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Ultrasonic modulation of multiply scattered coherent light: An analytical model for anisotropically
scattering media
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In this work, we have calculated analytically the temporal autocorrelation function of the electrical field
component of multiply scattered coherent light transmitted through an anisotropically scattering media irradi-
ated with a plane ultrasonic wave. The accuracy of the analytical solution is verified with an independent
Monte Carlo simulation for different values of the ultrasonic and optical parameters. The analytical model
shows that an approximate similarity relation exists; if the reduced scattering coefficient is unchanged regard-
less of the mean cosine of the scattering angle, the autocorrelation function remains approximately the same.
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[. INTRODUCTION along paths of lengtls while the detailed derivations are

deferred to the Appendix. In Sec. Il we incorporate the ex-

Recently ultrasound-modulated optical tomography hagressions obtained in Sec. Il into the solution for the total

been established as a new and growing area of researcglectric field autocorrelation function transmitted through a
Potential applications exist in the imaging of scattering me-scattering slab in the case of a plane source of coherent light
dia, especially biological tissues. This technique combinegnd & point detector. We examine the accuracy of our ana-

ultrasonic resolution and optical contrast based on the differlytical solution with an independent Monte Carlo simulation

ences in optical properties among different types of tissued! Sec. IV. In Sec. V we use both the Monte Carlo simulation

The collective motion of the scatterers and the periodicaf'S well as the analytical solution for the autocorrelation func-

changes in the index of refraction that are generated by folion to explore the validity of the similarity relatlon.. In Sec.
I, we present the dependence of the total electric field au-

cused ultrasound produce fluctuations in the intensity of th Seorrelation function on the ultrasonic and optical baram-
speckles formed by the multiply scattered light. By measur- P P

ing the depth of intensity fluctuations, we can spatiall Iocal-eters including the ultrasonic frequency and amplitude as
9 P y ' P y well as the scattering and absorption coefficient. Finally, a

ize d|ﬁerencgs in optical properties inside a scattering meb[ief summary of our conclusions is presented.
dium. Intensive research has been conducted by several

groups in the past few yeaf$—12 in an attempt to explain
the mechanism of ultrasonic tagging of light and to develop
practical systems based on this new imaging modality. How- Consider the propagation of coherent light through a ho-
ever, additional work is needed to advance our understandingiogeneous scattering medium irradiated by a plane ultra-
of this relatively new phenomenon. sonic wave. If we neglect all the polarization effects, the
In our simple model we will consider two basic mecha-temporal autocorrelation function of the electric field com-
nisms that are responsible for variation in the optical phasg@onent of the scattered light at the point detector position can
of multiply scattered light. With the first mechanism, the be written as follows:
variation in the phase is caused by ultrasound-induced col-
lective displacements of scatterers, which was modeled for Gi(7)=(E(1)E*(t+17)). (1)
the first time by Leutz and Mardtl0]. With the second
mechanism, the variation in the phase is caused by We assume thatthe photon mean free path is much longer
ultrasound-induced variation of the index of refraction,than the optical wavelengtiweak scatteringand the acous-
which was modeled, in combination with the first mecha-tic amplitude is much less than the optical wavelength. In
nism, by Wang[11,12. The current models, however, are this weak scattering approximation, the correlation between
based on nonabsorbing and isotropic scattering media rathéifferent random paths vanishes and only the photons travel-
than the more realistic absorbing and anisotropic scatterintid along the same path of lenggiproduce a nonzero effect.
media. Consequently, the autocorrelation function becofi€s11]
In this paper we extend the solution for the temporal au-
tocorrelation function of the electrical field component ob- | % %
tained in Ref.[11], incorporating into the model a general Ga(n)= fo P(S)(ES(DES (t+ 7)u(E(DES (t+7))gds,
scattering phase function. The organization of the paper is as 2
follows. Section Il describes the derivation of the autocorre-
lation function of the ultrasound-modulated electric field wherep(s) is the probability density function of path length
s. In EqQ.(2) we assume that the contributions from Brownian
motion (B) and ultrasoundU) are independent and that we
*Email address: LWang@tamu.edu can separate them.

