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Light backscattering polarization patterns from
turbid media: theory and experiment

Milun J. Raković, George W. Kattawar, Mehrűbe Mehrűbeoğlu, Brent D. Cameron,
ihong V. Wang, Sohi Rastegar, and Gerard L. Coté

We present both experimental measurements and Monte-Carlo-based simulations of the diffusely back-
scattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam.
It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective
backscattering Mueller matrix are independent. A new numerical method that allows simultaneous
calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we
compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of
different sizes and concentrations in deionized water. The experimental and numerical results are in
excellent agreement. © 1999 Optical Society of America

OCIS codes: 260.5430, 290.1350, 290.4210, 290.7050.
1. Introduction

A few recent studies have demonstrated that infor-
mation on the properties of a turbid medium can be
measured by shining a polarized laser beam onto a
sample and then analyzing the state of polarization of
the diffusely backscattered light. The investigated
applications of this technique include the measure-
ments of the average particle size, the scattering co-
efficients and the anisotropy factor of particle
suspensions,1 cloud diagnostics,2,3 the study of biolog-
ical materials,4–6 and the measurements of the aver-
age photon path length.7

To achieve full experimental characterization of
the optical properties of the sample under investiga-
tion, Hielscher et al.6,8 used a Stokes vectoryMueller
matrix approach to polarized light scattering. They
generalized the concept of an effective Mueller ma-
trix9 and measured the two-dimensional Mueller ma-
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trix of backscattered light. In recent theoretical
research, Ambirajan and Look10 used a Monte Carlo
technique in studying the backscattering of a polar-
ized laser beam from a plane-parallel medium.
They studied the degree of polarization of the diffuse
light when the incident beam was right circularly
polarized. Raković and Kattawar11 theoretically an-
alyzed the contribution to the light backscattering
coming from double-scattering events and compared
the results with the measurements of Pal and Car-
swell.2,3

In this paper we extend the research initiated in
Ref. 12. We present a numerical method that allows
simultaneous calculation of all 16 elements of the
effective backscattering Mueller matrix. We prove
that, because of axial symmetry of the system, there
are only seven independent elements in this matrix
and that the remaining elements are obtained from
these by simple rotations or equality. To validate
our method, we compare numerical simulations with
measurements on polystyrene sphere suspensions.
In Section 2 we define the effective backscattering
Mueller matrix and represent it as a sum over all
orders of multiple-scattered light. In Section 3, un-
der rather general conditions, we derive important
symmetry relations satisfied by the elements of the
backscattering matrix. In Section 4 we develop a
numerical Monte Carlo technique for calculation of
the effective Mueller matrix. In Section 5 we com-
pare theoretical results with experimental measure-
ments. Finally, Section 6 contains concluding
remarks.
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3399
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2. Backscattering Mueller Matrix

We assume that the scattering of light is incoherent.
The incoming narrow light beam propagates down-
ward along the z axis and is injected into an optically
deep conservative scattering medium that is as-
sumed to occupy the lower half-space, where z # 0
~see Fig. 1!.

Let F0 be the Stokes vector corresponding to the
irradiance of the incident laser beam with respect to
the x–z reference plane. We assume that the light
rosses a small surface element ds0, so that the vector

describing the incident total light power is P0 5
F0ds0. After being scattered by particle scatterers,
light leaves the medium in all possible directions.
Let Ibs~r, f! be the Stokes vector describing the radi-
ance at the detector, i.e., at the point ~r, f, z 5 0! on
the surface of the scattering medium, of the light that
has been scattered exactly backward. For the refer-
ence plane we choose the plane parallel to the x–z
plane. Then

Ibs~r, f! 5 ms
2S~r, f; ms, mT!P0, (1)

where ms and mT are scattering and extinction coeffi-
cients, respectively,13,14 and by definition S is the
effective backscattering Mueller matrix. This ma-
trix is obtained by solving a radiative transfer equa-
tion14 with the appropriate boundary conditions. In
Section 5, we numerically calculate the matrix S us-
ing the Monte Carlo technique. Now we discuss the
important general relations satisfied by the elements
of S.

If the scattering medium is homogeneous, the sys-
tem possesses axial symmetry with respect to the z
axis. To see how this affects the form of the back-
scattering matrix, assume as above that the incoming
light beam propagates downward along the z axis and
hat the backscattered light leaves the medium at the
oint ~r, f, z 5 0!. However, let the plane of refer-
nce be the plane containing the incoming and back-
cattered light beam. Then

I*bs~r, f! 5 ms
2S*~r, f; ms, mT!P*0, (2)

where primes correspond to a different reference
plane. Now axial symmetry of the system is ex-

Fig. 1. Geometry of the multiple scattering.
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pressed by the fact that the matrix S* does not depend
on f, i.e.,

S*~r, f; ms, mT! ; S̃~r; ms, mT!, (3)

where S̃ is the reduced backscattering matrix.
rom this it follows that the effective Mueller matrix
akes the form

S~r, f; ms, mT! 5 R~2f!S̃~r; ms, mT!R~2f!, (4)

where R is the rotational Mueller matrix

R~f! 5 3
1 0 0 0
0 cos 2f sin 2f 0
0 2sin 2f cos 2f 0
0 0 0 1

4 (5)

that connects the two Stokes vectors that describe the
same polarization state of the light beam but with
respect to the two reference planes such that the first
reference plane coincides with the second one after a
counterclockwise rotation by the angle f around the
direction of light propagation.

