If you want reprints of any of the following publications, you may send e-mail to brokawc using the domain its.caltech.edu. You may order by number. If no number is shown, no repreints are available.

1. Brokaw, C. J. (1957) Electrochemical orientation of bracken spermatozoids. Nature 179, 525.

--- Brokaw, C. J. (1958) Chemotaxis of bracken spermatozoids. The role of bimalate ions. J. Exptl. Biol. 35, 192-196.

--- Brokaw, C. J. (1958) Chemotaxis of bracken spermatozoids. Implications of electrochemical orientation. J. Exptl. Biol. 35, 197-212.

4. Brokaw, C. J. (1959) Random and oriented movements of bracken spermatozoids. J. Cell Comp. Physiol. 54, 95-101.

5. Brokaw, C. J. (1960) Decreased adenosine triphosphatase activity of flagella from a paralyzed mutant of Chlamydomonas moewusii. Exptl. Cell Research 19, 430-432.

6. McKee, J. E., C. J. Brokaw and R. T. McLaughlin (1960) Chemical and colicidal effects of halogens in sewage. J. Water Poll. Control Fed. 32, 795-819.

--- Brokaw, C. J. (1961) Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella. Exptl. Cell Research 22, 151-162.

8. Brokaw, C. J. (1962) Studies on isolated flagella. In: Spermatozoan Motility, D. W. Bishop, ed., AAAS, pp. 269-278.

9. Brokaw, C. J. (1962) Flagella. Chap. 38 In: Physiology and Biochemistry of Algae, R. A. Lewin, ed., Academic Press.

10. Brokaw, C. J. (1963) Movement of the flagella of Polytoma uvella. J. Exptl. Biol. 40, 149.

11. Brokaw, C. J. and L. Wright (1963) Bending waves of the posterior flagellum of Ceratium. Science 142, 1169.

12. Brokaw, C. J. (1965) Nonsinusoidal bending waves of sperm flagella. J. Exptl. Biol. 43, 155.

13. Brokaw, C. J. (1966) Mechanics and energetics of cilia. Amer. Rev. Respiratory Diseases 93, 32-40.

14. Brokaw, C. J. (1966) Effects of increased viscosity on the movements of some invertebrate spermatozoa. J. Exptl. Biol. 45, 113-139.

15. Brokaw, C. J. (1966) Bend propagation along flagella. Nature 209, 161-163.

16. Brokaw, C. J. (1967) Adenosine triphosphate usage by flagella. Science 156, 76-78.

17. Brokaw, C. J. (1968) Mechanisms of sperm movement. Symp. Soc. Exp. Biol. 22, 101-116.

18. Brokaw, C. J. and B. Benedict (1968) Mechanochemical coupling in flagella. I. Movement-dependent dephosphorylation of ATP by glycerinated spermatozoa. Arch. Biochem. Biophys. 125, 770-778.

19. Brokaw, C. J. and B. Benedict (1968) Mechanochemical coupling of flagella. II. Effects of viscosity and thiourea on metabolism and motility of Ciona spermatozoa. J. Gen. Physiol. 52, 283-299.

--- Miller, R. L. and C. J. Brokaw (1970) Chemotactic turning behavior of Tubularia spermatozoa. J. Exptl. Biol. 52, 699-706.

21. Brokaw, C. J. (1970) Bending moments in free-swimming flagella. J. Exptl. Biol. 53, 445-464.

22. Brokaw, C. J. (1971) Bend propagation by a sliding filament model for flagella. J. Exptl. Biol. 55, 289-304.

23. Brokaw, C. J. and B. Benedict (1971) Mechanochemical coupling in flagella. III. Effects of some uncoupling agents on properties of the flagellar ATPase. Arch. Biochem. Biophys. 142, 91-100.

24. Brokaw, C. J., S. F. Goldstein and R. L. Miller (1971) Recent studies on the motility of spermatozoa from some marine invertebrates. Academia Nazionale die Lincei, Proc. 1st Internat. Symp. Rome-Siena (July, 1969), Baccio Baccetti, ed.

