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1. Introduction

We present both experimental measurements and Monte-Carlo-based simulations of the diffusely back-
scattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam.
It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective
backscattering Mueller matrix are independent. A new numerical method that allows simultaneous
calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we
compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of
different sizes and concentrations in deionized water. The experimental and numerical results are in
excellent agreement. © 1999 Optical Society of America
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trix of backscattered light. In recent theoretical

A few recent studies have demonstrated that infor-
mation on the properties of a turbid medium can be
measured by shining a polarized laser beam onto a
sample and then analyzing the state of polarization of
the diffusely backscattered light. The investigated
applications of this technique include the measure-
ments of the average particle size, the scattering co-
efficients and the anisotropy factor of particle
suspensions,?! cloud diagnostics,23 the study of biolog-
ical materials,4-6 and the measurements of the aver-
age photon path length.”

To achieve full experimental characterization of
the optical properties of the sample under investiga-
tion, Hielscher et al.68 used a Stokes vector/Mueller
matrix approach to polarized light scattering. They
generalized the concept of an effective Mueller ma-
trix® and measured the two-dimensional Mueller ma-
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research, Ambirajan and Look? used a Monte Carlo
technique in studying the backscattering of a polar-
ized laser beam from a plane-parallel medium.
They studied the degree of polarization of the diffuse
light when the incident beam was right circularly
polarized. Rakovié and Kattawar!! theoretically an-
alyzed the contribution to the light backscattering
coming from double-scattering events and compared
the results with the measurements of Pal and Car-
swell.23

In this paper we extend the research initiated in
Ref. 12. We present a numerical method that allows
simultaneous calculation of all 16 elements of the
effective backscattering Mueller matrix. We prove
that, because of axial symmetry of the system, there
are only seven independent elements in this matrix
and that the remaining elements are obtained from
these by simple rotations or equality. To validate
our method, we compare numerical simulations with
measurements on polystyrene sphere suspensions.
In Section 2 we define the effective backscattering
Mueller matrix and represent it as a sum over all
orders of multiple-scattered light. In Section 3, un-
der rather general conditions, we derive important
symmetry relations satisfied by the elements of the
backscattering matrix. In Section 4 we develop a
numerical Monte Carlo technique for calculation of
the effective Mueller matrix. In Section 5 we com-
pare theoretical results with experimental measure-
ments. Finally, Section 6 contains concluding
remarks.
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Fig. 1. Geometry of the multiple scattering.

2. Backscattering Mueller Matrix

We assume that the scattering of light is incoherent.
The incoming narrow light beam propagates down-
ward along the z axis and is injected into an optically
deep conservative scattering medium that is as-
sumed to occupy the lower half-space, where z = 0
(see Fig. 1).

Let F, be the Stokes vector corresponding to the
irradiance of the incident laser beam with respect to
the x—z reference plane. We assume that the light
crosses a small surface element ds,, so that the vector
describing the incident total light power is P, =
Fyds,. After being scattered by particle scatterers,
light leaves the medium in all possible directions.
Let I’(p, ¢) be the Stokes vector describing the radi-
ance at the detector, i.e., at the point (p, ¢, z = 0) on
the surface of the scattering medium, of the light that
has been scattered exactly backward. For the refer-
ence plane we choose the plane parallel to the x—z
plane. Then

I"(p, b) = 1,*S(p, b; s, 1r)Pos (1)

where p, and ., are scattering and extinction coeffi-
cients, respectively,’314 and by definition S is the
effective backscattering Mueller matrix. This ma-
trix is obtained by solving a radiative transfer equa-
tion!4 with the appropriate boundary conditions. In
Section 5, we numerically calculate the matrix S us-
ing the Monte Carlo technique. Now we discuss the
important general relations satisfied by the elements
of S.

If the scattering medium is homogeneous, the sys-
tem possesses axial symmetry with respect to the z
axis. To see how this affects the form of the back-
scattering matrix, assume as above that the incoming
light beam propagates downward along the z axis and
that the backscattered light leaves the medium at the
point (p, &, z = 0). However, let the plane of refer-
ence be the plane containing the incoming and back-
scattered light beam. Then

I’bs(p’ ¢) = MSZS,(p’ ¢a s, p“T)P,O7 (2)

where primes correspond to a different reference
plane. Now axial symmetry of the system is ex-
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pressed by the fact that the matrix S’ does not depend
on ¢, i.e.,

S’(P, d)’ Moy “‘T) = S(p7 s, IJ'T); (3)

where S is the reduced backscattering matrix.
From this it follows that the effective Mueller matrix
takes the form

S(p: (ba Moss IJ“T) = R(_d))S(Pa s “’T)R(_(b)y (4)
where R is the rotational Mueller matrix
1 0 0 0
B cos2¢ sin2¢ 0

R(¢) = —sin 2b cos2¢ 0 ®)
0 0 0 1

that connects the two Stokes vectors that describe the
same polarization state of the light beam but with
respect to the two reference planes such that the first
reference plane coincides with the second one after a
counterclockwise rotation by the angle ¢ around the
direction of light propagation.

