig. 4(a) shows tkiens. The reconstructed profiles are in good agreement with
reconstructed RF absorption distribution in the= 0 mm the original distributions. As mentioned before, with a cutoff

B. Cylindrical Measurement Configuration
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Fig. 4. Reconstructed image from cylindrical configuration using 360Big. 5. Reconstructed image from spherical measurement configuration using
detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional imag@g00 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional
atthez = 0 mm plane. (b) Comparison of the original and reconstructefinage at thez = 12 mm plane. (b) Comparison of the original and
absorption profiles along the horizontal center line. reconstructed absorption profiles along the horizontal center line.

frequencyf, = 4 MHz, the dominative frequency mWo(w) One must rotationally scan the array along its radius with a step
is 1.7 MHz, which corresponds to an acoustic wavelength eize of 11.25 to cover a half spherical measurement area. The
0.9 mm. That explains why the small absorbers, as well as ibger parameters in the numerical experiment are the same as
boundaries of the big absorbers, can be faithfully reconstruct@sithe example shown in Fig. 5. In this way, the measurement
As predicted, the flat bases of the big absorbers are not faittas only 256 detection positions. As shown in Fig. 7, the main
fully recovered, which results from the approximations of thetructure of the sample is recovered in the reconstructed image,
algorithms. but a lot of noisy artifacts occur.

However, in the absence of a high-frequency signal, the smallin addition, the signal-to-noise ratio (SNR) should be care-
size structure will be lost. For example, if the cutoff frequenciully considered in thermoacoustic imaging, since the ampli-
fa = 1.5 MHz, the dominative frequency inW,(w) is about tude of the thermoacoustic signal is small as was mentioned
0.6 MHz, which corresponds to an acoustic wavelength of 2p Section 1. In general, white noise can be suppressed by av-
mm. Without loss of generality, we will take the spherical mearaging over many identical data acquisitions. Denoising can
surement configuration as an example. The other parametergiéb be accomplished with more elaborate methods including
the numerical experiment are the same as the example showRdiirier-based filtering and wavelet-based filtering [25]. Fortu-
Fig. 5. As shown in Fig. 6, not only is the small absorber nearpately, reconstruction in thermoacoustic imaging is a linear ad-
corrupted, but also the originally sharp borders of the big alition process as shown in (16), (23), and (29). The white noise
sorbers are greatly degraded. in each detector is independent of every other. If therevate-

Only a small number of detector positions affect the recotectors, the SNR in the image will be improved by the square
structed images. We will again take the spherical measuremsott of n times through summation of the data. Of course, more
configuration as an example. Suppose a quarter circular artistectors and more data acquisitions will increase the cost of the
has only eight elements and the radius of the array is 50 mdata acquisition time as well as the detection equipment. Actu-
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Fig. 6. Reconstructed image from spherical measurement configuratioly. 7. Reconstructed image from spherical measurement configuration using
using 3600 detector positions with high cutoff frequency 1.5 MHz. (a)56 detector positions with high cutoff frequency 4 MHz. (a) Cross-sectional
Cross-sectional image at the= 12 mm plane. (b) Comparison of the original jmage at thez = 12 mm plane. (b) Comparison of the original and
and reconstructed absorption profiles along the horizontal center line. reconstructed absorption profiles along the horizontal center line.

ally, as with other imaging modalities, such as magnetic resgitjons with a finite extension or partial enclosure even though
nance imaging, there is a tradeoff between SNR and the cospgfy are derived from idealized recording surfaces. Of course,

data acquisition time and equipment. . finite recording surfaces only provide limited spatial views, but
In the above simulations, we consider the point-detectors. §f; is adequate in practical applications.

fact, a finite detector area will limit the lateral spatial resolution The planar, spherical, and cylindrical recording surfaces

and affect the axial resolution slightly [6]. A complete analytfaay cover most measurement configurations. Among them the

ical explanation of .Spa“"?" resolution rglated to bandwidth arb anar measurement geometry may be the easiest to implement.
detector aperture size will be reported in another paper [26]'Atwo-dimensional 2-D) pl It ict d
planar ultrasonic transducer array can

be used to detect the thermoacoustic signals as in conventional
ultrasound imaging. For example, Hoelenal. [10] used this