--- Brokaw, C. J. (1972) Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys. J. 12, 564-586.

26. Brokaw, C. J. (1972) Flagellar movement: A sliding filament model. Science 178, 455-462.

27. Brokaw, C. J. (1972) Viscous resistance in flagella: analysis of small amplitude motion. J. Mechanochem. Cell Motility 1, 151-155.

28. Brokaw, C. J. (1972) Computer simulation of flagellar movement. II. Influence of external viscosity on movement of the sliding filament model. J. Mechanochem. Cell Motility 1, 203-211.

29. Brokaw, C. J. and I. R. Gibbons (1973) Localized activation of bending in proximal, medial, and distal regions of sea urchin sperm flagella. J. Cell Science 13, 1-10.

30. Brokaw, C. J. and R. Josslin (1973) Maintenance of constant wave parameters by sperm flagella at reduced beat frequencies. J. Exptl. Biol. 49, 617-628.

31. Brokaw, C. J. (1974) Movement of the flagellum of some marine invertebrate spermatozoa. In: Cilia and Flagella, M. A. Sleigh, ed., Academic Press, pp. 93-109.

32. Brokaw, C. J. (1974) Calcium and flagellar response during the chemotaxis of bracken spermatozoids. J. Cell Physiol. 83, 151-158.

33. Brokaw, C. J., R. Josslin and L. Bobrow (1974) Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem. Biophys. Res. Comm. 58, 795-800.

34. Brokaw, C. J. (1975) Spermatozoan motility: A biophysical survey. In: The Biology of the Male Gamete, Biol. J. Linn. Soc. 7, Suppl. 1, pp. 423-439.

35. Brokaw, C. J. (1975) Cross-bridge behavior in a sliding filament model for flagella. In: Molecules and Cell Movement, S. Inoue and R. Stevens, eds., Raven Press, pp. 165-179.

36. Brokaw, C. J. (1975) Effects of viscosity and ATP concentration on the movement of reactivated sea urchin sperm flagella. J. Exptl. Biol. 62, 701-791.

--- Brokaw, C. J. (1975) Molecular mechanism for oscillation in flagella and muscle. Proc. Natl. Acad. Sci. USA 72, 3102-3106.

38. Brokaw, C. J. and I. R. Gibbons (1975) Mechanisms of movement in flagella and cilia. In: Swimming and Flying in Nature, T. Y.-T. Wu, C. J. Brokaw and C. Brennan, eds., Plenum Pub. Corp. N.Y., pp. 89-126.

39. Brokaw, C. J. and D. Rintala (1975) Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics. J. Mechanochem. Cell Motility 3, 77-86.

40. Brokaw, C. J. (1976) Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Biophys. J. 16, 1029-1041.

41. Brokaw, C. J. (1976) Computer simulation of movement-generating cross-bridges. Biophys. J. 16, 1013-1027.

42. Brokaw, C. J. and B. Benedict (1976) Mechanochemical coupling in flagella. IV. Absence of coupling between metabolism and motility in Chaetopterus spermatozoa. J. Mechanochem. Cell Motility 3, 201-205.

43. Brokaw, C. J. and T. F. Simonick (1976) CO2 regulation of the amplitude of flagellar bending. In: Cell Motility, R. Goldman, T. Pollard and J. Rosenbaum, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 933-940.

44. Brokaw, C. J. (1977) Is the 9 + 2 pattern of flagellar and ciliary axonemes an efficient arrangement for generating planar bending? J. Mechanochem. Cell Motility 4, 101-111.

45. Brokaw, C. J. (1977) CO2-inhibition of the amplitude of bending of Triton-demembranated sea urchin sperm flagella. J. Exptl. Biol. 71, 229-240.

46. Brokaw, C. J. and D. R. Rintala (1977) Computer simulation of flagellar movement. V. Oscillation of a three-state cross-bridge model containing an ATP-dependent rate function. J. Mechanochem. Cell Motility 4, 205-232.