From Eq. ~4! we can see that the radial and azi-
uthal dependence of the backscattering matrix are

actorized. Setting f 5 0 one obtains

S̃~r; ms, mT! 5 S~r, f 5 0; ms, mT!. (6)

Furthermore, the reduced backscattering matrix S̃
an be represented as a sum over all orders of the
ultiple-scattered light, namely,

S̃~r; ms, mT! 5 (
n52

`

S̃n~r; ms, mT!, (7)

where S̃n denotes the contribution from the light
that has been scattered exactly n times by the scat-
tering particles. S̃n is itself a finite sum of terms
S̃n

i, where 0 # i # n 2 1 is the number of times the
light has been reflected from ~and transmitted
through! the surface ~boundary! of the medium.
Following the derivation by Raković and Kattawar,11

one can show that the ~simplest! term S̃n
0 takes the

form ~see Fig. 2!

S̃n
0~r; ms, mT! 5 ms

n22 *
2`

0

dz1 *
z2#0

dr2 *
z3#0

dr3. . .

3 *
zn21#0

drn21 *
2`

0

dzn exp~2mTuz1u!

3 F)
i51

n21 exp~2mTuri11 2 riu!
uri11 2 riu2

G
3 exp~2mTuznu!R~fn!M~un!R~fn21 n!. . .

3 M~u2!R~f12!M~u1!R~f1!, (8)

where M~u! is the Mueller matrix describing single
scattering by particles. In the above, ri~i 5 1, . . . ,
n! are n scattering points, zi , 0, and r1 5 ~x1 5 0, y1
5 0, z1 , 0! and rn 5 ~xn 5 r, yn 5 0, zn , 0!; let also
r0 5 0 and rn11 5 ~xn11 5 r, yn 5 0, zn 5 0!. ui are
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successive scattering angles ~i.e., ui, 1 , i , n, is the
ngle between vectors ri11 2 ri and ri 2 ri21; u1 is the

angle between vectors r2 2 r1 and the negative z axis;
and un is the angle between rn 2 rn21 and the positive
z axis!. fi21 i are angles of rotation between succes-
sive scattering planes @i.e., fi21 i, 2 # i # n, is defined
as an angle of rotation ~in the positive direction!
around a vector ri 2 ri21 of the plane ~ri22, ri21, ri!
which takes it to the plane ~ri21, ri, ri11!; f1 is an
ngle of rotation around the negative z axis of the x–z
lane which takes it to the plane ~r0, r1, r2!; and fn is

an angle of rotation around the positive z axis of the
lane ~rn21, rn, rn11! which takes it to the x–z plane#.
The terms S̃n

i with 0 , i , n can be generated
from Eq. ~8! by inserting ~in the matrix product! i

resnel matrices T that describe reflection from the
surface of the medium. Recall that the Fresnel
matrix can take two forms depending on the inci-
dent angle uin. If sin uin . n12 5 n2yn1, where n1
and n2 are indices of refraction ~medium 1 contains
incident and reflected light and medium 2 contains
transmitted light!, then

T~uin, n12! 5 3
1 0 0 0
0 1 0 0
0 0 cos d 2sin d
0 0 sin d cos d

4 , (9)

where d 5 d~n12, cos uin!. If sin uin # n12, then

T~uin, n12! 5 3
c1

2 1 c2
2

2
c1

2 2 c2
2

2
0 0

c1
2 2 c2

2

2
c1

2 1 c2
2

2
0 0

0 0 c1 c2 0
0 0 0 c1 c2

4 , (10)

where ci 5 ci~n12, cos uin!, i 5 1, 2.
It is convenient to use scaled ~dimensionless! vari-

ables:

rs 5 mTr. (11)

Fig. 2. Multiple-scattering trajectory: scattering points, scatter-
ing and rotational angles.
Introducing the above change of variables in Eq. ~8!,
ne obtains

S̃n
0~r; ms, mT! 5 v# n22Ln

0~rs!

5 v# n22 *
2`

0

dz1 *
z2#0

dr2 *
z3#0

dr3. . .

3 *
zn21#0

drn21 *
2`

0

dzn exp~2uz1u!