From Eq. (4) we can see that the radial and azi-
muthal dependence of the backscattering matrix are
factorized. Setting ¢ = 0 one obtains

S(p’ s M‘T) = S(p7 (b = 0; M5 M‘T) (6)

Furthermore, the reduced backscattering matrix S
can be represented as a sum over all orders of the
multiple-scattered light, namely,

S(pa Mg, IJ“T) = E Sn(p; s, “’T)$ (7)
n=2

where S, denotes the contribution from the light
that has been scattered exactly n times by the scat-
tering particles. S, is itself a finite sum of terms
S, ', where 0 =i =n — 1is the number of times the
light has been reflected from (and transmitted
through) the surface (boundary) of the medium.
Following the derivation by Rakovi¢ and Kattawar,?
one can show that the (simplest) term S,° takes the
form (see Fig. 2)

0
[V 2 .[ le J drg J dr3. ..
—© 29=0 z3=0

0
X J drnfl Jl dzn exp(_p‘T|Zl|)
2n-1=0 -

% [ﬁ exp(—pglriq — riﬂ

Sno(p’ Mss “‘T) =

i=1 |ri+1 - I'i|2
X exp(_|‘LT|Zn|)R(¢n)M(6n)R(¢n—1 n) ..
X M(02)R(d12)M(6,)R(by), (8)

where M(6) is the Mueller matrix describing single
scattering by particles. In the above, r;i = 1,...,

n) are n scattering points, z; < 0, and r; = (x; = 0, y,
=0,z <0)andr, = (x, =p,y, = 0,2, <0);let also
ro=0andr, ;= (x,.1=p,, = O, z, =0). 6;are



r, Fn=(0.00)

Fig.2. Multiple-scattering trajectory: scattering points, scatter-
ing and rotational angles.

successive scattering angles (i.e., 0;, 1 <1 < n, is the
angle between vectorsr;,; — r;and r; — r;_q; 6, is the
angle between vectors ry, — r; and the negative z axis;
and 6,, is the angle between r,, — r,,_; and the positive
z axis). &;_q; are angles of rotation between succes-
sive scattering planes [i.e., b;_;;, 2 =i = n, is defined
as an angle of rotation (in the positive direction)
around a vector r; — r;_; of the plane (r;_,, r;_1, r;)
which takes it to the plane (r;_;, r;, r; . 1); ¢; is an
angle of rotation around the negative z axis of the x—z
plane which takes it to the plane (r,, r;, ry); and ¢, is
an angle of rotation around the positive z axis of the
plane (r,_,, r,, 1, ;) which takes it to the x—z plane].

The terms S,’ with 0 < i < n can be generated
from Eq. (8) by inserting (in the matrix product) ;
Fresnel matrices T that describe reflection from the
surface of the medium. Recall that the Fresnel
matrix can take two forms depending on the inci-
dent angle 0,,. If sin 0, > n,y = ny/n,, where n,
and n, are indices of refraction (medium 1 contains
incident and reflected light and medium 2 contains
transmitted light), then

10 O 0
01 O 0
T(Oin, 110) = 0 0 cosd —sindl’ ©)
0 O sind cosd
where 8 = 8(n45, cos 6;,). Ifsin 0,, < ny,, then
[ 2 Lol o202 ]
C1 Cy C (&) 0 0
2 2
2 2 24 o2
T(0in, n12) = L6 G 76 0 0 |, (10)
2 2
0 0 cicy, O
L 0 0 0 cicol

where ¢; = ¢;(n45, cos 6,,),1 = 1, 2.
It is convenient to use scaled (dimensionless) vari-
ables:

r, = Wrr. (11)

Introducing the above change of variables in Eq. (8),
one obtains

SnO(P; Mgy p“T) = (I)nianO(ps)