47. Brokaw, C. J. and T. F. Simonick (1977) Mechanochemical coupling in flagella. V. Effects of viscosity on movement and ATP-dephosphorylation of Triton-demembranated sea urchin spermatozoa. J. Cell Sci. 23, 227-241.

--- Brokaw, C. J. and T. F. Simonick (1977) Motility of Triton-demembranated sea urchin sperm flagella during digestion by trypsin. J. Cell Biol. 75, 650-665.

49. Ogawa, K., D. J. Asai and C. J. Brokaw (1977) Properties of an antiserum against native dynein 1 from sea urchin sperm flagella. J. Cell Biol. 73, 182-192.

50. Brokaw, C. J. (1979) Calcium-induced asymmetrical beating of Triton-demembranated sea urchin sperm flagella. J. Cell Biol. 82, 401-411.

51. Brokaw, C. J. and S. F. Goldstein (1979) Asymmetrical oscillation of sea urchin sperm flagella induced by calcium. In: The Spermatozoon, D. W. Fawcett and J. M. Bedford, eds., Urban and Schwarzenber, Inc., Baltimore, pp. 153-156.

--- Johnson, R. E. and C. J. Brokaw (1979) Flagellar hydrodynamics: A comparison between resistive-force theory and slender-body theory. Biophys. J. 25, 113-127.

53. Okuno, M. and C. J. Brokaw (1979) Inhibition of movement of Triton-demembranated sea urchin sperm flagella by Mg2+, ATP4-ADP and Pi. J. Cell Sci. 38, 105-123.

--- Asai, D. J. and C. J. Brokaw (1980) Effects of antibodies against tubulin on the movement of reactivated sea urchin sperm flagella. J. Cell Biol. 87, 114-123.

55. Brokaw, C. J. (1980) Theoretical models for oscillation and bend propagation by sperm flagella. In: Testacular Development, Structure, and Function, A. and E. Steinberger, eds., Raven Press, N.Y., pp. 447-453.

56. Brokaw, C. J. (1980) Elastase digestion of demembranated sperm flagella. Science 207, 1365-1367.

57. Pate, E. F. and C. J. Brokaw (1980) Cross-bridge behavior in rigor muscle. Biophys. Struct. Mech. 7, 51-63.

58. Pate, E. F. and C. J. Brokaw (1980) Movement of spermatozoa in viscous environments. J. Exptl. Biol. 88, 395-397.

59. Okuno, M., D. J. Asai, K. Ogawa and C. J. Brokaw (1981) Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes. J. Cell Biol. 91, 689-694.

60. Okuno, M. and C. J. Brokaw (1981) Calcium-induced change in form of demembranated sea urchin sperm flagella immobilized by vanadate. Cell Motility 1, 349-362.

61. Okuno, M. and C. J. Brokaw (1981) Effects of Triton-extraction conditions on beat symmetry of sea urchin sperm flagella. Cell Motility 1, 363-370.

62. Okuno, M. and C. J. Brokaw (1981) Effects of AMPPNP and vanadate on the mechanochemical crossbridge cycle in flagella. J. Muscle Res. and Cell Motility 2, 131-140.

63. Brokaw, C. J. (1982) Models for oscillation and bend propagation by flagella. Symp. Soc. Exptl. Biol. 35, 313-338.

64. Asai, D. J., C. J. Brokaw, R. C. Harmon and L. Wilson (1982) Monoclonal antibodies to tubulin and their effects on the movement of reactivated sea urchin spermatozoa. Cell Motility Suppl. 1, 175-180.

65. Brokaw, C. J. (1982) Activation and reactivation of Ciona spermatozoa. Cell Motility Suppl. 1, 185-189.

66. Brokaw, C. J. (1982) Generation of the bending cycle in cilia and flagella. Cell Motility Suppl. 1, 137-141.

67. Brokaw, C. J., D. J. L. Luck and B. Huang (1982) Analysis of the movement of Chlamydomonas flagella: The function of the radial spoke system is revealed by a comparison of wild-type and mutant flagella. J. Cell Biol. 92, 722-732.