The time-domain reconstruction formulas—termed modifiekind of recording geometry in their photoacoustic imaging.
back projections—can be derived under the practical conditiohbey adopted a delay-and-sum algorithm with experiential
discussed above. We have shown that modified back proj&eighting factors, which worked well in dealing with their ex-
tion formulas closely approximate the rigorous formulas undperimental data. Our research shows that the spatial weighting
the above conditions. Unlike the filtered back projection algdactor[n, ny] does exist in the back projection formula of (16)
rithm used in X-ray tomography, which uses the surface intéer the planar recording configuration. This is an interesting
gration over intersecting planes, the modified formulas in owesult in our theoretical analysis, which indicates that (16)
problems are calculated through temporal back projection asigbould be a more accurate form than the one used by Hoelen
coherent summation over spherical surfaces with certain spagthl.
weighting factors. Fortunately, due to the advantage of coherenihe spherical recording configuration may be more suitable
summation, these formulas are still applicable to practical coior external organ imaging such as breast cancer detection where

V. PRACTICAL APPLICATIONS
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in practice, only a semispherical measurement surface canamel resolution are obtainable even in tissue with a small degree
implemented. For example, Kruget al. employed this kind of acoustic inhomogeneity.
of measurement geometry [7]. In their experimental system,
multiple discrete transducers were mounted on a hemispher- VI. CONCLUSION
ical bowl and could scan nearly2ar solid angle surrounding . . . .

. In this paper, we have presented time-domain reconstruction
the breast volume. In the data processing, they assumed that tlhe

size of a typical absorbing object was much smaller than the dallqgorithms for the thermoacoustic imaging of biological tissues.

tecting distance, and that the spherical surface, on which the Fi&rent summations over spherical surfaces with certain spatial

facg integral was computed, apprommatgd a plane. Theref%ighting factors. Numerical experiments have demonstrated
the inverse Radon transform was approximately used to recos

he i . hv. Obviously. the ab e validity of their applications. These formulas (or high-order
struct the image as in X-ray tomography. Obviously, the aboy proximations of the rigorous reconstruction formulas) can

far-field condition is not strict, especially when the absorptiogerve as the basis for time-domain thermoacoustic or photoa-
source is far away from the center of the spherical geometry aq¢ ,stic imaging in biological tissues.

results in reconstruction artifacts. Our theoretical analysis gives
a more reasonable reconstruction formula (29), which can im-
prove the quality of the reconstructed images.

The cylindrical recording configuration partially combines The delta function can be written in the Cartesian coordinates
the properties of planar geometry and of spherical geomet®g
The reconstruction formula (23) shows a spatial weighting
factor [n,ng] < 1, which is dependent ofiz — z|. The 6(r —ro) = 6(x — 20)6(y — yo)o(2). (A1)
weighting factor reaches the maximum valueny] = 1 at
2 = zo, which indicates that the cross-sectional image of arfKing Fourier transforms on both sides of (8) on variables
2o plane is primarily determined by the data measured on the@ndz, it can be shown that the Green’s function is a triple
circle of the same plane. For example, if some small Stro'lfé)urlermtegral of(l_l). If the recording surfaﬁglswlnflmte,we
absorption sources at a size of several millimeters lie onghe MaY take 2-D Fourier transforms e andy, of p(zo, yo, k),
plane inside a weak absorption background at a size of sevéfar Multiplying both sides of (7) byxp(iuzo + ivyo) and in-
centimeters in diameter, a set of circular measurement difgrating with respect to, andyo from —oc to +oo, one gets
detected on a circle with a radius of several centimeters on the
zo plane would be sufficient to yield a good cross-sectional *°°,
image. In our initial work [5], [6], we used this kind of circular Z/ dxodyg exp(iuxg + ivyo)p(xo, Yo, k)
measurement to investigate some phantom samples and the 7

ey are computed through temporal back projections and co-

APPENDIX A

reconstructed images agreed with the samples very well. But, _ oo +oo

if there are other absorbers outside teplane, the thermoa- - —ikcn / dz // dzdyA(z,y, 2) exp(iuz + ivy)
coustic signals from these absorbers also reach the detectors 2r e l

in the zo plane. Thus, a set of circular measurement data on oo 0 -

the zo plane only could not distinguish between the absorbers exp(—iK.z)

on or outside of the plane. In this case, three-dimensional ’ / dsz (A2)
measurement and reconstruction must be used. —oo )