3 F)
i51

n21 exp~2uri11 2 riu!
uri11 2 riu2

G
3 exp~2uznu!R~fn!M~un!R~fn21 n!. . .

3 M~u2!R~f12!M~u1!R~f1!, (12)

where rs 5 mTr and v# 5 msymT is the single-scattering
albedo. The index s is dropped in the integration
ariables and now rn 5 ~xn11 5 rs, yn 5 0, zn , 0!.

In scaled variables the expansion formula Eq. ~7!
becomes

S̃~r; ms, mT! 5 (
n52

`

v# n22Ln~rs!. (13)

Again, the term Ln in the above sum describes the
backscattered light that has been scattered n times.
For example, in the simplest and important case of
the double-scattered light, L2 consists of two terms L2
5 L2

0 1 L2
1, where L2

0 corresponds to the light that
is scattered twice before reaching the detector,
whereas L2

1 corresponds to the light that is addition-
ally reflected from the surface of the medium before
the second scattering. These two terms take rela-
tively simple forms:

L2
0~rs! 5 *

0

`

*
0

` dz1dz2

r2 exp@2~z1 1 z2 1 r!#M~p

2 u!M~u!,

r 5 @rs
2 1 ~z1 2 z2!

2#1y2, tan u 5 rsy~z2 2 z1!,

L2
1~rs! 5 *

0

`

*
0

` dz1dz2

r2 exp@2~z1 1 z2 1 r!#M~p

2 u!T~u!M~p 2 u!,

r 5 @rs
2 1 ~z1 1 z2!

2#1y2, tan u 5 rsy~z1 1 z2!.

It can be shown that the above terms, in the case of
the ~Mie! scattering from the spherical particles, can
be reduced to single integrals over the scattering an-
gle u and therefore easily calculated.11

3. Symmetry Relations

In this section we show that, under certain condi-
tions, not all elements of the backscattering Mueller
matrix, Eqs. ~1! and ~4!, are independent. Consider
he rather general case in which the scattering me-
ium contains one kind of randomly distributed
symmetrical particles. Then the effective single-
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3401
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scattering Mueller matrix takes the form ~Ref. 13, pp.
49 and 50!

M~u! 5 3
M11 M12 M13 M14

M12 M22 M23 M24

2M13 2M23 M33 M34

M14 M24 2M34 M44

4 . (14)

Note also that the above form of the single-scattering
Mueller matrix with ten independent elements also
corresponds to optically active spheres ~Ref. 15, p.
190!. Now we define the projection matrix P:

P 5 diag~1, 1, 21, 1!, P2 5 E, (15)

where E is the identity matrix. Direct calculation
shows that M, Eq. ~14!, satisfies the relation

Mt 5 PMP, (16)

here the superscript t denotes transpose. @It can
e shown that the matrix of Eq. ~14! is in fact the
ost general matrix that satisfies the relation of Eq.

16!.# In addition, from Eqs. ~5!, ~9! and ~10!, it im-
ediately follows that

Rt 5 PRP, Tt 5 PTP. (17)

We now calculate the transpose of the matrix S̃n
0

defined by Eq. ~8!.
Using Eqs. ~16! and ~17! one obtains

S̃n
0t~r; ms, mT! 5 PS̃9n

0~r; ms, mT!P, (18)

where

S̃*n
0~r; ms, mT! 5 ms

n22 *
2`

0

dz1 *
z2#0

dr2 *
z3#0

3 dr3 . . . *
zn21#0

drn21 *
2`

0

dzn

3 exp~2mTuz1u!

3 F)
i51

n21 exp~2mTuri11 2 riu!
uri11 2 riu2

G
3 exp~2mTuznu!R~f1!M~u1!R~f12!. . .

3 M~un21!R~fn21 n!M~un!R~fn!. (19)

e can see that S̃*n
0 differs from S̃*n

0 only in the
order of terms in the matrix product. In other
words, the expression within the integral can be in-
terpreted as the contribution of the light that is in-
jected at the point rn11 5 ~xn11 5 r, yn 5 0, zn 5 0!
and scattered at the points rn, rn21, . . . , r1 before
xiting the medium at the point r0 5 0. ~This follows

from the equality fi21 i 5 fi i21.! Therefore it is also
equal to the contribution of the light that enters the
medium at r0, leaves at rn11, and scatters at points
r*1, r*2, . . . , r*n, where r*k 5 ~xk, 2yk, zk!, i.e., the
trajectory r*0, r*1, . . . , r*n11, is the mirror image
with respect to the x–z plane of the trajectory r0,
r1, . . . , rn11. Thus S̃*n

0 is obtained from S̃n
0 by
402 APPLIED OPTICS y Vol. 38, No. 15 y 20 May 1999
transformation of the integration variables yk 3
2yk. Now, if the scattering medium is invariant
under the transformation y 3 2y ~which is obvi-
ously true for a homogeneous medium occupying
the lower half-space!, then the two integrals are
equal, i.e., S̃*n