68. Luck, D. J. L., B. Huang and C. J. Brokaw (1982) A regulatory mechanism for flagellar function is revealed by suppressor analysis in Chlamydomonas. Cell Motility Suppl. 1, 159-164.

--- Brokaw, C. J. and P. Verdugo, eds. (1982) Mechanism and Control of Ciliary Movement. A. R. Liss, Inc. N.Y.

70. Omoto, C. K. and C. J. Brokaw (1982) Structure and behavior of the sperm terminal filament. J. Cell Sci. 58, 385-409.

71. Brokaw, C. J. (1983) The constant curvature model for flagellar bending patterns. J. Submicroscopic Cytol. 15, 5-8.

72. Omoto, C. K. and C. J. Brokaw (1983) Quantitative analysis of axonemal twist and its effect on doublet microtubule sliding. J. Submicroscopic Cytol. 15, 49-53.

73. Brokaw, C. J. (1983) Control mechanisms in sperm flagella. In: The Sperm Cell, J. Andre, ed., M. Nijhoff Publ., The Hague, pp. 291-303.

74. Omoto, C. K. and C. J. Brokaw (1983) The movement of distal ends of sperm flagella with and without a terminal filament. In: The Sperm Cell, J. Andre, ed., M. Nijhoff Publ., The Hague, pp. 380-383.

75. Brokaw, C. J. and D. J. L. Luck (1983) Bending patterns of Chlamydomonas flagella. I. Wild-type bending patterns. Cell Motility 3, 131-150.

76. Omoto, C. K. and C. J. Brokaw (1983) Quantitative analysis of axonemal bends and twists in the quiescent state of Ciona sperm flagella. Cell Motility 3, 247-259.

77. Opresko, L. K. and C. J. Brokaw (1983) cAMP-dependent phosphorylation associated with activation of motility of Ciona sperm flagella. Gamete Research 8, 201-218.

78. Brokaw, C. J. (1984) Cyclic AMP-dependent activation of sea urchin and tunicate sperm motility. In: Hormone Action and Testicular Function, Ann. N. Y. Acad. Sci. 438, 132-141.

79. Brokaw, C. J. (1984) Automated methods for estimation of sperm flagellar bending parameters. Cell Mot. 4, 417-430.

--- Omoto, C. K. and C. J. Brokaw (1985) Bending patterns of Chlamydomonas flagella. II. Calcium effects on reactivated Chlamydomonas flagella. Cell Mot. 5, 53-60.

81. Pate, E. F. and C. J. Brokaw (1985) Resolution of the competitive inhibitory effects of lithium and AMPPNP on the beat frequency of ATP-reactivated, demembranated, sea urchin sperm flagella. J. Muscle Res. Cell Mot. 6, 507-512.

82. Brokaw, C. J. and D. J. L. Luck (1985) Bending patterns of Chlamydomonas flagella. III. A radial spoke head deficient mutant and central pair deficient mutant. Cell Mot. 5, 195-208.

83. Brokaw, C. J. and S. N. Nagayama (1985) Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin. J. Cell Biol. 100, 1875-1883.

84. Brokaw, C. J. (1985) Computer simulation of flagellar movement. VI. Simple curvature controlled models are incompletely specified. Biophys. J. 48, 633-642.

--- Ward, G. E., C. J. Brokaw, D. L. Garbers and V. D. Vacquier (1985) Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J. Cell Biol. 101, 2324-2329.

86. Brokaw, C. J. (1986) Future directions for studies of mechanisms for generating flagellar bending waves. J. Cell Sci. Suppl. 4, 103-113.

87. Brokaw, C. J. (1986) Computer simulation of bend propagation by axoplasmic microtubules. Cell Mot. Cytoskel. 6, 347-353.

--- Brokaw, C. J. (1986) Sperm motility. In: Methods in Cell Biology, Vol. 27, Echinoderm Gametes and Embryos. Academic Press, pp. 41-56.