In fact, the choice of measurement configuration depends on
the practical needs. From the physical point of view, these recapherep = /u? + v2, (p>0).
struction formulas, (16), (23), and (29) for planar, cylindrical, The integral of the far right of (A2) can be computed by the
and spherical configurations, respectively, are the same, excegiitour integratioriz > 0), because there will always be some
that the spatial weighting factors resulted from the measuremeaimping of the wave in a physical system [22], [24]
geometries. In addition, the weighting factors in the above equa-
tions are obtained through first-order approximations. In prin-_
ciple, high-order approximations can be derived. 5/ K exp(—iK.z)

Finally, it has to be pointed out that an inhomogeneous TK2 4 p2 — k2
acoustic property, such as the speed of sound variation, might

exp [iz sgn(k)y/k? —pz]

blur the reconstructed images. The experiments as shown in [5] imsgn(k) k| > p

and [6] demonstrated that the small speed variations between _ V2 =p? (A3)
fat and muscle or gelatin did not result in significant recon- P [—ZV PZ—’CQ] ) k| < p

struction artifacts. The reason is that thermoacoustic waves VP2 k2 ’

are produced internally by RF absorption and are propagated

one-way to the detectors. Thus, a small speed variation doeswheresgn (k) = 1 for k& > 0 andsgn(k) = —1 for k < 0.

affect the travel time of the sound very much in a finite-length Here, we use the values kffor || > p to do the reconstruc-
path, for example, 10 cm, which is a typical breast diameteion. Those of: for |k| < p correspond to evanescent waves and
Therefore, in thermoacoustic tomography, satisfactory contragtl have no contribution to the reconstruction.



1096 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 50, NO. 9, SEPTEMBER 2003

In the casdk| > p andz > 0, (A2) becomes Then, substituting (A7) into (A5) and dropping the primes, we
+o0 get (12) and (13).

- - 2 Next, we want to show that under certain practical conditions

dxod 1 + 1 — Y0, k ’ oo S !

// Todyo exp(iuzo wyo)k 7, P70, Yo, F) (12) reduces to a modified back projection formula. Replacing

K, andK, in (11) with« andv, and then taking complex con-

e A jugates of (11) and (A3), one gets
= /dz // dxdyA(z,y, z) exp(iux + ivy)
0 %

é;(nrg) 27r // dudv exp [tu(zo — ) + w(yo — y)]

(k)exp |:LZ sgn(k)\/k2 — pQ}
- sgn .
/2 — p2

exp(iK.z
Multiplying both sides of (A4) byexp(—iuz’ — ivy’) and inte- : / dK “KIy 2 k2 ) (A8)
grating with respect ta andv letting p from 0 to|%|, and further

multiplying both sides of (A4) byt exp | —iz'sgn(k)\/ k% — p?| and
; . . - ) oo
and integrating with respect fofrom —oo to +oo, gives / ” exp(iK.2)

oo o=k Kt k2

/ / dzzodyo / dk / / dudv o0 Z_iﬂsgn(k)

exp [7iz sgn(k)m]

(A4)

/
X2€;Z§(ELZE]$2>_ x )] exp [L’U(yo -y )] _ X \/szpQ ) |k| > Py (Ag)
R Sl LA R g . 2 2 oxp | —2+/p2 —k2

k2 kexp[ iz'sgn(k)v/k p} - p| pz_pk2 ]7 k| < p.

