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Exact Frequency-Domain Reconstruction for
Thermoacoustic Tomography—II:

Cylindrical Geometry
Yuan Xu, Minghua Xu, and Lihong V. Wang*

Abstract—Microwave-induced thermoacoustic tomography
(TAT) in a cylindrical configuration is developed to image bio-
logical tissue. Thermoacoustic signals are acquired by scanning a
flat ultrasonic transducer. Using a new expansion of a spherical
wave in cylindrical coordinates, we apply the Fourier and Hankel
transforms to TAT and obtain an exact frequency-domain recon-
struction method. The effect of discrete spatial sampling on image
quality is analyzed. An aliasing-proof reconstruction method is
proposed. Numerical and experimental results are included.

Index Terms—Cylindrical, frequency-domain reconstruction,
thermoacoustic tomography.

I. INTRODUCTION

T HERMOACOUSTIC tomography (TAT) combines the
strength of traditional microwave imaging and ultrasound

imaging [1]–[14]. Reviews on TAT and related techniques
can be found in [11], [12], [14]. Recently, we derived exact
reconstruction algorithms for TAT in both planar and spherical
configurations; these are reported in the companion papers [11],
[12]. We recognize, however, that in some applications such as
the imaging of the limbs, a cylindrical scanning surface may be
more appropriate. In this paper, using a new expansion formula
in cylindrical coordinates, we derive a frequency-domain
reconstruction algorithm [15]–[19] and report our numerical
and experimental results in two-dimensional (2-D) cases.

II. M ETHODS

We assume that the detector scans on a cylindrical surface
with a radius of , which encircles all microwave absorbing ob-
jects. In our paper, a coordinate with a prime refers to the po-
sition in an imaged object, while a coordinate without a prime
refers to that of a detector. In the case of thermal confinement,
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the temporal spectrum of acoustic field is related to the
microwave absorption distribution by the following equa-
tion [11]:

(1)
where the symbols are defined as in [11]. Cylindrical coordi-
nates are used in the following derivation, whereis shown
in [12, Fig. 2], and are the polar coordinates within the

– plane. Following the derivation of the series expansion of
[20], we obtained the following new identity for a

series expansion of a spherical wave in a cylindrical coordinate
system (see the Appendix for the derivation):

(2)

where ; is the signum function;
and is the function defined as

if

if

where , , , and are the th-order Bessel,
second-kind Hankel, and modified Bessel functions, respec-
tively. It has been assumed in the above two equations that

. Substituting (2) into (1) results in

(3)

The part of the integration with respect to rep-
resents the contribution from the propagation wave, while the

part represents the evanescent wave. As the evanes-
cent wave decays rapidly at a distance several wavelengths from
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the source, it is not suitable for thermoacoustic imaging. For the
case of , after Fourier transforming both sides of the
above equation with respect toand , we have

(4)

where and are the Fourier trans-
forms of and , respectively. Noticing that the right
side of (4) is actually a Hankel transform, an inverse Hankel
transform gives

Applying a variable change of the integral variable fromto
to the above equation results in

(5)

At last, is inversely Fourier transformed with re-
spect to and to yield . Equation (5) gives an
exact mapping relation between the spectrum of the collected
signals and the spectrum of the distribution of microwave en-
ergy deposition and is the essence of our reconstruction method.

An exact reconstruction method for ultrasonic reflectivity
imaging with a cylindrical scanning surface was given in [16].
However, our results are much simpler and more stable. In their
equation A24, , where is the radius of the scanning
cylindrical surface, appeared in the denominator and can be
zero for some values of; consequently, this term can cause
instability. In our (5), appeared in the denominator,
which cannot be zero for a finite.

To summarize, the reconstruction procedure consists of the
following steps.

1) The signal from the detector is Fourier trans-
formed with respect to to yield . Deconvolu-
tion with respect to the finite pulse length can be imple-
mented immediately after the Fourier transform.

2) is Fourier transformed with respect toand ,
giving .

3) According to (5), is mapped to
.

4) is inversely Fourier transformed with re-
spect to to yield .

III. RESULTS AND DISCUSSION

To test our method, images from both numerically simulated
and experimental data were reconstructed in a 2-D case. We
chose the 2-D case rather than the three-dimensional (3-D) case
to reduce the computational and experimental complexity. For
the 2-D case, the reconstruction equation can be derived from

Fig. 1. The images (a) before and (b) after the reconstruction from the
simulated data of two cylinders.

Fig. 2. (a) The cross section of a fat sample containing 5 pieces of muscle
cylinders. (b) The reconstructed image from the experimental data.