IIl. AUTOCORRELATION OF A SINGLE PATH LENGTH
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The remaining task in this section is to consider the ultra-

sound component of Eq2) when photon scattering is aniso-
tropic. Following the derivations in Ref§10,11], the auto-
correlation for paths of length can be written as

N

(Es(ES(t+ T)>u=<eXP{ —i{zl Adn (t,7)
=
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N
F<T>=<E <A¢n,j<t,r>>2>

=1 t,11(s)
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2 2 Ay, (t, DIAGy (L, r>>

t,T1(s)

—+

N-1 +<2 A¢djt7)]>
+ 21 Aqﬁd’j(t,r)”>. (3 - t,11(s)
g

~1j-1
N Eq. (3), Adbn(1.7)= i (1)~ i (1), Where b (1) Z 21 A¢dvi<‘-T>A¢dvk<t’T)>

is the phase variation induced by the modulated index of
refraction along thejth free path andA ¢y ;(t,7) = ¢qj(t
+17) = ¢q,j(1), where g (1) is the phase variation induced
by the modulated displacement of thth scatterer following
the jth free path. Summation is going over &llfree paths
andN— 1 scattering events along the photon path. Averaging The averaging over timeof each term on the right side of
is over time and over all the photon paths of lengthivhen  Eq. (7) is an easy task, while the averaging over all the
the phase variation is smalnuch less than unijy we can  allowed pathdlI(s) of length s with N free paths is more
approximate Eq(3) with difficult. In order to simplify the probability density function
of a particular photon path(l, ... ,Iy), we will first make
some assumptions. The number of stdpin each photon
path in the diffusion regime is much larger than unity. Con-
sequently, even if the total path lengghs fixed, the corre-
lation between the lengths of free pathss still weak. As a
result, we have

t,11(s)

N —
+<2j§ 2 Adnj(tDAGa, r>> ()

t,11(s)

(E(WES (t+ 7))y=exd —F(7)/2], (4)

where the functiori-(7) is

F(r)= <
p(ly, ..., In)=p(l)pds)--
Let us assume that the plane ultrasound waves propagate

along theZz direction with wave vectok,=k.e&,, where~  wherep(l;))=1"" exp(-I;/l) is the probability density for a
indicates a unity vector, ank,=2m/\,, where\, is the  photon to travel a distande between two scattering events,

ultrasonic wavelength. Along the photon path with  andg(e,, ... ,ey) is the probability density for the photon to
free paths, the positions of th&—1 scatterers are traye| along the directions,, . . . 8y . Because the probabil-
F1.F2, . .. Fy—1. We will associate each free path betweenlty of scattering a photon traveling in directiéfninto direc-

two consecutwe scattering events with a vecloer; M ; ) PSR
B L—1.8) Th 9 . for ¢ P d tion g, is described with phase functiof(e-€;.,), we
ri-1, (j=1;g). e expressions forA ¢, (t,7) an can write Eq.(8) as

A¢qj(t,7) in terms of the ultrasound amplitudk, back-
ground index of refractiomy, and the amplitude of the op- N N—1

tical wave vectok, are[11] p(ly, .. h=ps@) Il pa)TI f&-8.1). (9
j=1 j=1

N N—-1 2
2 A¢n,j(t17)+j21 A(ﬁd’j(tﬂ')} > (5)
p(lyg(e, ..., e, (8

A n j(t,7)=(4NngkoAn)SiN(w,7/2)siN (1/2)K,l; cosb;]
X (cosh;) ! cogk, 11+ (1/2)kyl; cos

—wal— wa7/2], (6a)

wherep(e;) is the probability density function of the start-

ing photon directiorg; in the scattering medium. Note that
we assumed the phase function does not depend on the azi-
muth angle or the incident direction.