/ dz//d:vdyA vz Then, substituting (A9) into (A8), taking the first derivative on
variablez of (A8) and then making a comparison with (13), one
finds

exp [i(z — 2")sgn(k) /i? = 7] 5 ~ .
. / kdk sgn(k) —Gj(r,rg) = — Ki(ro,r) + €x(ro,r), (A10)
k2 — p? 0z
where
=|k| p=+o0
//dudv exp [iu(x — )] exp [iv(y — y')] . (AD) gx(r, o) =5 // dudv exp [iu(zg — )]
p=|k|
Rearrangmg the orders of integration of the right-hand side of x exp [iv(yo — y)]
(A5), we get - exp [—z\/,o2 — kz} . (A11)
400 400 +o0
right = /dz //da:dyA(x,y,z) //dudv If letting v = pcosvy, v = psiney, rg — x = Rcosa,
4 . and yo — y = Rsina, wherep = +Vu?2+0? and

R = /(zo — 1)% + (yo — y)2, through changing the variables

5 _ / [- _ /
x exp [ou(z — ') expliv(y — y/)] of integration, using the identity

[700 exp [z(z - z’)\/m}
: kdk

k% — p? % / de¢ exp [ipp cos(d — a)] = Jo(pR) (A12)
- exp[ (z—z)\/m] 0 .
+ / kdk Y/ .(A6) one can rewrite (A11) as
e too
If we letw = sgn(k)+/k2 — p2, (A6) reduces to €k(r, o) = % / pdpJo(pR) exp [—2\/,02 — kQ} . (A13)
+oo +oo +oo |k|
right = / dz / dedyA(z,y,z) - / / /dudvdw As [24] shows
0 L e -

. / . / +oo
X eXP [zu(a: — )]BXP [Z’U(y Yy )] eXP[ (Z -z )w] |gk(r,r0)| < |g0(r,r0)| — ﬁ / pdpJo(pR) exp(—zp)

/dz// (z,y,2)dzdy OZ

An(22 + p2)2
ET T ) ) o
= (2’”)3‘4(37/73//73,)' (A7) B 47F|I‘ — I‘0|3'
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However

0 ~, 0 |exp(—iklr —r
@Gk(rﬂ‘o): { ( | OD}

0z 4r|r — 1|

—Z

1 2\ S
:|r— o <|r m—— —f—zk) G (r,rg). (A15)

Therefore, under the conditigh||r — r¢| > 1, one gets

s Ao 2 s o)l
Arr — o2~ dmlr — o3 = RO
(A16)

This means that the evanescent contribufienegligible when
|k||lr — ro| > 1 holds. Then, from (A10), we get

2 0 A 12k z

= g e o 2
wcin 0z b(ro) we2n |r — o

0 Y
52 Gilro)

I?k(ro./r) ~ — G*(r ro).

(A17)

APPENDIX B

The delta function can be expressed in the circular cylindrical

coordinates [22]

8(r = 0) = 28(p = po)3(i = )3z - 20)
1 =
= ;5(0 - Po)g m;w exp [im(p — )]

—+o00
. % / exp [ik.(z — z0)] dk.. (B1)

Assuming a similar expansion of the Green’s function as

“+ oo
~ 1 .
Gr(r,ro) = ypc) Z exp [im(p — )]
+oo B
/ Ak exp [ika(z — 20)] - gmi(popo k). (B2)

Substituting (B1) and (B2) into (8), we get

A2 g dgm
? dgpzk +p ‘Zpk + (k> = k2) p* = m®] gmr=—p8(p—po).
(B3)
For thek > 0 case, by letting. = \/k? — k2, one obtains
L7r ( )
Gk (p; pos k=) = T (1p) Hyy (10) (B4)

where ifk2 > k%, gmk(p, po, k=) = In(—ipp) K (—ippo)
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and its extent along is infinite. Therefore, we may take a se-
ries expansion of the recorded data on variahleand a 1-D
Fourier transform on variablg . Multiplying both sides of (B5)
by exp(ivzo) and integrating with respect tg from —co to
+00, and further multiplying both sides p(ingo) and in-
tegrating with respect tgp, from 0 to2x, one obtains