0
= (I)n72 J\ le JA drg .[ dr3. .
—o0 22<0 23<0

0
X.[ drnlf dz, exp(—|z4|)
2n-1=0

—®

v [ﬁ eXp(_|ri+1 - ri|):|

i=1 |ri+1 - ri|2
X exp(—|z,)R(d,)M(0,)R(d,—1 ). - .
X M(02)R(d12)M(6)R(y), (12)

where p, = pp and ® = p./ppis the single-scattering
albedo. The index s is dropped in the integration
variables and now r, = (x,,.1; = ps, ¥, = 0, 2,, < 0).
In scaled variables the expansion formula Eq. (7)
becomes

S(p; b ) = >, &" Liy(py)- (13)
n=2

Again, the term L, in the above sum describes the
backscattered light that has been scattered n times.
For example, in the simplest and important case of
the double-scattered light, L, consists of two terms L,
= L,° + L', where L,° corresponds to the light that
is scattered twice before reaching the detector,
whereas L,' corresponds to the light that is addition-
ally reflected from the surface of the medium before
the second scattering. These two terms take rela-
tively simple forms:

= (= dz,dz,
Lzo(Ps) = f f 2 exp[—(z; + 2o + r)IM(w

0
— 0)M(6),
r= [ps2 + (21 - 22)2]1/27 tan 6 = ps/(ZZ - 21)7

* (= dz,dz
L, (p,) = f f ;2 2 exp[— (21 + 2, + 1) M(m
0

—0)T(O)M(w — 0),
r= [932 + (21 + 22)2]1/2, tan 0 = p,/(z1 + 2,).

It can be shown that the above terms, in the case of
the (Mie) scattering from the spherical particles, can
be reduced to single integrals over the scattering an-
gle 6 and therefore easily calculated.!t

3. Symmetry Relations

In this section we show that, under certain condi-
tions, not all elements of the backscattering Mueller
matrix, Egs. (1) and (4), are independent. Consider
the rather general case in which the scattering me-
dium contains one kind of randomly distributed
asymmetrical particles. Then the effective single-
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scattering Mueller matrix takes the form (Ref. 13, pp.
49 and 50)

Mll M12 M13 Ml4
M12 M22 M23 M24
_M13 _M23 MSS M34 '
_M34 M44

(14)

Note also that the above form of the single-scattering
Mueller matrix with ten independent elements also
corresponds to optically active spheres (Ref. 15, p.
190). Now we define the projection matrix P:

P = diag(1,1, -1,1), P*=E, (15)

where E is the identity matrix. Direct calculation
shows that M, Eq. (14), satisfies the relation

M’ = PMP, (16)

where the superscript ¢ denotes transpose. [It can
be shown that the matrix of Eq. (14) is in fact the
most general matrix that satisfies the relation of Eq.
(16).] In addition, from Egs. (5), (9) and (10), it im-
mediately follows that

R' = PRP, T' = PTP. a7

We now calculate the transpose of the matrix S,°
defined by Eq. (8).
Using Eqgs. (16) and (17) one obtains

SnOt(p; s p‘T) = PS,nO(P; s p“T)P7 (18)

where

0
S,no(p; Mg, “'T) = “‘sn72 f le .[ dr2 .[
— 29=0 23=0

0
Xdrs. .. f dr,_, J dz,
zZn-1=0 —o0

X exp(—wrlz1))
= exp(—prfr;q — 1))
* [111 g — ri‘z }
X exp(— pr|z,)R(d1)M(6)R(d1o). . .

We can see that §',° differs from §',° only in the
order of terms in the matrix product. In other
words, the expression within the integral can be in-
terpreted as the contribution of the light that is in-
jected at the pointr,, . ; = (x,,1 = p,y, = 0,2, = 0)
and scattered at the points r,, r,,_;, ..., r; before
exiting the medium at the pointr, = 0. (This follows
from the equality &, _;; = ¢;,_;.) Therefore it is also
equal to the contribution of the light that enters the
medium at ry, leaves at r,, ;, and scatters at points
r',rsy ..., v, wherer'y, = (x,, —¥;, ), 1.e., the
trajectory r'y, v'4, ..., ', 1, is the mirror image
with respect to the x—z glane of the trajectory r,
ry,...,r,.;. Thus §',°is obtained from S,° by
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transformation of the integration variables y, —
—y,. Now, if the scattering medium is invariant
under the transformation y — —y (which is obvi-
ously true for a homogeneous medium occupying
the lower half-space), then the two integrals are
equal, i.e., S8.°=S8,° or by Eq. (18),

SnOt(p; Mo “fT) = PSnO(p7 Mg, H’T)P (20)

The same relation is valid for S, because it differs
from S,° only by the presence of Fresnel matrices T
that also satisfy the necessary relation in Eq. (17).
Therefore Eq. (20) holds for each S,, and consequently
for their sum, i.e.,

