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Abstract

We analyze the effects of veto players when the set of available policies isn’t exogenously fixed, but

rather determined by policy developers who work to craft new high-quality proposals. If veto players

are moderate, there is active competition between developers on both sides of the ideological spec-

trum. However, more extreme veto players induce asymmetric activity, as one side disengages from

development. With highly-extreme veto players, policy development ceases and gridlock results. We

also analyze effects on centrists’ utility. Moderate veto players dampen productive policy develop-

ment and extreme ones eliminate it entirely, either of which is bad for centrists. But some effects

are surprisingly positive; somewhat-extreme veto players can induce policy developers who dislike

the status quo to craft moderate, high-quality proposals. Our model accounts for changing patterns

of policymaking in the U.S. Senate, and suggests that if polarization continues centrists will become

increasingly inclined to eliminate the filibuster.



Many political organizations use decisionmaking procedures that empower veto players – indi-

viduals or groups who can block policy change. For example, executives often have constitutionally-

granted veto powers (Cameron, 2000) and supermajority procedures in legislatures and commissions

generate implicit “pivots” (Crombez (1996); Brady and Volden (1997); Krehbiel (1998); Tsebelis

(2002)). Despite the ubiquity of such procedures, commentators are of two minds about their con-

sequences. Consider for example the filibuster in the U.S. Senate; critics frequently complain about

the minority’s ability to obstruct, but defenders argue that additional hurdles encourage construc-

tive deliberation (Arenberg and Dove, 2012). To understand how veto players affect policymaking,

it is important to consider both possibilities; i.e., to allow for constructive policymaking as well as

gridlock.

We study this question in competitive policymaking environments, in which different actors can

generate new policy proposals. To do so we build on Hirsch and Shotts (2015), which models

policymaking as a “contest” (Tullock (1980); Baye, Kovenock and de Vries (1996)) in which a deci-

sionmaker considers policies crafted by policy-motivated actors, known as policy developers. Rather

than promising payments or furnishing general policy-relevant information, developers gain support

for their policies by making costly, up-front policy-specific investments in their quality. In the orig-

inal model, competition between developers benefits a unitary decisionmaker because it prevents a

developer from extracting all of the benefits of her quality investments in the form of ideological

concessions. Here we consider how the inclusion of veto players affects this process.

Veto players create additional hurdles to policy change; their presence would therefore seem to

harm a decisionmaker who would otherwise have full freedom of choice. Missing from this simple

intuition, however, is that the decisionmaking context can affect the set of policies from which a

decisionmaker chooses. In our model, policy developers anticipate veto players’ actions, which affects

both which policies they craft and how much effort they exert crafting them. The exact nature of

these effects is subtle. On the one hand, veto players can discourage policy development, because
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developers anticipate that it is more difficult to achieve policy change. On the other hand, policy

developers may invest more in quality to satisfy veto players’ demands. For example, writing about

the Affordable Care Act, Washington Post columnist Ruth Marcus argued that “a product that can

secure the votes of 60 senators is more likely to be one that can achieve a national consensus as

well. It is no accident that the Senate health care bill is better than its House counterpart” (Marcus,

2010). Given these countervailing effects, it is not obvious whether, and under what circumstances,

the presence of veto players will benefit a centrist decisionmaker despite constraining his freedom of

choice. This matters because centrists often play a key role in determining institutional procedures;

for example, in the 118th Congress, Democrats were unable to reform the filibuster due to opposition

from Senators Manchin and Sinema.

We first examine how veto players affect patterns of activity in competitive policy development,

and show that they lead to asymmetric participation between otherwise-symmetric policy developers.

The reason is that veto players permit the maintenance of a non-centrist status quo. When the status

quo favors the interests of one developer, she is less-motivated to develop a replacement policy, while

the competing developer is more motivated to do so. As is typical in asymmetric contests, this

leads to asymmetric participation (Hillman and Riley (1989)); the favored developer is sometimes or

always inactive, while the disfavored developer always crafts a new policy. Our model thus embodies

a pattern frequently seen in real-world politics – the faction with the greatest interest in change works

to develop a policy alternative, while the faction benefitting from the status quo is less constructively

engaged in policy development.

We next study how patterns of participation are affected by the veto players’ ideological extremity;

in a legislature with spatial preferences, this proxies for the stringency of a supermajority hurdle

(which determines the relevant “pivots” for policy change). If veto players are moderate, then both

developers are likely to craft new policies for consideration, because each faces relatively modest

hurdles to moving policy in her desired direction. However, as veto players become more extreme,
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developers’ pattern of activity becomes increasingly asymmetric. This occurs because hurdles to

change disproportionately impact the developer favored by the status quo; both directly – by making

it harder for her to get her preferred policy enacted – and indirectly – by protecting her from the

possibility that the other side will successfully enact a very unappealing policy. If veto players become

too extreme, the pattern of activity again becomes symmetric; both developers decline to develop

policies, and gridlock results.

We last examine when a centrist decisionmaker would benefit from eliminating the veto players.

If they are highly moderate or highly extreme, the decisionmaker is better off eliminating them; in

the former case they dampen productive competition, while in the latter case they discourage policy

development entirely. However, if veto players are only somewhat extreme, the decisionmaker may

benefit from their presence; the disfavored developer is willing to make substantial quality investments

to cater to an opposing veto player, and these benefits to the decisionmaker may outweigh the costs

of limiting his freedom of choice. Under these conditions, the developer favored by the status quo is

also unlikely to develop a competing policy. Our model thus identifies surprising conditions under

which the presence of veto players benefits a decisionmaker – when their extremism is “just right.”