(4) by replacing all with zero. The extension of the conclu-
sions of the 2-D case to a 3-D one is straightforward.

A. Numerical Simulation

The thermoacoustic imaging of two cylinders was numeri-
cally simulated, where the radius of each cylinder was 2 mm;
the distance between the centers of the cylinders was 5 mm; and
the center of one of the cylinders was positioned at the origin of
the circle of detection. Cylinders were chosen because the an-
alytical expression for their thermoacoustic signal is available
[21]. In the simulations, the temporal-frequency range was from
about 0 to 2 MHz, which was close to our experimental situa-
tion [14]. For the noiseless simulated data, the reconstruction is
almost perfect. Therefore, we show only the results from noisy
data. Fig. 1 shows the images before and after the reconstruc-
tion from the simulated data with introduced additive noise. The
units for the signals and energy deposition in Figs. 1 and 2 are
relative ones. Calibration of our system is needed to obtain an
absolute measurement. The radius of the circle of detection was
30 mm; the angular scanning range waswith 256 steps; and
the thermoacoustic signals were sampled for 50s at a sam-
pling rate of 4 MHz. The signal-noise-ratio (SNR) of the raw
data shown in Fig. 1(a) was 1. The reconstructed image shown
in Fig. 1(b) is in good agreement with the real objects, whose
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outlines are plotted as dotted circles in Fig. 1(b). The dimen-
sions of the reconstructed cylinders are 4 mm along both the

and the directions. The SNR of the reconstructed image is
about 8, which is improved greatly compared with that of the
raw data.

B. Experiment Results

The experimental setup for 2-D TAT in a cylindrical con-
figuration is the same as that in [12]. The sample is shown in
Fig. 2(a), which was photographed after the experiment. Mi-
crowave pulses were delivered to the sample from below. The
imaging plane was 2 cm above the bottom of the tissue sample.
Above the plane, there is another layer of fat about 1 cm thick.
The sample consisted of five muscle cylinders with a diameter
of about 3 mm and a height of 6 mm. The muscle cylinders were
surrounded by pork fat. The electrical property of interest to this
imaging technique is the microwave attenuation coefficient of
the medium at the experimental microwave frequency, 3 GHz.
The microwave attenuation coefficients of fat and muscle are
9 cm and 1 cm , respectively. The microwave absorption in
mineral oil can be neglected, compared with the absorption in
fat and muscle. During the experiment, the transducer scanned
around the sample at a radius of 7.1 cm from 0to 360 with a
step size of 2.25. The thermoacoustic signals were sampled for
60 s at a sampling rate of 20 MHz. The time between the end
of a microwave pulse and the acquisition of the thermoacoustic
signal was between 10s and 20 s in our system, depending
on the distance of the transducer to the nearest sample surface.

Fig. 2(b) shows the reconstructed image from the experi-
mental data. The reconstructed image is in good agreement
with the real objects. The boundaries between the fat and the
surrounding medium and the muscle cylinders are imaged
clearly. However, it can be seen that the quality of the image
decreases with the increasing distance of the objects from the
center of the circle of detection. One possible reason is that the
finite surface area of the detector, which has a 6-mm diameter in
this experiment, may cause blurring of the image perpendicular
to the radial direction, and this blurring is more serious when
the object is farther from the center. Another possible reason is
that the microwave field decreases when the radius increases
in our irradiation configuration.

Our method can be applied to analyze the effect of the dis-
crete sampling by the detector along the circle of detection on
imaging. This can be illustrated by analyzing the signals from a
point source located at radius. According to (4)

(6)

Fig. 3 shows how changes with , where
8.37 mm (the wave number of a 2-MHz acoustic wave) and

10 mm. It is clear that has considerable value
until , where the Bessel function makes a transition
from near-field behavior to far-field behavior. Therefore, it
is safe to claim that, with respect to variable, is
band-limited by . According to the Nyquist criteria, the
number of scanning points per cycle should be at least to
avoid aliasing. In other words, for a fixed number of scanning
points , the maximum wave number before aliasing occurs

Fig. 3. J (k� ) versusm, wherek = 8.37 mm (the wave number of a
2 MHz acoustic wave) and� = 10 mm.

is . It can be seen that the maximum wave
number is inversely proportional to . For the same and
temporal spectrum of signal, the aliasing may be more serious
for signals coming from sources at a greater radial distance
than for those closer to the center. The above analysis also
points out a way to produce an aliasing-free image from the
data obtained by discrete detection. That is to apply a filter in
the temporal-frequency domain to the spectrum of the temporal
data with a stopband at about , where is the
maximum radius of imaging range of interest. The application
of the filter will decrease the resolution of the image; however,
it can guarantee that there will be no aliasing in the image.