St(P, sy “’T) = Ps(pa sy P«T)P- (21)

Equation (21) defines the most general form that
the matrix S can take [see Eqs. (14) and (16)]:

Sll SIZ S13 Sl4
S}Z S’EZ S23 S~’24
_NSB _~S23 S§3 ‘§34 '
Sl4 S24 _834 S44

S= (22)

Equations (4) and (22) now define the most general
forms for the matrix elements of S which are

S11(p, &) = Su(p),

S15(p, ) = Sia(p)eos 2¢ + Sys(p) sin 2¢,

S13(p, b) = —S15(p) sin 2¢ + Sy5(p) cos 2,

Sulp, d) = 5'14(9), So1(p, d) = S1s(p, d),

Ss5(p) — Sss(p) N Sys(p) + Sss(p) co
2 2

+ S'23(p)sin 4d,

Saa(p, d) = s 4¢

522(9) + Sss(P) .
f sl

Saulp, ¢) = 5’24(9)‘305 2¢ — S34(P) sin 2,
Ss1(p, &) = =S13(p, ), Ssalp, d) = —Sas(p, d),

_ S22(P) - S33(P)
2

Sy2(p) + S33(p)
+ - 5 co

+ Sy5(p) sin 4,
S34(p, &) = Sa4(p) sin 2¢ + Sz4(p) cos 20,
Su(p, &) = S1lp, d) = S1(p),
Si2(p, d) = S24(p, d), Sus(p, &) = —Ssulp, b),
Su(p, &) = Sulp). (23)

From these general forms, it follows that there are
only seven independent elements, S;;(p), Si2(p, ),

Sas(p, ¢) = S23(P) cos 4 — n 4¢,

Sas(p, d) =

s 4



S14(p), Saa(p, d), Sas(p, d), Sa4lp, d), and S 4(p), and

the other nine,

S13(p, &) = S1s(p, & + m/4), Sailp, ) = S12p, b),
S31(p, &) = =Si3(p, &) = S1a(p, & — w/4),

S3a(p, &) = —Sas(p, &) = Sas(p, & £ w/4),

Ss3(p, &) = —Salp, & = w/4),

S34(p, &) = Saslp, & — w/4),

Sa1(p, d) = S4i(p) = S1u(p),  Saalp, ) = Saulp, ),
Sus(p, &) = —Saulp, &) = Saulp, & + m/4), (24)

can be obtained by simple rotations at most.

The derived symmetry relations in Eqgs. (24) [and
the general form of the reduced backscattering ma-
trix of Eq. (22)] hold, of course, if the assumptions
made at the beginning of this section are satisfied,
i.e., if the scattering medium contains one kind of
randomly distributed asymmetrical particles, or op-
tically active spheres. It can be shown that Egs. (22)
and (24) also hold when the medium that contains
scattering particles is itself optically active because,
in that case, the effective scattering matrix S con-
tains additional rotational matrices of the form in Eq.
(5), which describe rotations that are due to optical
activity. Finally, for the symmetry relation to hold,
it is not necessary that the scattering medium fill the
entire half-space; it is sufficient for it to have rota-
tional symmetry around the initial laser beam, e.g., it
can be a cylinder of finite size whose axis coincides
with the direction of the initial laser beam.

The reduced backscattering matrix, Egs. (6) and
(22), further simplifies in the simplest, and impor-
tant, case of light scattering by homogeneous
spheres. In that case, the single-scattering Mueller
matrix was calculated by solving Maxwell’s equations
with appropriate boundary conditions (Mie theory),
and it takes the relatively simple form13

a®) b®O) O 0
b®) a® O 0
0 0 d®) -—e®)]’
0 0 e d@O)

M(6) = (25)

where the four independent elements, a, b, d, and e,
expressed in terms of a series of Bessel functions,
depend on the scattering angle 0, the refractive index,
and the size parameter of the scattering sphere.

Direct calculation shows that M, Eq. (25), satisfies,
other than Eq. (16), the relation

M = QMQ, (26)
where Q is another projection matrix:
Q =diag(1,1, -1, -1), Q*=E. (27)

In addition, from Eqgs. (5), (9), and (10), it immedi-
ately follows that

R'=QRQ, T' = QTQ. (28)

With Egs. (26)—(28), one can show [using a similar
derivation that leads to Eq. (21)] that

S(p7 s, M‘T) = QS(p7 s “‘T)Q (29)

Therefore when the scatterers are homogeneous
spheres, the reduced backscattering matrix satisfies
both relations in Eq. (21) and Eq. (29), and the most
general form it can take is