0 5 S̃n
0, or by Eq. ~18!,

S̃n
0t~r; ms, mT! 5 PS̃n

0~r; ms, mT!P. (20)

The same relation is valid for S̃n
i because it differs

from S̃n
0 only by the presence of Fresnel matrices T

that also satisfy the necessary relation in Eq. ~17!.
herefore Eq. ~20! holds for each S̃n and consequently

for their sum, i.e.,

S̃t~r; ms, mT! 5 PS̃~r; ms, mT!P. (21)

Equation ~21! defines the most general form that
the matrix S̃ can take @see Eqs. ~14! and ~16!#:

S̃ 5 3
S̃11 S̃12 S̃13 S̃14

S̃12 S̃22 S̃23 S̃24

2S̃13 2S̃23 S̃33 S̃34

S̃14 S̃24 2S̃34 S̃44

4 . (22)

Equations ~4! and ~22! now define the most general
forms for the matrix elements of S which are

S11~r, f! 5 S̃11~r!,

S12~r, f! 5 S̃12~r!cos 2f 1 S̃13~r! sin 2f,

S13~r, f! 5 2S̃12~r! sin 2f 1 S̃13~r! cos 2f,

S14~r, f! 5 S̃14~r!, S21~r, f! 5 S12~r, f!,

S22~r, f! 5
S̃22~r! 2 S̃33~r!

2
1

S̃22~r! 1 S̃33~r!

2
cos 4f

1 S̃23~r!sin 4f,

S23~r, f! 5 S̃23~r! cos 4f 2
S̃22~r! 1 S̃33~r!

2
sin 4f,

S24~r, f! 5 S̃24~r!cos 2f 2 S̃34~r! sin 2f,

S31~r, f! 5 2S13~r, f!, S32~r, f! 5 2S23~r, f!,

S33~r, f! 5 2
S̃22~r! 2 S̃33~r!

2

1
S̃22~r! 1 S̃33~r!

2
cos 4f

1 S̃23~r! sin 4f,

S34~r, f! 5 S̃24~r! sin 2f 1 S̃34~r! cos 2f,

S41~r, f! 5 S14~r, f! 5 S̃14~r!,

S42~r, f! 5 S24~r, f!, S43~r, f! 5 2S34~r, f!,

S44~r, f! 5 S̃44~r!. (23)

From these general forms, it follows that there are
only seven independent elements, S11~r!, S12~r, f!,
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S14~r!, S22~r, f!, S23~r, f!, S24~r, f!, and S44~r!, and
he other nine,

S13~r, f! 5 S12~r, f 1 py4!, S21~r, f! 5 S12~r, f!,

S31~r, f! 5 2S13~r, f! 5 S12~r, f 2 py4!,

S32~r, f! 5 2S23~r, f! 5 S23~r, f 6 py4!,

S33~r, f! 5 2S22~r, f 6 py4!,

S34~r, f! 5 S24~r, f 2 py4!,

S41~r, f! 5 S41~r! 5 S14~r!, S42~r, f! 5 S24~r, f!,

S43~r, f! 5 2S34~r, f! 5 S24~r, f 1 py4!, (24)

can be obtained by simple rotations at most.
The derived symmetry relations in Eqs. ~24! @and

the general form of the reduced backscattering ma-
trix of Eq. ~22!# hold, of course, if the assumptions
made at the beginning of this section are satisfied,
i.e., if the scattering medium contains one kind of
randomly distributed asymmetrical particles, or op-
tically active spheres. It can be shown that Eqs. ~22!
and ~24! also hold when the medium that contains
scattering particles is itself optically active because,
in that case, the effective scattering matrix S con-
ains additional rotational matrices of the form in Eq.
5!, which describe rotations that are due to optical
ctivity. Finally, for the symmetry relation to hold,
t is not necessary that the scattering medium fill the
ntire half-space; it is sufficient for it to have rota-
ional symmetry around the initial laser beam, e.g., it
an be a cylinder of finite size whose axis coincides
ith the direction of the initial laser beam.
The reduced backscattering matrix, Eqs. ~6! and

22!, further simplifies in the simplest, and impor-
ant, case of light scattering by homogeneous
pheres. In that case, the single-scattering Mueller
atrix was calculated by solving Maxwell’s equations
ith appropriate boundary conditions ~Mie theory!,

and it takes the relatively simple form13

M~u! 5 3
a~u! b~u! 0 0
b~u! a~u! 0 0

0 0 d~u! 2e~u!
0 0 e~u! d~u!

4 , (25)

where the four independent elements, a, b, d, and e,
expressed in terms of a series of Bessel functions,
depend on the scattering angle u, the refractive index,
and the size parameter of the scattering sphere.