/dgoo /dzo
+oo
3
47TQ///d rA(r exp(zmga)

m=—00

exp(zmpo) exp(iyzp)

X /dsoo exp [i(n — m)po]
0
400
. / dk exp(ik.2z)gmr(p; po, k=)

/ dzo exp [i(y — k=)o)

+oo
=1 2///d3’l“A exp(imp)2m,m
T

m=—00

. / dk exp(ik-2)gmr(p, po, k=)2w6(y — k)

_ /OO/ / BrA(r) expling)

x exp(i72)gnk(p, P0, )

Here we use the values bfor 42 < k2 to do the reconstruction.
Those values of for which+? > k? represent the evanescent
waves play no role in the reconstruction. In the casg’of. k2,
we can rewrite (B6) as

27 “+o0

2p(1‘0,k‘)
/dtpo/d o kc2n
0

— 00

x exp(ingg) exp(ivzg) = ///d3rA(r) exp(iny)
4

(B6)

xexp(ivz)Jn(11p)
XH(l)(;Lpg) (B7)

with 1 = m/k2 —%2. Therefore, (7) can be expressed in thdlultiplying both sides of (B7) byu.J,, (up')/HS (1po) and

following form:

" an? / / / rA(r miooooeXP[Zm(w ©0)]

: / dk exp [ik.(z — 20)] gmr (P, po, k-)-

— 00

rOv
—chg

(BS)

For the idealized cylindrical recording geometyry, k) is
a periodical function of angular variablg, with a 2= period

integrating them with respect {@ from 0 to +o0, then multi-
plying both sides byxp(—ine’) and summing: from —oco to
+00, and further multiplying both sides kyp(—ivz’) and in-
tegrating them with respect tpfrom —oo to +o00, one gets

+oo
k
/dgoo/dzo/d'yexpz'yzo—z]/ = kc2)
+oo
. I
S explin(p - )] )
n=—oo Hy (/J,po)
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+oo Po 2 +oo +k
= / dz/pdp/dcpA(r) / dryexp [iv(z — 2")] X /dvexp [iv(z0 — 2)]
—o00 0 0 0 —k
+o0 oo S22 2
. Y In \ P Y
> explin(p — ¢')] / pdpTn (pp) In (") ( )
n=-—o00 0 X H1<12) (po\/ k2 — ’72) . (812)
400 PO 27
_ ) o We can argue that the values ¢ffor 42 > k2 do not con-
B / d'z/pd'o/d(pA(r> 2m8(z = 2) tribute to the reconstruction. Taking the complex conjugate of
o 0 0 , the Green'’s function in (B2) and replacikg by v, we may ex-
2mb(o — ') - 8(p = 0') clude thesey satisfyingy? > k2 and approximate the Green’s
p function as
= (27r)2A(,0/: QDl? Z/)' (88) +k
By dropping the primes, changing the integral variable from Gilr, o)~ =g Z explin(po — /dw exp [i7(z0 — 2)]

to k£ according tqu =
the integration, one can rewrite the (B8) as

27 “+oo +o0  +4oo

v/ k% — +2 and rearranging the orders of

-, (p 52— 72) H (p K2 — 72) . (B13)

Lettingz; = 29— z, the second-order partial derivative of (B13)

Ap, o,z =5 3/dgoo/dzo /dy/kdk ro’ with respect toe; has the following relation:
—00 4|y 2
! 8—2 ~ 2. (B14)
073
Z exp [in(po — ¢)] . .
s Comparing (B12) with (B13), we get
Jn [ p/ k2 — 72 ~ i2k 1 02 ~
X (1)( ) exp [iv(z0 — 2)] Ky(ro,r) = en\P T2 022 53 Gi(r.ro). (B15)
o (,00 L2 — 72) n
27 4oo  4oo Under the conditiork|r — ro| > 1
p I‘(), k)
dﬁPo dk——— 1 92 Gt (r.x0) 1 0% [exp(—ik|r —ro|)
Ar,rg) =-—5+=
A 47|r — 1o
Z
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