C. Discussion

Since our method is implemented in the frequency domain
using the fast Fourier transform (FFT) technique, the computa-
tional efficiency is much greater than if implemented in the time
domain. The most time-consuming computation in the numer-
ical reconstruction lies in (5), which is a Hankel transform. For-
tunately, a quasi-fast algorithm for it, which is as efficient as a
one-dimensional FFT, is available [22]. Following the methods
in [11], our method can explicitly include and further eliminate
the effect of many limitations from the experiment, such as the
finite size of the detector surface, the microwave pulse length,
and the finite response frequency range of the detector. Addi-
tionally, combining our method and the techniques in [16], a
new exact reconstruction algorithm for 3-D ultrasonic reflec-
tivity imaging with a cylindrical aperture can be derived. Finally,
we would like to point out that the reconstruction methods re-
ported in this paper and the two companion papers [11], [12] are
also applicable to photoacoustic or optoacoustic tomography as
well as other diffraction-based inverse source problem.

The size of tissue samples that can be imaged by our system
is mainly limited by the safety standard on microwave power,
the microwave frequency, the microwave irradiation configu-
ration, the sensitivity of the ultrasonic transducer, the dynamic
range of the preamplifier and sampling system, and the afford-
able imaging time. The effect of microwave frequency on the
imaging depth was addressed in reference [13]. A microwave
irradiation configuration that renders a uniform microwave irra-
diation within the sample will also increase the capacity of the
system to image larger samples. A large dynamic range of the
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preamplifier and the sampling system is necessary to accurately
collect the thermoacoustic signals from both the surface and the
inside of a sample. A more sensitive ultrasonic transducer and
a longer imaging time can improve the signal-to-noise ratio of
acoustic signals and make the weak signals from the inside of
large samples detectable.

In our initial computation, the reconstruction of a single 2D
image required about 2 min in a Dell Precision 330 computer
(Intel Pentium 4 processor with a clock frequency of 1.5 GHz)
with Matlab programs if there was no precomputation of Bessel
and Hankel functions. However, our initial computation was
aimed at verifying the proposed algorithm rather than demon-
strating the computation efficiency. The proposed algorithm can
be implemented with high computational efficiency as stated in
the discussion section. For high computational efficiency, the
program should be coded with languages such as C or Fortran,
Bessel and Hankel functions should be precomputed, and the
fast Hankel transform algorithm should be adopted. The evalu-
ation of the computation efficiency of our algorithm is a topic
for future studies.

IV. CONCLUSION

Using a new expansion of a spherical wave in the cylindrical
coordinate system, we applied the Fourier transform and Hankel
transform techniques to TAT with a cylindrical detection sur-
face. The reconstruction algorithm is verified by both numerical
simulations and experimental results in 2-D cases. The method
was applied to analyze the effect of discrete sampling by the de-
tector along the circle of detection on imaging; an aliasing-free
reconstruction method for discrete sampling along the azimuth
direction is proposed.

APPENDIX

The derivation of (2) will be presented here. The spherical
wave is a solution
to the wave equation with a point source

(A1)

The solution can be expanded in terms of orthonormal functions
of and in a cylindrical coordinate system

(A2)

Substituting (A2) into (A1) results in an equation for the radial
Green’s function

(A3)
When , following the derivation of the series expan-
sion of [20], one obtains a similar expansion for the
spherical wave

(A4)

We next consider the case of and 0. Noticing that
when , behaves asymptotically as
( is implicit in our model), one can follow the derivation
in [20] and obtain

(A5)

Similarly, for and 0

(A6)

Using the following identities of Bessel and Hankel functions
[23]:

and combining (A2) and (A4)–(A6), we obtain (2).

REFERENCES

[1] W. Joines, R. Jirtle, M. Rafal, and D. Schaeffer, “Microwave power ab-
sorption differences between normal and malignant tissue,”Radiation
Oncol. Biol. Phys., vol. 6, pp. 681–687, 1980.

[2] S. Chaudhary, R. Mishra, A. Swarup, and J. Thomas, “Dielectric prop-
erties of normal human breast tissues at radiowave and microwave fre-
quencies,”Indian J. Biochem. Biophys., vol. 21, pp. 76–79, 1984.