& S12 S22 O 0
S=10 0 Sy Su| (30)
0 0 _S34 S44

In this case, the most general forms for the elements
of the effective backscattering Mueller matrix S, Egs.
(23), simplify by substituting S 13(p) = S 14(p) = S53(p)
= S34(p) = S31(p) = S52(p) = S41(p) = Sy2(p) = 0. In
this way the seven independent elements become
Sulp, &) = S11(p), Sizlp, b) = Sis(p) cos 2,

S14(p, d) = S14(P) =0,

S22(P) - Sss(P) I Szz(P) + Ss3(P) c
2 2

323(p, d)) _ Szz(P) ;'833(9) sin 4,
Soslp, ) = _S34(P) sin 2, Sulp, d) = S44(P), (30a)

whereas the other nine elements are obtained
through symmetry relations, Eqgs. (24), or explicitly

S13(p, ) = S1a(p, & + w/4) = —S1,(p) sin 2¢,
Ss1(p, d) = S1a(p, d),

S31(p, &) = =Si3(p, d),  Ssalp, d) = =Sas(p, b),
Ss3(p, &) = —Sa(p, b £ w/4)

_ Saa(p) — Sas(p) n Sas(p) + Ss3(p) .

Saalp, d) = os 4¢,

= 9 2 os 4o,
Sz4(p, b) = Sau(p, d — m/4) = Ss4(p) cos 2¢,
Su(p, &) = Swulp, d) =0,
Sio(p, &) = Saslp, &), Suslp, &) = —Ssulp, ).  (30b)

From Egs. (30a) and (30b) we can see that, in the case
of spherical scatterers, all matrix elements are de-
fined by six functions, Sn(p), Slz(p), S’zz(P), S33(P),
S34(p), and S,,(p), that depend only on radial dis-
tance. We note at the end of this section that the
symmetry relations similar to those in Eqgs. (21) and
(29) are, in a different context, discussed in Ref. 16.

5. Monte Carlo Calculations

We used the Monte Carlo method to calculate the
effective backscattering Mueller matrix for the case
of spherical scatterers. Essentially, we represent S,
Eqgs. (4), (7), and (8), as the sum over a large number
of randomly chosen photon trajectories that all start
at the origin r, = 0. Each trajectory is defined by
the collection of points r;, i = 1, 2, ..., n, where the
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light scatterings take place and there are possible
additional points of reflection from the boundary of
the medium.

The trajectories are generated in the following way
(we describe only the trajectories without boundary
reflection; the generalization is straightforward).
Because the light enters the medium propagating
downward along the z axis, the first scattering point
r; = (0, 0, z; < 0) is determined by choosing the
length [, = |z;|. This, as well as all subsequent free
path lengths [,,; = |r,,; — v, i = 1, 2,..., are
chosen using a random number generator so their
probability distribution is w(l) = pp exp(—ppl).
Suppose now that the points r;,; i = 1, 2,..., &k and
l; ., are already defined, then the next point r;, 4 is
determined by choosing the unit vector |r;,; — 1|/
lp+1. This is defined by the scattering angle 6, and
the rotational angle ¢,,_; , that are defined in Section
2. Azimuth angles ¢ are chosen according to the
uniform distribution w(d) = 1/2w, whereas the scat-
tering angles ¢ are chosen according to the distribu-
tion defined by an element of the single-scattering
matrix w(0) = 2wa(0) sin 6 [see Eq. (25)].

To each point r;, we associate a matrix M; and
weight w; using the following procedure. To r, we
associate M, = 1 and w, = 1. Suppose that M; and
w;i=1,2,...,k) are already defined, then M,, , ; =
M(6,)R(b,)M,,/a(6,) and w;, ., = dw,. Ifbetweenr,
and r;,_ ; there is a point of reflection from the surface
(boundary) of the medium, then the matrix M,,_ ; is
additionally multiplied by the appropriate Fresnel
matrix. The trajectory is not infinite; it is truncated
when the product (M) w;, is below some predeter-
mined cutoff value. (Let us mention that in the
Monte Carlo simulations presented in Section 6, the
average number of collisions per trajectory was ten.)

Each triplet r;, M,, w; gives a contribution to the
backscattering matrix S in the following way. Ef-
fectively, the resulting matrix S is given as a matrix
function defined on a discrete set of points that define
a certain grid on the z = 0 plane. Now, the ith
triplet gives an additive contribution to the value of S
associated with the grid point closest to the point x;,
y;, with the contribution being

w; exp(_|~LT|Zi|)R(d)i,)M(ei,)Mi, (31)

where 0,’ is the angle between r; — r;_; and the
positive z axis, whereas ¢,’ is the angle between the
plane (r;_;, r;, ¥';) and the x—z plane, where r'; = (x;,
y;, 0). We can see that each trajectory effectively
carries contributions of as many trajectories as there
are scattering points along the trajectory.