Direct calculation shows that M, Eq. ~25!, satisfies,
other than Eq. ~16!, the relation

M 5 QMQ, (26)

where Q is another projection matrix:

Q 5 diag~1, 1, 21, 21!, Q2 5 E. (27)

In addition, from Eqs. ~5!, ~9!, and ~10!, it immedi-
ately follows that

Rt 5 QRQ, Tt 5 QTQ. (28)
With Eqs. ~26!–~28!, one can show @using a similar
erivation that leads to Eq. ~21!# that

S̃~r; ms, mT! 5 QS̃~r; ms, mT!Q. (29)

Therefore when the scatterers are homogeneous
spheres, the reduced backscattering matrix satisfies
both relations in Eq. ~21! and Eq. ~29!, and the most
eneral form it can take is

S̃ 5 3
S̃11 S̃12 0 0
S̃12 S̃22 0 0
0 0 S̃33 S̃34

0 0 2S̃34 S̃44

4 . (30)

In this case, the most general forms for the elements
of the effective backscattering Mueller matrix S, Eqs.
~23!, simplify by substituting S̃13~r! 5 S̃14~r! 5 S̃23~r!
5 S̃24~r! 5 S̃31~r! 5 S̃32~r! 5 S̃41~r! 5 S̃42~r! 5 0. In
his way the seven independent elements become

S11~r, f! 5 S̃11~r!, S12~r, f! 5 S̃12~r! cos 2f,

S14~r, f! 5 S̃14~r! 5 0,

S22~r, f! 5
S̃22~r! 2 S̃33~r!

2
1

S̃22~r! 1 S̃33~r!

2
cos 4f,

S23~r, f! 5 2
S̃22~r! 1 S̃33~r!

2
sin 4f,

S24~r, f! 5 2S̃34~r! sin 2f, S44~r, f! 5 S̃44~r!, (30a)

whereas the other nine elements are obtained
through symmetry relations, Eqs. ~24!, or explicitly

S13~r, f! 5 S12~r, f 1 py4! 5 2S̃12~r! sin 2f,

S21~r, f! 5 S12~r, f!,

S31~r, f! 5 2S13~r, f!, S32~r, f! 5 2S23~r, f!,

S33~r, f! 5 2S22~r, f 6 py4!

5 2
S̃22~r! 2 S̃33~r!

2
1

S̃22~r! 1 S̃33~r!

2
cos 4f,

S34~r, f! 5 S24~r, f 2 py4! 5 S̃34~r! cos 2f,

S41~r, f! 5 S14~r, f! 5 0,

S42~r, f! 5 S24~r, f!, S43~r, f! 5 2S34~r, f!. (30b)

From Eqs. ~30a! and ~30b! we can see that, in the case
of spherical scatterers, all matrix elements are de-
fined by six functions, S̃11~r!, S̃12~r!, S̃22~r!, S̃33~r!,
S̃34~r!, and S̃44~r!, that depend only on radial dis-
tance. We note at the end of this section that the
symmetry relations similar to those in Eqs. ~21! and
~29! are, in a different context, discussed in Ref. 16.

5. Monte Carlo Calculations

We used the Monte Carlo method to calculate the
effective backscattering Mueller matrix for the case
of spherical scatterers. Essentially, we represent S,
Eqs. ~4!, ~7!, and ~8!, as the sum over a large number
f randomly chosen photon trajectories that all start
t the origin r0 5 0. Each trajectory is defined by

the collection of points ri, i 5 1, 2, . . . , n, where the
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3403
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light scatterings take place and there are possible
additional points of reflection from the boundary of
the medium.

The trajectories are generated in the following way
~we describe only the trajectories without boundary
reflection; the generalization is straightforward!.
Because the light enters the medium propagating
downward along the z axis, the first scattering point
r1 5 ~0, 0, z1 , 0! is determined by choosing the
ength l1 5 uz1u. This, as well as all subsequent free

path lengths li11 5 uri11 2 riu, i 5 1, 2, . . . , are
hosen using a random number generator so their
robability distribution is w~l ! 5 mT exp~2mTl !.

Suppose now that the points ri, i 5 1, 2, . . . , k and
lk11 are already defined, then the next point rk11 is
determined by choosing the unit vector urk11 2 rkuy
lk11. This is defined by the scattering angle uk and
he rotational angle fk21 k that are defined in Section

2. Azimuth angles f are chosen according to the
uniform distribution w~f! 5 1y2p, whereas the scat-
tering angles f are chosen according to the distribu-
tion defined by an element of the single-scattering
matrix w~u! 5 2pa~u! sin u @see Eq. ~25!#.