--- Eshel, D. and C. J. Brokaw (1987) New evidence for a "biased baseline" mechanism for calcium-regulated asymmetry of flagellar bending. Cell Mot. Cytoskel. 7, 160-168.

90. Tombes, R. M., C. J. Brokaw and B. M. Shapiro (1987) Creatine kinase-dependent energy transport in sea urchin spermatozoa: Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys. J. 52, 75-86.

91. Brokaw, C. J. and R. Kamiya (1987) Bending patterns of Chlamydomonas flagella IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Mot. Cytoskel. 8, 68-75.

92. Brokaw, C. J. (1987) A lithium-sensitive regulator of sperm flagellar oscillation is activated by cAMP-dependent phosphorylation. J. Cell Biol. 105, 1789-1798.

93. Brokaw, C. J. (1987) Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation. J. Cell. Biochem. 35, 175-184.

94. Brokaw, C. J. (1988) Bending wave propagation by microtubules and flagella. Math. Biosci. 90, 247-263.

95. Eshel, D. and C. J. Brokaw (1988) Determination of the average shape of flagellar bends: A gradient curvature model. Cell. Mot. Cytoskel. 9, 312-324.

96. Brokaw, C. J. (1989) Operation and regulation of the flagellar oscillator. In: Cell Movement, Vol. I. The Dynein ATPases. F. Warner, P. Satir and R. Gibbons, eds., A. R. Liss, NY. pp. 267-279.

97. Brokaw, C. J. and K. A. Johnson (1989) Dynein-induced microtubule sliding and force generation. In: Cell Movement, Vol I. The Dynein ATPases. F. Warner, P. Satir and R. Gibbons, eds., A. R. Liss, NY. pp. 191-198.

98. Brokaw, C. J. (1989) Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella. Science 243, 1593-1596.

99. Omoto, C. K. and C. J. Brokaw (1989) 2-chloro adenosine triphosphate as substrate for sea urchin axonemal movement. Cell Mot. & Cytoskeleton 13, 239-244.

100. Brokaw, C. J. (1990) Flagellar oscilation: new vibes from beads. J. Cell Science 95, 527-530.

101. Brokaw, C. J. (1990) The sea urchin spermatozoon. BioEssays 12, 449-452.

102. Brokaw, C. J. (1990) Computerized analysis of flagellar motility by digitization and fitting of film images with straight segments of equal length. Cell Mot. & Cytoskeleton 17, 309-316.

103. Brokaw, C. J. (1991) Calcium sensors in sea urchin sperm flagella. Cell Mot. & Cytoskeleton 18, 123-130.

--- Brokaw, C. J. (1990) Descriptive and mechanistic models of flagellar motility. In: Biological Motion, W. Alt and G. Hoffman , eds., Springer-Verlag. pp. 128-144.

105. Brokaw, C. J. (1991) Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa. J. Cell Biol. 114, 1201-1215.

106. Dey, C. S. and C. J. Brokaw (1991) Activation of Ciona sperm motility: phosphorylation of dynein polypeptides and effects of a tyrosine kinase inhibitor. J. Cell Sci. 100, 815-824.

--- Brokaw, C. J. (1991) Computerized extraction of flagellar waveform parameters from high speed films. In: Comparative Spermatology 20 Years After. B. Baccetti, ed., Raven Press, NY, pp. 344-347.

--- Brokaw, C. J. (1991) Activation of motility of Ciona spermatozoa. In: Comparative Spermatology 20 Years After. B. Baccetti, ed., Raven Press, NY, pp. 457-460.

109. Brokaw, C. J. (1993) The Dynamics of Cellular Motility (Book Review). Bull. Math. Biol. 55, 1020-1024.

110. Brokaw, C. J. Microtubule sliding in reduced-amplitude bending waves of Ciona sperm flagella: Resolution of metachronous and synchronous sliding components of stable bending waves. Cell Mot. Cytoskel. 26, 144-162.

111. Asai, D. J. and Brokaw, C. J. (1993) Dynein heavy chain isoforms and axonemal motility. Trends in Cell Biol. 3, 398-402.