The procedure described above uses the Monte
Carlo method to calculate the matrix S, although we
have seen that, due to Eq. (4), it is sufficient to cal-
culate the matrix S. From Eq. (4) it follows that, to
calculate this matrix, it is sufficient to sandwich each
contribution [expression (31)] between the two ma-
trices R(¢;) and to associate the result to the point p;,
where (p;, d;, z;) are the cylindrical coordinates of r;.
We note that this last transformation improves our
computational statistics enormously.
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LS: 10 mW He-Ne Laser {632.8 nm)

LS F1:  10% Neutral Density Filter
PO1: Polarization Optics (set 1)
L1:  Focusing Lens (f=10cm)
M1:  Mirror
S: Sample
PO2: Polarization Analyzer Optics {set 2)
“ L2: Imaging Lens System
m CCD: Imaging Camera
L1

Personal

PO2 | L2 Computer

CCD ——

s ]

Fig. 3. Schematic diagram of the experimental setup.

5. Comparison with Experiment

A schematic view of the experimental apparatus used
for collection of the diffuse backscattered images is
shown in Fig. 3. A collimated light beam emitted by
a 10-mW He-Ne laser at a wavelength of 632.8 nm
passes through a 10% transmittance neutral density
filter (FI). This beam is then polarized by various
polarization optics (PO1) (i.e., linear and circular po-
larizers) to obtain the desired input polarization.
This polarized beam is then focused with the lens (L1,
f = 10 cm) through a hole (d =~ 2 mm) in a mirror
(M1), mounted at 45 deg, onto the sample. The dif-
fusely backscattered light from the sample is trans-
mitted through a polarization analyzer (PO2) and
imaged using a lens (L2) onto a cooled 12-bit CCD
camera (SpectraSource, Westlake Village, Calif.).
The polarization analyzer consisted of a variety of
optics that were interchanged to analyze a specific
type of polarized light (i.e., vertical, horizontal, +45°
linear, and left and right circularly polarized light),
and these images were used to reconstruct the Muel-
ler matrix. The CCD array size is 336 X 243 pixels
with a pixel size of 10 pm X 10 pum. Eachimage was
collected using an exposure time of 1.7 s.

The phantom used in the experiment was com-
prised of a suspension of polystyrene spheres of
2.02-pm diameter (Ernest F. Fullam, Latham, N.Y.).
The sample was created by diluting 0.075 ml of a
10-wt% suspension of polystyrene spheres with 15 ml
of deionized water. The index of refraction of the
spheres is 1.59, and the sample has a relative index of
refraction n/n, of 1.192 where n,, is the index of
refraction for water. The sample has a scattering
coefficient () and anisotropy factor (g) of 11.88 cm ™'
and 0.912, respectively, at 632.8 nm, and has a neg-
ligible absorption coefficient p. ~ 0 (o =~ 1). Finally,
the transport mean free path ist mfp’ = 1/[p, +
ps(l — g)] = 0.957 cm.

Figure 4 shows, side by side, elements of the effec-
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Fig. 4. Experimental and Monte Carlo backscattering Mueller matrix.
The approximate size of each image is 1.6 cm X 1.6 cm. Light wavelength

polystyrene spheres (of diameter 2.02 pm) in deionized water.

The phantom was comprised of a 0.05-wt% suspension of

was 632.8 nm. The normalized (see the text) absolute values corresponding to the contours of the theoretical matrix elements are S,;:

266, 111, 69, 49 X 10™% S1,, So1, S13, S31: 15, 6,2.5,1 X 107*
Say, Syo, Syz: 10,5,2,1 X 1074 S,,: 129, 60, 38, 28 X 104
center of each plot.

tive backscattering Mueller matrix obtained both ex-
perimentally and theoretically. The approximate
size of each image is 1.6 cm X 1.6 cm. (It appears
that, for distances that exceed two transport mean
free paths approximately equal to 1.9 cm, the azi-
muthal dependence of the patterns becomes less pro-
nounced because multiple scatterings tend to
randomize the polarization state of the light.)