To each point ri, we associate a matrix Mi and
weight wi using the following procedure. To r0 we
associate M0 5 1 and w0 5 1. Suppose that Mi and

i ~i 5 1, 2, . . . , k! are already defined, then Mk11 5
M~uk!R~fk!Mkya~uk! and wk11 5 v# wk. If between rk
and rk11 there is a point of reflection from the surface
~boundary! of the medium, then the matrix Mk11 is
additionally multiplied by the appropriate Fresnel
matrix. The trajectory is not infinite; it is truncated
when the product ~Mk!11wk is below some predeter-

ined cutoff value. ~Let us mention that in the
onte Carlo simulations presented in Section 6, the

verage number of collisions per trajectory was ten.!
Each triplet ri, Mi, wi gives a contribution to the

backscattering matrix S in the following way. Ef-
ectively, the resulting matrix S is given as a matrix
unction defined on a discrete set of points that define

certain grid on the z 5 0 plane. Now, the ith
riplet gives an additive contribution to the value of S
ssociated with the grid point closest to the point xi,

yi, with the contribution being

wi exp~2mTuzi u!R~fi9!M~ui9!Mi, (31)

where ui9 is the angle between ri 2 ri21 and the
positive z axis, whereas fi9 is the angle between the
plane ~ri21, ri, r*i! and the x–z plane, where r*i 5 ~xi,
yi, 0!. We can see that each trajectory effectively
carries contributions of as many trajectories as there
are scattering points along the trajectory.

The procedure described above uses the Monte
Carlo method to calculate the matrix S, although we
have seen that, due to Eq. ~4!, it is sufficient to cal-
culate the matrix S̃. From Eq. ~4! it follows that, to
calculate this matrix, it is sufficient to sandwich each
contribution @expression ~31!# between the two ma-
trices R~fi! and to associate the result to the point ri,
where ~ri, fi, zi! are the cylindrical coordinates of ri.
We note that this last transformation improves our
computational statistics enormously.
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5. Comparison with Experiment

A schematic view of the experimental apparatus used
for collection of the diffuse backscattered images is
shown in Fig. 3. A collimated light beam emitted by
a 10-mW He–Ne laser at a wavelength of 632.8 nm
passes through a 10% transmittance neutral density
filter ~FI!. This beam is then polarized by various

olarization optics ~PO1! ~i.e., linear and circular po-
arizers! to obtain the desired input polarization.
his polarized beam is then focused with the lens ~L1,
5 10 cm! through a hole ~d ' 2 mm! in a mirror

M1!, mounted at 45 deg, onto the sample. The dif-
usely backscattered light from the sample is trans-
itted through a polarization analyzer ~PO2! and

maged using a lens ~L2! onto a cooled 12-bit CCD
amera ~SpectraSource, Westlake Village, Calif.!.
he polarization analyzer consisted of a variety of
ptics that were interchanged to analyze a specific
ype of polarized light ~i.e., vertical, horizontal, 645°
inear, and left and right circularly polarized light!,
nd these images were used to reconstruct the Muel-
er matrix. The CCD array size is 336 3 243 pixels
ith a pixel size of 10 mm 3 10 mm. Each image was

ollected using an exposure time of 1.7 s.
The phantom used in the experiment was com-

rised of a suspension of polystyrene spheres of
.02-mm diameter ~Ernest F. Fullam, Latham, N.Y.!.
he sample was created by diluting 0.075 ml of a
0-wt% suspension of polystyrene spheres with 15 ml
f deionized water. The index of refraction of the
pheres is 1.59, and the sample has a relative index of
efraction nynw of 1.192 where nw is the index of

refraction for water. The sample has a scattering
coefficient ~ms! and anisotropy factor ~g! of 11.88 cm21

and 0.912, respectively, at 632.8 nm, and has a neg-
ligible absorption coefficient m ' 0 ~v# ' 1!. Finally,
the transport mean free path is4 mfp9 5 1y@ma 1

s~1 2 g!# 5 0.957 cm.
Figure 4 shows, side by side, elements of the effec-

Fig. 3. Schematic diagram of the experimental setup.
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tive backscattering Mueller matrix obtained both ex-
perimentally and theoretically. The approximate
size of each image is 1.6 cm 3 1.6 cm. ~It appears
that, for distances that exceed two transport mean
free paths approximately equal to 1.9 cm, the azi-
muthal dependence of the patterns becomes less pro-
nounced because multiple scatterings tend to
randomize the polarization state of the light.!

The results of the Monte Carlo calculations are
given in the form of the contour plots; each matrix
element is represented by several contours ~i.e., sets
in the x–y plane corresponding to certain fixed values
f the corresponding element!. Using the method of
ection 4, we first obtained the reduced matrix S̃, Eq.