Using Eq.(9) as the probability density function and go-
ing through some algebrésee the Appendjx Eq. (7) be-
comes

Ay ;(t,7)=(2NngkoA)SINwaT/2)[ (61— ) Ex]cOg Ky T;
—wat—wy7/2), (6b)

where coefficienty depends on the acoustic velocity of the
materialv,, the density of the medium, and the adiabatic F(T)2§(2n0koA)2 sir?(lw T)
piezo-optical coefficientn/dp: 5= (an/dp)pv>. In Egs. | 2°¢
(6), 0; is the angle between the propagation directions of the
light and ultrasound (co§=¢,- &), andw,=27f,, where

f, is the ultrasonic frequency.
Now we can express the functidt(7) from Eq.(5) as
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ULTRASONIC MODULATION OF MULTIPLY SCATTERED. . ..
where R@J(I —J) ], represents the real part of the (0,0)

element of the matrixj(i—J) ! and the elements of the
matrix J are defined as

2m+1 [2n+1
'Jm,n:glmlzg%/2 2 2

1
XJ T(X)Pyr(X)Pr(x)dX,
-1

T(x)= (12)

T—ikgx’

wherePj(x) is a Legendre polynomial of ord¢randg; is

the jth Legendre polynomial expansion coefficient of the

scattering phase functidiEq. (A2)]. Thus,g; is equal to the
scattering anisotropy facta, i.e., the average cosine of the

scattering angle. The value Rl —J) ], is the limit of
the RéjQ(TQ— jQ) ~10,0 whenQ approaches infinity, where

Jo is the QX Q matrix whose elements are defined by Eq.

(12).
We will rearrange the expression fBi( ) to

F(7)=5(2ngkoA)? SirP(w,7/2)( 8+ 84), (12
where

Sn=n? KA RI(1-3) g0, 4=(1—0)/(3]).

IIl. AUTOCORRELATION FOR A SLAB: ANALYTICAL
SOLUTION

PHYSICAL REVIEW E66, 026603 (2002

|o<s>=r<<s>§0 [[<2i +1)Lo—20]

X ex;{
o

1 sinhLoyuD Y oo
2\ D sinh(zgyuaD 1)

whereD =1*/3 is the diffusion constant; is the distance
between the two extrapolated boundaries of the gals the
location of the converted isotropic source from the extrapo-
lated incident boundary of the slab; ahi is the isotropic
scattering mean free path definedlas=1/(1—g). The dis-
tance between the extrapolated boundary and the correspond-
ing real boundary of the slab i$ y(y=0.7104). The con-
verted isotropic source is one isotropic scattering mean free
path into the slab. Thereforé,g=L+21* y, and zo=1* (1

+7).

Incorporating the influence of Brownian motion of scat-
terers[10,14,15 and the expression fdf(7), we can solve
the integration in Eq(2) over s for the temporal autocorre-
lation function:

[(2i+1)Lo—20)?
B 4Ds

B [(2i+1)LO+zo]2”

) —[(2i+1)Lo+2z0]

4Ds (13

K(s)= exp(— uaS),

sinh(zo\(Sy+Sg+ a)D 1)
sinh(LoV(Sy+Sg+ua)D 1)’

C=sinhLgvuaD 1)/sinh(zgVu,D 1),

where Sg=217/(19l*) is the term due to Brownian motion
(7o is the single-particle relaxation timeandSy is the term

(14

In this section, we will test the accuracy of our analyticaldue to the ultrasonic influence

expression fof=(7) from the preceding section with an in-

dependent Monte Carlo simulation in the case of an infinitely

Su= 2 (2ngkoA)2sinP(w,7/2) (5,4 8g). (15)

wide scattering slab. Slab geometry has been considered pre-

viously for various particular problemgl0-16. We will

solve Eq.(2) for anisotropically scattering and absorbing me-

dia based on the expression for functie@r) obtained in the
preceding section.