The results of the Monte Carlo calculations are
given in the form of the contour plots; each matrix
element is represented by several contours (i.e., sets
in the x—y plane corresponding to certain fixed values
of the corresponding element). Using the method of
Section 4, we first obtained the reduced matrix S, Eq.
(30), or ~equ1val~ently, six functions: S11(p), S12(p),
Sa2(p), Ss3(p), Ss4(p), and Sy(p). Then from Eqgs.
(30a) and (30b) we can calculate any contour corre-
sponding to each element of the matrix S. When
labeling the contours, shown in Fig. 4, by the numer-
ical values (of the corresponding matrix elements),
we adopted the normalization that the center in the
contour plot of the matrix element S, corresponds to
unity. Let us emphasize at this point that many
important features of the plots shown in Fig. 4 can be
predicted from the azimuthal dependence of the ma-
trix elements that is given in Eqs. (30a) and (30b).
For example, the formula for the matrix element S;,
Egs. (30a), shows that for any given contour there is
another one of the same shape but rotated by 90 deg
and that corresponds to the same absolute value but
the opposite sign of the matrix element. Indeed in
Fig. 4 we can see that to S;5 correspond pairs of

; Sa2, Saa!
The smaller values correspond to the contours located farther from the

38, 20, 14, 10 X 1074 Sys, Ssot 26, 15, 10, 6 X 1074 S,,,

contours in the shape of horizontal and vertical num-
ber eight that have exactly opposite values of the
matrix element. From Eqgs. (30a) and (30b) one can
easily deduce similar symmetry properties for each of
the elements in Fig. 4.

To determine each of the 16 experimental matrix
elements, a total of 49 images are taken at various
combinations of input and output analyzer polariza-
tion states. Each of the 16 experimental elements is
calculated by adding or subtracting a series of im-
ages. The individual images are represented by a
two-letter combination that denotes the input polar-
ization and output analyzer orientation (i.e., HV de-
notes horizontal input polarized light and a vertical
polarization analyzer). The corresponding symbols
denoting polarization are V, vertical; H, horizontal; P,
+45° M, —45° R, right; L, left; and O, open or no
polarization optics. Note that to obtain correct im-
ages one also has to take care of the effect of the
mirror M1. Namely, the experimental setup in Fig.
3 directly measures a matrix S*** = SM1 where S is
the desired backscattering matrix, whereas M1 is the
Mueller matrix of the realistic mirror M1. In our
experiment we used an aluminum mirror with the
Mueller matrix (for an incident angle of 45 deg):

0.82 0.055 0 0
0.055 0.82 0 0
M1 = 0 0 -0.79 —-0.20|"
0 0 0.20 —-0.79

20 May 1999 / Vol. 38, No. 15 / APPLIED OPTICS 3405



Therefore after the matrix S°*? is determined as ex-
plained above, it has to be multiplied from the right
by M1~ 1.

In Fig. 4 the experimental matrix elements are
represented by several black and white regions, each
region corresponding to a certain range of values of
the matrix element. (Fluctuation of the experimen-
tal results, see below, did not allow for precise deter-
mination of a single contour.) Boundaries between
black and white regions then approximately define
the contours, which have the same shape as those
obtained by numerical calculations, and in both cases
the contours located farther from the center corre-
spond to smaller absolute values of the matrix ele-
ments. Figure 4 also shows that the experiment did
not produce any pattern for the matrix elements S,
and S,;; only a weak signal was detected. On the
other hand, theory predicts that these elements van-
ish for spherical scatterers [see Egs. (30a) and (30b)].
Accordingly, our numerical calculations produced
only negligible fluctuations around zero for the ele-
ments S;, and S,;.

The results shown in Fig. 4 demonstrate good qual-
itative agreement between theory and experiment for
the intensity patterns of the two-dimensional back-
scattered Mueller matrix elements in the case of mul-
tiple scattering of the incident radiation from a
suspension of polystyrene spheres. However, we
now make a more direct and quantitative comparison
between theory and experiment by presenting the
results describing cross-polarized backscattering pat-
terns for various concentrations of spherical scatter-
ers and different particle sizes. The directly
measured cross-polarized patterns3.7-11 correspond to
the HV orientation of the experimental setup, i.e.,
horizontal (along the x-axis) polarization of the inci-
dent light and vertical (along the y-axis) polarization
analyzer. In terms of the Mueller matrix elements,
the corresponding intensity patterns are (up to a mul-
tiplicative factor)

C(p, d) = S11(p, &) + S12(p, &) — Sa1(p, d) — Saalp, b).
(32)
From Eqgs. (23) and (32) it follows that

S S22 _S33 Szz S'33
Clp, d) = Sn(p) — (9)2 (P (p); ()

X cos 4¢p — Sas(p)sin 4d, (33)

and in the case of spherical scatterers, Eq. (30), one
obtains

~ Soa(p) — Sas
Clp, 4) = Sun(p) — 20 5l?)