112. Brokaw, C. J. (1994) Microtubule sliding in reduced-amplitude bending waves of Ciona sperm flagella: Bending waves attenuated by lithium. Cell Mot. Cytoskel. 27, 150-160.

113. Brokaw, C. J. (1994) Control of flagellar bending: A new agenda based on dynein diversity. Cell Mot. Cytoskel. 28, 199-204.

114. Cook, S. P., Brokaw, C. J., Muller, C. H. and Babcock, D. F. (1994) Sperm chemotaxis: Egg peptides control cytosolic calcium to regulate flagellar responses. Dev. Biol. 165, 10-19.

--- Brokaw, C. J. (1995) Reactivation of motility of demembranated sea urchin sperm flagella. In: Methods in Cell Biology, Vol. 47, Ch. 33. Academic Press, Inc. pp. 231-238.

116. Brokaw, C. J. (1995) Weakly-coupled models for motor enzyme function. J. Musc. Res. Cell Motility 16, 1997-211.

117. Chaudhry, P. S., Creagh, S., Yu, N., and Brokaw, C. J. (1995) Multiple protein kinase activities required for activation of sperm flagellar motility. Cell Mot. Cytoskel. 32: 65-79.

118. Brokaw, C. J. (1996) Microtubule sliding, bend initiation, and bend propagation parameters of Ciona sperm flagellar altered by viscous load. Cell Mot. Cytoskel. 33: 6-21.

119. Brokaw, C. J. (1997) Transient disruptions of axonemal structure and microtubule sliding during bend propagation by Ciona sperm flagella. Cell Mot. Cytoskel. 37: 346-362.

120. Brokaw, C. J. (1997) Mechanical components of motor enzyme function. Biophys. J. 73: 938-951.

--- Frey, E., Brokaw, C. J., and Omoto, C. K. (1997) Reactivation at low ATP distinguishes among classes of paralyzed flagella mutants. Cell Mot. Cytoskel. 38: 91-99.

--- Brokaw, C. J. (1997) Views and Reviews: Are motor enzymes bidirectional? Cell Mot. Cytoskel. 38: 115-119.

--- Santrich, C., Moore, L., Sherwin, T., Bastin, P., Brokaw, C., Gull, K., and LeBowitz, J. H. (1997) A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Mol. Biochem. Parasitol. 90: 95-110.

124. Brokaw, C. J. (1999) Bending patterns of ATP-reactivated sea urchin sperm flagella following high salt extraction for removal of outer dynein arms. Cell Motil. Cytoskel.42:125-133.

125. Brokaw, C. J. (1999) Computer simulation of flagellar movement VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal. Cell Motil. Cytoskel.42:134-148.

126. Brokaw, C. J. (2000) Stochastic simulation of processive and oscillatory sliding using a two-headed model for axonemal dynein.Cell Motil. Cytoskel.47:108-119.

127. Brokaw, C. J. (2001) Protein-protein ratchets: Stochastic simulation and application to processive enzymes. Biophys. J.
81:,1333-1344.

128. Brokaw, C. J. (2001) Simulating the effects of fluid viscosity on the behaviour of sperm flagella. Math. Methods Appl. Sci.
24 :1351-1365.

129. Brokaw, C. J. (2002) Computer simulation of flagellar movement VIII. Coordination of dynein by local curvature control can generate helical bending waves. Cell Motil. Cytoskel. 53(2):103-124. Supplementary material for this paper

130. Brokaw, C. J. (2005) Computer simulation of flagellar movementIX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia. Cell Motil. Cytoskel. 60 :35-47. CORRECTION

131. Brokaw, C. J. (2005) Symmetry breaking in a model for nodal cilia American Institute of Physics conference Proceedings 755 107-116. CORRECTION

132. Brokaw, C. J. (2006) Flagellar propulsion J. Exptl. Biol.209 :985-986.

133. Brokaw C. J. (2009) Thinking about flagellar oscillation Cell Motil. Cytoskel. 66:425-436.

134. Pelle, D. W., Brokaw, C. J., Lesich, K., A., and Lindemann, C. B. (2009) Mechanical properties of the passive sea urchin sperm flagellum Cell Motil. Cytoskel. 66:721-735.