IV. MONTE CARLO SIMULATION

To provide an independent numerical approach, we modi-
fied the existing public-domain Monte Carlo packdd€]

The Z axis of the coordinate system is perpendicular tofor the transport of light in scattering media to sample the

the infinitely wide slab of thicknesk. The index of refrac-
tion of both the surrounding and scattering mediajs A
plane ultrasonic wave propagates along the §iathe X-Y

autocorrelation function according to Eq®) and (3). Be-
cause it would be very time-consuming to physically simu-
late a point detector using the Monte Carlo code, we applied

plane and is assumed to fill the whole slab. At the samethe principle of reciprocity in our simulation: the slab is il-
time, one side of the slab is irradiated by a plane electromaguminated by a point source and the transmitted light is col-
netic wave, and a point detector measures the temporal alected by a plane detector. The scattering angle of a photon in
tocorrelation function of the electric field component on theour Monte Carlo simulation is determined by the Henyey-
other side of the slab. By solving the diffusion equation forGreenstein phase functidri8], but it would be trivial to
such geometry, it is possible to find a reasonably good exextend it to any, analytically or numerically defined phase
pression[11,13,14 for the photon path length probability function. For details of the Monte Carlo implementation, re-

density functiorp(s). We follow the derivation op(s) from
Refs. [11,13 by applying an infinite number of image

fer to Ref.[12].
As a first comparison between our analytical solution and

sources and introducing extrapolated-boundary conditionthe Monte Carlo simulation, we neglect both the optical ab-

[13,16 to obtain the following expression:

sorption by settinge, to zero and the Brownian motion ef-
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FIG. 1. Thek,l dependence of the maximum variation of the
time autocorrelation function whil&, is kept constant. Different
lines are for different values of the scattering anisotropy fagtor
and the acoustic amplitude. Empty symbols indicate the Monte
Carlo resultsd(g=0.9, A=0.1 A), A(g=0, A=0.1 A), O(g
=0.9, A=35 A), V(g=0, A=3.5 A). Solid lines indicate the

analytical results. Filed symbols indicate the analytical results as

well, but by using the similarity relation. The following parameters
are used in the calculationis{| =127.35, the wavelength of liglir
vacuois Ag=500 nm,ny=1.33,f,=1 MHz, v,=1480 m/s, and
7n=0.3211.

fect by settingry— . In Egs.(14) and(15) we see that the
value of G4(7) oscillates between 1 at=0 and the mini-
mum value atr= 7/ w,. The maximum variation 0&,(7) is
compared for different values &f,] while k, and the ratio
L/l (the number of mean free paths in a slab of thickrigss
are kept constant. We repeat the test for several differe
values of the scattering anisotropy factpand the acoustic
amplitudeA.

The results are shown in Fig. 1. The analytical predictions

(solid lines in Fig. 1 fit the Monte Carlo calculation@mpty
scatterersvery well. In general, increasing the value gf
leads to a decreased maximum variation&Qf 7) due to a

PHYSICAL REVIEW E 66, 026603 (2002
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FIG. 2. Relative error ofa) &y , and(b) * for differentk,l*
andg values. Lines (*Q,+,00,A) represent respectivel$.1, 0.3,
0.5, 0.7, 0.9 values of the scattering anisotropy factpr

will examine the counterpart of this conventional similarity
relation in the ultrasonic modulation of coherent light. In
other words, we will compare two casd4) the scattering
coefficient isu and the scattering anisotropy factogisnd
(tZ) the scattering coefficient igs[=us(1—g)] and the

n'scattering anisotropy factor is zero. In the following text, the

symbols with* indicate cas€?2).
In Eg. (12) we see that the values 6 for both the cases
are exactly the sameSg= &7 ). On the other hand, the matrix

J for the isotropic casé€2) reduces to only one numbey:
=arctank,*)/(kJ*) and we have &% = ?K3l* x/(1— x)

decreased number of equivalent isotropic scattering even{d1]. However, the matrix) for the general casfl) is quite
inside the slab. Further, a larger ultrasonic amplitude incomplicated, and a direct analytical comparison with ¢ase
creases the maximum variation of the temporal autocorrelas difficult. Instead, we will plot the relative error between
tion function due to the larger movement of scattering centhe two cases.

ters and greater modulation of the index of refraction.