~30!, or equivalently, six functions: S̃11~r!, S̃12~r!,
˜

22~r!, S̃33~r!, S̃34~r!, and S̃44~r!. Then from Eqs.
30a! and ~30b! we can calculate any contour corre-
ponding to each element of the matrix S. When
abeling the contours, shown in Fig. 4, by the numer-
cal values ~of the corresponding matrix elements!,
e adopted the normalization that the center in the

ontour plot of the matrix element S11 corresponds to
unity. Let us emphasize at this point that many
important features of the plots shown in Fig. 4 can be
predicted from the azimuthal dependence of the ma-
trix elements that is given in Eqs. ~30a! and ~30b!.
For example, the formula for the matrix element S12,
Eqs. ~30a!, shows that for any given contour there is
nother one of the same shape but rotated by 90 deg
nd that corresponds to the same absolute value but
he opposite sign of the matrix element. Indeed in
ig. 4 we can see that to S12 correspond pairs of

Fig. 4. Experimental and Monte Carlo backscattering Mueller
polystyrene spheres ~of diameter 2.02 mm! in deionized water. The
was 632.8 nm. The normalized ~see the text! absolute values cor
266, 111, 69, 49 3 1024; S12, S21, S13, S31: 15, 6, 2.5, 1 3 1024;

34, S42, S43: 10, 5, 2, 1 3 1024; S44: 129, 60, 38, 28 3 1024. T
enter of each plot.
contours in the shape of horizontal and vertical num-
ber eight that have exactly opposite values of the
matrix element. From Eqs. ~30a! and ~30b! one can
easily deduce similar symmetry properties for each of
the elements in Fig. 4.

To determine each of the 16 experimental matrix
elements, a total of 49 images are taken at various
combinations of input and output analyzer polariza-
tion states. Each of the 16 experimental elements is
calculated by adding or subtracting a series of im-
ages. The individual images are represented by a
two-letter combination that denotes the input polar-
ization and output analyzer orientation ~i.e., HV de-
notes horizontal input polarized light and a vertical
polarization analyzer!. The corresponding symbols
denoting polarization are V, vertical; H, horizontal; P,
145°; M, 245°; R, right; L, left; and O, open or no
polarization optics. Note that to obtain correct im-
ages one also has to take care of the effect of the
mirror M1. Namely, the experimental setup in Fig.
3 directly measures a matrix Sexp 5 SM1 where S is
the desired backscattering matrix, whereas M1 is the
Mueller matrix of the realistic mirror M1. In our
experiment we used an aluminum mirror with the
Mueller matrix ~for an incident angle of 45 deg!:

M1 5 3
0.82 0.055 0 0
0.055 0.82 0 0

0 0 20.79 20.20
0 0 0.20 20.79

4 .

rix. The phantom was comprised of a 0.05-wt% suspension of
roximate size of each image is 1.6 cm 3 1.6 cm. Light wavelength
nding to the contours of the theoretical matrix elements are S11:
S33: 38, 20, 14, 10 3 1024; S23, S32: 26, 15, 10, 6 3 1024; S24,
maller values correspond to the contours located farther from the
mat
app

respo
S22,
he s
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Therefore after the matrix S is determined as ex-
plained above, it has to be multiplied from the right
by M121.

In Fig. 4 the experimental matrix elements are
represented by several black and white regions, each
region corresponding to a certain range of values of
the matrix element. ~Fluctuation of the experimen-
tal results, see below, did not allow for precise deter-
mination of a single contour.! Boundaries between
black and white regions then approximately define
the contours, which have the same shape as those
obtained by numerical calculations, and in both cases
the contours located farther from the center corre-
spond to smaller absolute values of the matrix ele-
ments. Figure 4 also shows that the experiment did
not produce any pattern for the matrix elements S14
and S41; only a weak signal was detected. On the
other hand, theory predicts that these elements van-
ish for spherical scatterers @see Eqs. ~30a! and ~30b!#.
Accordingly, our numerical calculations produced
only negligible fluctuations around zero for the ele-
ments S̃14 and S̃41.

The results shown in Fig. 4 demonstrate good qual-
tative agreement between theory and experiment for
he intensity patterns of the two-dimensional back-
cattered Mueller matrix elements in the case of mul-
iple scattering of the incident radiation from a
uspension of polystyrene spheres. However, we
ow make a more direct and quantitative comparison
etween theory and experiment by presenting the
esults describing cross-polarized backscattering pat-
erns for various concentrations of spherical scatter-
rs and different particle sizes. The directly
easured cross-polarized patterns3,7,11 correspond to

the HV orientation of the experimental setup, i.e.,
horizontal ~along the x-axis! polarization of the inci-
dent light and vertical ~along the y-axis! polarization
analyzer. In terms of the Mueller matrix elements,
the corresponding intensity patterns are ~up to a mul-
tiplicative factor!

C~r, f! 5 S11~r, f! 1 S12~r, f! 2 S21~r, f! 2 S22~r, f!.

(32)

rom Eqs. ~23! and ~32! it follows that

C~r, f! 5 S̃11~r! 2
S̃22~r! 2 S̃33~r!