Szz(P) + S33(P)
0}

5 s 4d. (34)

We can see that our theory predicts (cos 4¢) azi-
muthal dependence in accordance with cloverlike
patterns that were observed experimentally.3.7
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Fig. 5. Experimental (scattered symbols) and Monte Carlo (solid
curves) results for the azimuthal dependence of crossed patterns
C(p, ¢), Eq. (33), for polystyrene spheres of diameter 2.02 pm and
a concentration of 0.05%. The upper data correspond to 2-mm
radial distance, whereas the lower data correspond to 4 mm.
Light wavelength was 632.8 nm.

In Figs. 5 and 6 we show experimental and Monte
Carlo results for the azimuthal dependence of crossed
patterns for various radial distances and particle
sizes. In Fig. 5 we used the same suspension as in
Fig. 4, whereas in Fig. 6 we used water suspensions
of 0.482-pm polystyrene spheres for three different
concentrations. Figures 5 and 6 demonstrate excel-
lent quantitative agreement between theory and ex-
periment: Theoretical curves appear to be almost
exact envelopes of the fluctuating experimental re-
sults.

Finally in Fig. 7 we compared experimental and
Monte Carlo images of the backscattering crossed
polarization patterns that correspond to the suspen-
sion used in Fig. 6. Inner and outer patterns in each
image are the theoretical results, whereas the middle
pattern in each image is the experimental result.
We can see that the expected cloverlike patterns3.?
are obtained. However, Fig. 7 shows that, as the
concentration of the scatterers increases, the pat-
terns are located in a smaller vicinity of the point of
incidence of the laser beam. We note that, although
the patterns are obtained for perfect homogeneous
spheres, Eq. (33) predicts that such patterns should
emerge, possibly slightly rotated, for any kind of iden-
tical particles in random orientation, provided that
the concentration is sufficiently low.

6. Conclusion

In this research we have demonstrated that the the-
ory of incoherent light scattering by particles is a
satisfactory framework for the description for light
backscattering from turbid media. Our theory pre-
dicted, and our experiment confirmed, that the effec-
tive backscattering Mueller matrix possesses
important symmetry relations: Only seven matrix
elements are independent and the rest can be ob-
tained by simple rotations. These symmetry rela-
tions hold under general conditions: The scattering
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Fig. 6. Experimental (scattered symbols) and Monte Carlo (solid
curves) results for the azimuthal dependence of crossed patterns
C(p, ¢), Eq. (33), for polystyrene spheres of diameter 0.482 pm and
three different concentrations: (a) 0.1%, (b) 0.05%, and (c)
0.025%. In (a)—(c), data at the top of the plots correspond to 2-mm
radial distance, whereas data on the bottom of the plots correspond
to 4 mm. In (a) and (b), the other two data correspond to radial
distances of 3 and 4 mm. Light wavelength was 632.8 nm.

medium should be invariant under rotations around
the initial laser beam direction and should contain an
ensemble of identical (possibly asymmetric) scatter-
ing particles in random orientations. The second
condition can be weaker, in a sense that the scatter-
ers may constitute a finite number of different en-
sembles of (identical) particles. In other words, the
symmetry relations will break down only if scattering
particles are all virtually different and cannot be clas-
sified in several ensembles of identical particles.
The laser beam in the experiment was coherent,
and nevertheless the light scattering treated in the

y (mm)
it

y (mm)
g

y (mm)
g

5=

X (mm)

Fig. 7. Experimental and theoretical (Monte Carlo) backscatter-
ing crossed-polarization patterns for the suspension from Fig. 6
and three concentrations: (a) 0.1%, (b) 0.05%, and (c) 0.025%.
Inner and outer patterns in each image are the theoretical results,
whereas the middle pattern in each image is the experimental
result.

theoretical simulations was incoherent. This is jus-
tified by the fact that the correlation time of the laser-
induced speckles was generally of the order of 10 ms,
and the experimental images with the exposure time
of 1.7 s have the speckle effect averaged out. There-
fore the coherence effect was not important in our
images of Figs. 4 and 7.

Theory and experiment were also compared on the
much studied cloverlike cross-polarized backscatter-
ing patterns for various concentrations of spherical
scatterers and different particle sizes. Good quan-
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titative agreement was obtained. It was shown that
these cloverlike patterns should emerge under the
same general conditions described above. However,
if particle concentration increases, the pattern
shrinks around the point of incidence of the laser
beam and eventually disappears.

This research was partially supported by the Office
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the Office of Vice President for Research at Texas
A&M University, and the Whitaker Foundation.
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