From Fig. Za), we see that the discrepancy betwegn

Finally, the maximum variation grows in a slab geometryands, is not very largeless than 13 percentven when the

with k| due to the larger value of the produd, , while the

scattering anisotropy factayris 0.9. The error grows witly

productl 5; remains unchanged. From Fig. 1 we see that ouand has a maximum aroutgl* =2. Because thé, part of

analytical model works well for a wide range &fl even
when the anisotropy factor is nonzero.

V. SIMILARITY RELATION

In this section, we will explore a similarity relation using

the sumé= §,+ &4 is unchanged by the similarity transfor-
mation, the relative difference betweeii and & is even
smaller. From Fig. @) we see that the relative error 6f is
less than 8% M/u. The validity of the similarity relation can
also been seen in Fig. (Bec. V).

In conclusion, with a relatively small error, we can apply

the verified analytical solution, rather than the numerical sothe similarity relation in the calculation of the temporal au-

lution shown previously[12]. In intensity-based photon
transport theory, there is a similarity relatigh9]: if the
transport scattering coefficients[ =us(1—g)] remains
constant when the scattering coefficigntand the scattering
anisotropy factolg vary, the spatial distribution of light in-
tensity will be approximately the same. The similarity rela-
tion [us=pus(1—g)] can be rewritten as* =1/(1—g),

tocorrelation function under the conditions we considered
during the derivation of(7) andG4(7).

VI. DEPENDENCE ON ULTRASONIC AND OPTICAL
PARAMETERS

In this section we will explore the dependence of the au-

wherel* is the isotropic scattering mean free path. Here, wetocorrelation function on the ultrasonic and optical param-
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T ol 1o FIG. 3. Dependence of the
3 o—ooo—° ° °° maximum variation of the tempo-
o w0'F| © A=L70am ral autocorrelation function on dif-
~ -zi\A\A—\A\A :e g 33&?% ferent ultrasonic and scattering pa-
2 10 g IO-ZL_M/MA rameters. Solid lines represent the
S” - O 4=170nm, f=10 MHz s analytical predictions and symbols
—_ A A=0.10nm, £=10 MHz = 10°F represent the Monte Carlo results.
o'l O A=0.01nm, f=1 MHz (a) Dependence on the absorption
@) 10°F coefficient at different values of
10'5L S . : ,——5—&-= S (b). ultrasonic frequency and ampli-
0.1 02 03 0.4 05 1 10 tude.(b) Dependence on the ultra-
A, (1/em) fa (MHz) sonic frequency at different values
R 3 of ultrasonic amplitude(c) De-
pendence on the ultrasonic ampli-
tude at different values of ultra-
-~ sonic frequency(d) Dependence
& 4 on the scattering coefficient at dif-
9’_ 0 A=1.70 nm, £=10 MHz ferent values of ultrasonic fre-
. A A=0.10 nm, fz:l()M]—Iz /D/D/“ quency and amplitude. The fol-
- O A=0.01 nm, f=1 MHz lowing parameters are used in
the calculation:v,=1480 m/sy
@ =0.3211, ng=1.33, L=2 cm,
00 0.1 02 03 T BT — ps=20 cm* [except in(d)], ua
A (nm) 3 (1/cm) =0 [except in(@)], andg=0.

eters in a slab geometiyFig. 3]. Since it has been shown lytical predictions fit the Monte Carlo results well. However,
that the similarity relation can be applied successfully wherthe error of the analytical prediction grows when the maxi-
scattering is anisotropic, we consider only isotropic scattermum variation is large and when the average number of pho-
ing. In all the cases we neglect Brownian motion and calcuton steps along the paths is small. The data is in agreement
late the value of + G, (7) at one half of an ultrasonic period with our assumptions made during the derivationFdfr),
(solid lines in Fig. 3 according to the analytical solution je. the accumulated phase change along the photon paths is
[Eq._(14)]. The symbols represent the Monte Carlo results. sma|| enough to apply the approximation between E2p.
Figure 3a) shows that the maximum variation decays gnq(4), and that we are in the diffusion regime, which was

when the absorption coefficient increases. This is becauserﬂecessary for the derivation B{ 7) in the Appendix, as well
higher absorption coefficient reduces the fraction of photon(sj1S for the derivation of the photon path-length probability
of long path length reaching the detector. Because thes&ensity[Eq (13)]
long-path-length photons contribute most to modulation, the ' '
maximum variation decreases.