[3] W. Joines, Y. Zhang, C. Li, and R. Jirtle, “The measured electrical prop-
erties of normal and malignant human tissues from 50–900 MHz,”Med.
Physics., vol. 21, pp. 547–550, 1994.

[4] L. E. Larsen and J. H. Jacobi, Eds.,Medical Applications of Microwave
Imaging. Piscataway, NJ: IEEE Press, 1986.

[5] S. Caorsi, A. Frattoni, G. L. Gragnani, E. Nortino, and M. Pastorino,
“Numerical algorithm for dielectric-permittivity microwave imaging
of inhomogeneous biological bodies,”Med. Biol. Eng. Comput., vol.
NS-29, pp. 37–44, 1991.

[6] M. S. Hawley, A. Broquetas, L. Jofre, J. C. Bolomey, and G. Gaboriaud,
“Microwave imaging of tissue blood content changes,”J. Biomed. Eng.,
vol. 13, pp. 197–202, 1991.

[7] P. M. Meaney, K. D. Paulsen, and J. T. Chang, “Near-field microwave
imaging of biologically-based materials using a monopole transceiver
system,”IEEE Trans. Microwave Theory Tech., vol. 46, pp. 31–45, Jan.
1998.

[8] R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic
ultrasound (PAUS)-reconstruction tomography,”Med. Phys., vol. 22, pp.
1605–1609, 1995.

[9] C. G. A. Hoelen, F. F. M. Demul, R. Pongers, and A. Dekker, “Three-di-
mensional photoacoustic imaging of blood vessels in tissue,”Opt. Lett.,
vol. 23, pp. 648–650, 1998.

[10] G. Ku and L.-H. V. Wang, “Scanning thermoacoustic tomography in
biological tissue,”Med. Phys., vol. 27, pp. 1195–1202, 2000.

[11] Y. Xu, D. Feng, and L.-H. V. Wang, “Exact frequency-domain recon-
struction for thermoacoustic tomography—II: Planar geometry,”IEEE
Trans. Med. Imag., vol. 21, no. 7, pp. 823–828, July 2002.

[12] M. Xu and L.-H. V. Wang, “Time-domain reconstruction for thermoa-
coustic tomography in a spherical geometry,”IEEE Trans. Med. Imag.,
vol. 21, no. 7, pp. 814–822, July 2002.

[13] G. Ku and L.-H. V. Wang, “Scanning microwave-induced thermoa-
coustic tomography: Signal, resolution, and contrast,”Med. Phys., vol.
28, pp. 4–10, 2001.

[14] Y. Xu and L.-H. V. Wang, “Signal processing in scanning thermoacoustic
tomography in biological tissues,”Med. Phys., vol. 28, pp. 1519–1524,
2001.

[15] H. Stark, J. W. Woods, I. Paul, and R. Hingorani, “Direct Fourier recon-
struction in computer tomography,”IEEE Trans. Acoust. Speech Signal
Processing, vol. ASSP-29, pp. 237–245, 1981.

[16] S. J. Nortan and M. Linzer, “Ultrasonic reflectivity imaging in three
dimensions: Exact inverse scattering solution for plane, cylindrical
and spherical aperture,”IEEE Trans. Biomed. Eng., vol. BME-28, pp.
202–220, 1981.



XU et al.: EXACT FREQUENCY-DOMAIN RECONSTRUCTION FOR THERMOACOUSTIC TOMOGRAPHY: II. CYLINDRICAL GEOMETRY 833

[17] K. Nagai, “A new synthetic-aperture focusing method for ultrasonic
b-scan imaging by the Fourier transform,”IEEE Trans. Sonics Ultrason.,
vol. SU-32, pp. 531–536, 1985.

[18] J. Lu, “Experimental study of high frame rate imaging with limited
diffraction beams,”IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol.
45, pp. 84–97, Jan. 1998.

[19] S. X. Pan and A. C. Kak, “A computational study of reconstruction algo-
rithms for diffraction tomography: Interpolation versus filtered backpro-
jection,” IEEE Trans. Acous. Speech Signal Processing, vol. ASSP-31,
pp. 1262–1275, 1983.

[20] J. D. Jackson,Classical Electrodynamics. New York: Wiley, 1975.
[21] G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic signatures of

particulate matter: Optical production of acoustic monopole radiation,”
Science, vol. 250, pp. 101–104, 1990.

[22] A. E. Siegman, “Quasi fast Hankel transform,”Opt. Lett., vol. 1, pp.
13–15, 1977.

[23] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Func-
tions. New York: Dover, 1972.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