2
2

S̃22~r! 1 S̃33~r!

2

3 cos 4f 2 S̃23~r!sin 4f, (33)

nd in the case of spherical scatterers, Eq. ~30!, one
obtains

C~r, f! 5 S̃11~r! 2
S̃22~r! 2 S̃33~r!

2

2
S̃22~r! 1 S̃33~r!

2
cos 4f. (34)

We can see that our theory predicts ~cos 4f! azi-
muthal dependence in accordance with cloverlike
patterns that were observed experimentally.3,7
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In Figs. 5 and 6 we show experimental and Monte
Carlo results for the azimuthal dependence of crossed
patterns for various radial distances and particle
sizes. In Fig. 5 we used the same suspension as in
Fig. 4, whereas in Fig. 6 we used water suspensions
of 0.482-mm polystyrene spheres for three different
concentrations. Figures 5 and 6 demonstrate excel-
lent quantitative agreement between theory and ex-
periment: Theoretical curves appear to be almost
exact envelopes of the fluctuating experimental re-
sults.

Finally in Fig. 7 we compared experimental and
Monte Carlo images of the backscattering crossed
polarization patterns that correspond to the suspen-
sion used in Fig. 6. Inner and outer patterns in each
image are the theoretical results, whereas the middle
pattern in each image is the experimental result.
We can see that the expected cloverlike patterns3,7

are obtained. However, Fig. 7 shows that, as the
concentration of the scatterers increases, the pat-
terns are located in a smaller vicinity of the point of
incidence of the laser beam. We note that, although
the patterns are obtained for perfect homogeneous
spheres, Eq. ~33! predicts that such patterns should
merge, possibly slightly rotated, for any kind of iden-
ical particles in random orientation, provided that
he concentration is sufficiently low.

6. Conclusion

In this research we have demonstrated that the the-
ory of incoherent light scattering by particles is a
satisfactory framework for the description for light
backscattering from turbid media. Our theory pre-
dicted, and our experiment confirmed, that the effec-
tive backscattering Mueller matrix possesses
important symmetry relations: Only seven matrix
elements are independent and the rest can be ob-
tained by simple rotations. These symmetry rela-
tions hold under general conditions: The scattering

Fig. 5. Experimental ~scattered symbols! and Monte Carlo ~solid
urves! results for the azimuthal dependence of crossed patterns
~r, f!, Eq. ~33!, for polystyrene spheres of diameter 2.02 mm and

a concentration of 0.05%. The upper data correspond to 2-mm
radial distance, whereas the lower data correspond to 4 mm.
Light wavelength was 632.8 nm.



medium should be invariant under rotations around
the initial laser beam direction and should contain an
ensemble of identical ~possibly asymmetric! scatter-
ing particles in random orientations. The second
condition can be weaker, in a sense that the scatter-
ers may constitute a finite number of different en-
sembles of ~identical! particles. In other words, the
symmetry relations will break down only if scattering
particles are all virtually different and cannot be clas-
sified in several ensembles of identical particles.

The laser beam in the experiment was coherent,
and nevertheless the light scattering treated in the

Fig. 6. Experimental ~scattered symbols! and Monte Carlo ~solid
curves! results for the azimuthal dependence of crossed patterns
C~r, f!, Eq. ~33!, for polystyrene spheres of diameter 0.482 mm and
three different concentrations: ~a! 0.1%, ~b! 0.05%, and ~c!
0.025%. In ~a!–~c!, data at the top of the plots correspond to 2-mm
radial distance, whereas data on the bottom of the plots correspond
to 4 mm. In ~a! and ~b!, the other two data correspond to radial
distances of 3 and 4 mm. Light wavelength was 632.8 nm.
theoretical simulations was incoherent. This is jus-
tified by the fact that the correlation time of the laser-
induced speckles was generally of the order of 10 ms,
and the experimental images with the exposure time
of 1.7 s have the speckle effect averaged out. There-
fore the coherence effect was not important in our
images of Figs. 4 and 7.

Theory and experiment were also compared on the
much studied cloverlike cross-polarized backscatter-
ing patterns for various concentrations of spherical
scatterers and different particle sizes. Good quan-

Fig. 7. Experimental and theoretical ~Monte Carlo! backscatter-
ing crossed-polarization patterns for the suspension from Fig. 6
and three concentrations: ~a! 0.1%, ~b! 0.05%, and ~c! 0.025%.
Inner and outer patterns in each image are the theoretical results,
whereas the middle pattern in each image is the experimental
result.
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3407



and circularly polarized light,” in Biomedical Sensing Imag-

3

titative agreement was obtained. It was shown that
these cloverlike patterns should emerge under the
same general conditions described above. However,
if particle concentration increases, the pattern
shrinks around the point of incidence of the laser
beam and eventually disappears.
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