Figure 3b) shows that the maximum variation increases
with acoustic frequency. This is because a higher acoustic VIl. CONCLUSION
frequency leads to a higher ratio between the scattering mean |, conclusion, we have presented an analytical solution

free path an? the urlltrajsonic w?vellceng'gh, which inﬁreases Rr the autocorrelation function of an ultrasound-modulated
contribution from the index of refractiond;) but has no  gjeciric fielq along a path witN scatterers when scattering is

eﬁ?:?;&r; t;g Cs?']ng\l;:/zutt;](:’ar: ];Lzmmd;(?r‘lr?:g?/zrﬁg%on inCreasesanisotropic. A further analytical solution was found for the
. : : . . light transmitted through a scattering slab using a plane
with the acoustic amplitude. A greater ultrasonic amplitude g 9 g gap

. . o : ; pource and a point detector. Using a Monte Carlo simulation,
increases the maximum variation by increasing both the ScaWe verified the accuracy of the analytical solution. We also
terer displacementdy) and the index of refractiond,). y y '

Figure 3d) shows that the maximum variation increasesteSted the similari.ty re_Iatic_m and showeq that it can be used
with the scattering coefficient. This is because an increase iffS & 900d approximation in the calculation of the autocorre-
the scattering coefficient leads to a smaller value of the lation function. Finally, we presented the dependence of the
photon mean free path and a higher number of photon scaf?@ximum variation of the autocorrelation function on differ-
terings along the paths. A higher number of photon scattef€nt ultrasonic and optical parameters. In general, increasing
ings along the paths produces a higher maximum variation illtrasonic amplitude or frequency and increasing the scatter-
the autocorrelation function. ing coefficient leads us to a larger maximum variation while

In all the cases, we tried to present situations with a smalincreasing the absorption coefficient leads us to a smaller
maximum variation (choosing small amplitude and fre- maximum variation. Our analytical solution is valid under
quency of ultrasoundas well as situations when the maxi- the following conditions: diffusion regime transport, a small
mum variation is near unityusually when the ultrasound ultrasonic modulation, and when the valuekgf is not too
amplitude or frequency is highin all these cases, the ana- small.
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APPENDIX

The averaging over time of each term on the right side of

Eq. (7) and over the lengthl of all free paths produce

N
<E [A¢n,j(t,r)]2> = %(4n0koA77)2 Sinz(%war)
j=1

t,Ij
N
X(kah)? 2 [TOG)+T* ()]

(Ala)

N j—1
<22 2 A(ll’n,jA(ll’n,k>
j=2 k=1

t,IJ-

1 1
=§(kal )2(4n0k0A77)2 Sinz(zwar)

N j-1 j j
x> > (H Toxm+ 11 T*(xm>),
=2 k=1 k m=k

(Alb)
N-1
<2 [A¢d,j(t17)]2>
=1 th
1 1 N-1
= E(ZnokoA)z Sinz(zwaT) ;1 (Xj+1_xj)2,
(Alc)

N-1j-1
<22 > A¢d,jA¢d,k>
j=2 k=1 t,|j
N—-1

1 1
=§(2n0koA)2 sin2<§wa7) 12::2

-1
» [ué,ﬂ—ép-éa]
k=1

. o j
><[(eK+1—eK)-ea]( m:l_k[H T(Xm)

(Ald)

1 1
:z kal (2n0koA)27] Sln2( E(l)a’T)

k k
_ (xm—xk)(mf_lj T(xm)+m[1j T* (Xm)

(X1 %)
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, (Ale)

j j
( I T+ 11 T*(xm>)
m=k+1 m=k+1

whereT(Xy,) = /(1—ikalXm), T*(Xy) is its complex conju-
gate,i is an imaginary unit, and we use a variabklg to
represent cog,,.