135. Brokaw, C. J. (2009)Simulation of cyclic dynein-driven sliding, splitting and reassociation in an outer doublet pair Biophys. J. 97:2939-2947.

Preprints and web-only papers (PDF) :

Torsion, twist, and writhe: The elementary geometry of axonemal bending in three dimensions

Swimming with Three-dimensional Flagellar Bending Waves Paper presented at Second International Symposium on Aqua-Biomechanics, Honolulu, HI, September 2003.


Abstracts:

Brokaw, C. J. (1962) Studies on the flagella of Polytoma uvella. J. Gen. Physiol. 46, 357A.
Brokaw, C. J. (1964) Thiourea-induced alternations of flagellar waveforms. J. Cell Biol. 23, 15A.
Brokaw, C. J. and S. Goldstein (1965) Activation and adenosine triphosphate diffusion in flagella. J. Cell Biol. 27, 15A.
Brokaw, C. J. (1965) The stiffness of flagella and cilia. Biophys. J. 5, 148A.
Brokaw, C. J. and M. E. J. Holwill (1967) Attempts to measure mechanochemical coupling in flagella. Biophys. J. 7, 116A.
Goldstein, S. F. and C. J. Brokaw (1968) Laser microbeam irradiation studies on the control of flagellar bending waves. Biophys. J. 8, 122A.
Omoto, C. K. and C. J. Brokaw (1982) Axonemal twist and its effect on the location of doublet microtubule sliding. J. Cell Biol. 95, 311a.
Brokaw, C. J. (1983) cAMP-activation of sea urchin sperm motility. J. Cell Biol. 97, 196a.
Brokaw, C. J. (1985) Control of flagellar bending parameters: The roles of cAMP-dependent phosphorylation and calmodulin. Cell Mot. 5, 163.
Brokaw, C. J. (1985) Computer simulation of bend propagation by axoplasmic microtubules. Biophys. J. 49, 78a.
Eshel, D. (1986) New evidence for a "biased baseline" mechanism for calcium-regulated asymmetry of flagellar bending. J. Cell Biol. 103, 277a.
Brokaw, C. J. (1987) Flagellar motility: regulation by calcium and phosphorylation. J. Cell. Biochem. Suppl. 11B, 143.
Brokaw, C. J. (1987) A lithium-sensitive regulator of flagellar oscillation is activated by cAMP-dependent phosphorylation. J. Cell Biol. 105, 124a.
Eshel, D. and C. J. Brokaw (1987) Determination of the average shape of flagellar bends. J. Cell Biol. 105, 34a.
Brokaw, C. J. (1988) Direct measurement of sliding between outer doublet microtubules in actively beating sperm flagella. Cell Mot. Cytoskel. 11, 212-213.
Dey, C. and C. J. Brokaw (1989) Tyrosine phosphorylation is required for activation of Ciona sperm motility. J. Cell Biol. 109, 178a.
Brokaw, C. J. (1992) Reduced-amplitude flagellar bending waves generated by selective inhibition of bend propagtion rather than bend initiation. Mol. Biol. of the Cell 3, 170a.
Brokaw, C. J. (1994) Comparison of weakly-coupled and strongly-coupled cross-bridge models by stochastic simulations. Biophys. J. 66, A304.
Chaudhry, P. S., Creagh, S., Yu, N., and Brokaw, C. J. (1995) Cyclic-AMP-dependent and cAMP-independent protein phosphorylations are required for activation of Ciona sperm motility. Biol. Reprod. 52: S105.
Chaudhry, P. S., and Brokaw, C. J. (1997) Cytosolic motility activating factors of Ciona spermatozoa. Biol. Reprod. 56: S157.
Brokaw, C. J. (2002) Coordination of dynein activity for 3-dimensional flagella bending. Biophys. J.82: 403a.