In order to provide averaging over all scattering direc-
tions, as a first step we expand the phase function for the
polar anglef(cosé) over Legendre polynomials,

“2m+1
f(cosf)= >, —=——g,,Pm(cOSH),
m=0 2

Om= f f(cosh)P,,(cosh)sinod o,
0
(A2)

where cog represents the cosine of the deflection angle.
Notice that in Eq.(A2) go=1, andg, is equal to the
scattering anisotropy factog. In the case of Henyey-
Greenstein phase function for the polar andlg], the value
of each coefficieny,, is the mth power of the scattering
anisotropy factor ¢,,=g™). Because the azimuth angles are
uniformly distributed, the phase function for both the azi-
muth and polar angles are simply the polar phase function
multiplied by a constant factor ¢2) 1.
In our case, the argument of the phase function is the
cosine of the angle between the incoming and outgoing pho-

ton direction &-€.,). The unity vectore in a spherical
coordinate system has a forey=cosé,e,+ sin 6 cosg;e,

+sing, Sincpjéy, and the argument of the phase function in
this representation becomes

COSf=c0s0;COSH; 1+ SiNB;Sin b, 1C0L oj— @j11)-

(A3)
Using the identity{ 20]
Pa(xy= V1=x*V1=y?cog @))=Py(X)Py(y)
" (=D cogka)(n—k)!
22, ) PROOPK(Y),
(A4)

and representing, y, and @ with cosé;, cos6,,,, and =

+ ¢j— ¢j+1, we first provide integration over all uniformly
distributed azimuth angles in Eq§Al). Because in Egs.
(A1) nothing depends on the azimuth angle, all terms with
associate Legendre polynomizﬂﬁ() in Eq. (A4) vanish dur-
ing the integration. Thus, for the further integration over the
polar angles, the probability density function of the photon to
travel along the directions, . . . ,&, reduces to the function
f(N(coséy, . ..,cosdy), which depends only on the polar
angles along the photon path:

026603-6



ULTRASONIC MODULATION OF MULTIPLY SCATTERED. . . .

fN(cosd, ... ,costy)

N—1
=p4(cOSb;) ,1:[1 f(2)(cosd; ,cosb; . 1),

(A5a)
@ (cos#; ,cosejH)
Z

Pm(cosf;)Pn(cosb 1),

(A5Db)

where p(cosé,) is the probability density function of the

starting polar angle. For simplicity, we assurpg(cos6,)
=1/2 (uniform distribution) instead of the actual anisotropic

phase function, which was shown not to affect the final result

in the diffusion regime.
Using the orthogonality of Legendre polynomials, now it
is straightforward to obtain the following equations:

1
Hi(Xj—1.Xj11)= f(z)(xj—l,Xj)T(Xj)f(z)(Xj Xj+1)dX
-1

o 2m+1 [2n+1
_ 1/2 1/2
=2 2w N3 V3

m,an(Xjfl) Pn(xj+1)y (A6a)

xXJ

1 1
(T(X)))x= fﬁl~ . fﬁlT(xj)f(N)(xl, X)X - dXy

=300, (ABb)
j 1 1 j
<H T<xm>> =f f (H T(xm>)
m=k _ -1 —1\ m=k
X fN(xq, Xpn)dX; - - - dXy
= Joioindi iy iione e o Jipi
i(;zo i(i15%9-0 0,i(1)Vi(1),i(2) i(j—k),0
:(jjfkﬂ)o,o' (A6c)
wherel is the matrix defined by
2m+1 [2n+1 (1
mn=90 0N 5\ f T(0)Pr(X)Py(x)dx
-1
(A7)

and the ), represents the (0,0) element of the mattix
Thus, the average of the right side of Ef.1a) over all
the polar angles becomes
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N
<jZl [A¢n,j<t,r>]2>

=%(4n0k0A77) S|n2( war)

X:

th X,

X (Kl )2N[(3) .0+ (3*)o,0]-
(A8)

On the other hand, the average of the right side of Eq.
(Alb) has a more complicated form:

N j—-1
2> > A¢n,jA¢n,k>
j=2 k=1

t,Ij X

(I)IH

3

2 [(IK o0+ (37K g0l (A9)

(kal)2(4ngkoAn)? sm2(

||Mz

If we replace the sums on the right-hand side of &®)
with

N j—1

JZZ kzl Ik 0={32(1-3) 1
X[(N=1)i =31 —3N-1
x(1=3) oo, (A10)

and further keep only the terms that are proportional to a
large numbeN in the above equation, we have

N j—1
<22 2 A¢n,jA¢n,k>
j=2 k=1 t,Ij,xi
1 1
:Ng(kal)2(4n0k0A7])2 sinZ(Ew T
X[P2A=3) "1+ 3%2(1-3%) oo (ALD)

Joining Eqs(A8) and(A1l), we finally have

t,Ij JXi

N j-1

2 [Adn(t, r>]2+22 2 A Ak

1 1
=N 7 (kal)*(4nkoA7)? sin2( > 0aT
XRI(T—-3) oo, (A12)

where Re is for theeal value
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The remaining task is to provide the average of the right N-1 N-1j-1

hand side of Eqs(Alc), (Ald), and (Ale), over all polar > (Apg(t,m)2+2> > A¢d,jA¢d,k>
angles. As a first step, we define the coefficiépt , for any =1 =2 k=1 tl x
function ®(x), and for each pair of nonnegative integer

. 1 1 2
numbers @, n): ~ NE(ZnOKOA)ZSinZ(EwaT> S-g).  (A17)
@

m,n
1 2m+1 [2n+1 124, In general, the errors of approximation we made in Egs.
= f_l V2V 3 ImGn POPR(X)P(X)dX. (A12) and(A18) are small when botk,| and the averagh
are large. Conversely, the error can be large: for example, if
(A13)  N=10, andk,l =1, the error is about 50% for isotropic scat-

. o . tering.
Then, according to the deflgmon in EGA13), itis easy to Finally, the average over all the polar angles of the right-
show that for the functiong, x*, T(x), andxT(x) we have -4 <ide of Eq(ALe) is

HiX

(X)oj=01;V/1/3, (A14) _—
(x%)o,0=1/3, 2j§1 k; A¢n,jA¢d,k>

t,lj X

[XT(X)]O,j:(ikal)71(T0,j_5O,j)r _ R .
=(1-g0) (k) H(N=1)[(32)g0— (3*2)o 0] =0.
Tj,1=(ikal) " V391(To;— 8o,), (AL8)

where &, , represents the delta function.

Using the results in EqAL14), the average over all the The zero is obtained in EqA19) because the elements of
polar angles of the right-hand side of Hé\1c) becomes the symmetric matrix) are either real or imaginary numbers.
The expression for the functio®(7) [Eq. (4)] becomes

N—1 1 1
< > [A¢d,j(t17)]2> = E(ZnokoA)2 Sinz(iwaT)
=1
‘ ;5 F(7)=(N % (ko 2(4nokoA7)? SiP(} w,7)
2 A Ao
X(N=1)3(1-g1). (AL5) XRJ(1=3) " oot N3 (2ngkeA)?
2L 201_
On the other hand, the average of the right-hand side of XSif(3 0a7) § (1=g)n, (AL9)
Eq. (Ald) is
N-1j-1 where the last average is over all realizations of the number
(1 of free pathaN in a photon path of lengtk. Since the aver-
<2122 k; A¢d'iA¢d'k> =(2ngkoA)? S'HZ(E‘””) age vaIEe oN is s/IF,)we hase ’
t,l,x

ji

X (1-9)2(kal) "2 R Moo, A16 s o1

) ) (A g) ( a ) d ]0,0 ( ) F(T ZT(ZnokoA)z SmZ(EwaT 7’2(ka|)2
whereM =JN"2—1. Since the right-hand side of EA16) L

is not proportional tdN, we consider it much smaller than the 373y -1 T

right side of Eq.(A15), and we have XREIA=9) oot z(1-g0) (- (A20)
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