It also counterintuitively predicts that veto players are most beneficial when their presence inhibits

observable competition. Thus, the absence of observable competition in policy development is not

prima facie evidence of dysfunctional politics or formal agenda control, but could instead simply

reflect competing groups’ differential motivation to change a lopsided status quo.

Finally, we discuss the changing impact of the filibuster in the Senate as its members have become

increasingly polarized over time. The Senate represents a good application of the model because of

its relatively open agenda procedures – individual Senators’ right to unlimited debate ensures that

majority leaders must satisfy a broad constituency when scheduling floor time, thereby permitting

proposals to come from a variety of sources. We first show that the relevant veto players in the

Senate – the “filibuster pivots” implied by the 60-vote threshold to invoke cloture – have polarized
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faster than the chamber’s main policy developers – the party medians. The evolution of the Senate

thus mimics the comparative static in our model of the veto players becoming more extreme. We

then argue that our model provides a novel explanation for shifting patterns of policymaking; since

the 1970s, the Senate has evolved from the “textbook Congress” with both sides generating policy

options (because veto players were relatively moderate), to highly asymmetric policymaking with the

majority developing policies and the minority engaging in obstruction (as veto players became more

extreme), and finally to the contemporary gridlocked Senate (as veto players became very extreme).

Further, our model provides a novel rationale for centrists’ historical support of the filibuster as an

institution; that it empowered somewhat-extreme veto players who encouraged the development of

reasonably-centrist and high-quality policies. Finally, the model rationalizes the erosion of support in

the present era, as Senators’ increasingly stringent demands to invoke cloture now promote excessive

gridlock.

Veto Constraints and Supermajority Rules

A large literature studies veto constraints and supermajority rules in both static and dynamic

settings (Crombez (1996), Brady and Volden (1997), Krehbiel (1998), Cameron (2000), Tsebelis

(2002)). A key insight undergirding pivot-based models is that in a unidimensional setting with

sufficient structure on preferences, analysis of a collective choice body can be simplified by focusing

on pivots who lack formal veto power (as in general social choice models, see Austen-Smith and

Banks (1999)) because they can be modeled as de facto veto players backed by a coalition of other

members.

Our work joins a subset of this literature that proposes rationales for supermajority rules despite

their potentially pernicious effects (Dziuda and Loeper, 2018). Such rationales include static ones

rooted in the effects on policymaking at a particular moment in time, as well as dynamic ones rooted

in the effects on repeated policymaking in changing circumstances. Among dynamic rationales, the

most relevant to the Senate center on the relationship between the future distribution of power and
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decisions about procedures and policy in the present (e.g., Dixit, Grossman and Gul (2000), Messner

and Polborn (2004), Eguia and Shepsle (2015), Gibilisco (2015), Invernizzi and Ting (2024)). Our

model, in contrast, adds to the literature on static rationales; others include protecting minorities

(Aghion and Bolton, 2003), maximizing campaign contributions (Diermeier and Myerson, 1999), ag-

gregating policy-relevant information (Persico, 2004), and counterbalancing the power of formal (i.e.,

explicitly privileged by procedures) agenda setters (Peress (2009); Krehbiel and Krehbiel (2023)). We

are closest in spirit to the latter – policies have a unidimensional spatial component, institutional

rules generate pivotal actors, and these “pivots” help counterbalance developers’ informal agenda

setting power. However, the distinction between formal agenda power (to make proposals) and infor-

mal agenda power (to craft them) is crucial, both for applying the model to settings with relatively

open agenda procedures like the Senate, and for generating novel predictions about policymaking

activity.

Although these works examine why decisionmakers may want to institute procedural constraints,

they largely sidestep the puzzle of how they credibly do so; what stops them from doing away with

such procedures when it suits their short-term interests? This is examined in a related literature on

endogenous institutional rules, i.e., on models of legislators “choosing how to choose.” One answer

applicable to the Senate (whose standing rules require a 2/3 supermajority to invoke cloture on rule

changes) is to suppose that legislators can impose binding constraints on future rule changes (Barbera

and Jackson (2004)). This is somewhat unsatisfactory given the recent use of the “nuclear option,”

where a simple majority used a complex procedural maneuver to eliminate filibusters on Supreme

Court nominees (Min Kim, Everett and Schor, 2017). Another is to explicitly model how the median

might credibly give away power in a dynamic stationary bargaining model, where legislators cannot

punish each other for reneging on a common understanding of procedures. For example, Diermeier,

Prato and Vlaicu (2015) assume that switching to majoritarian procedures involves frictions that

prevent an impatient median from immediately “getting her way.”
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A third answer is to explicitly model the stability of procedures in a dynamic nonstationary bar-

gaining model where legislators can punish each other for deviating from agreed-upon procedures;

this is akin to Diermeier’s (1995) explanation for the stability of closed rules. In a similar fash-

ion, the threat of reverting to majoritarian procedures could sustain supermajority rules designed

to elicit high-quality legislation from policy developers. This possibility is salient in the Senate;

when describing potential consequences of employing the nuclear option, a former staffer and par-

liamentarian wrote “This is a slippery slope. It will almost inevitably lead to strict majority rule of

debate and amendment, turning the Senate into a smaller and less significant shadow of the House

of Representatives”(Arenberg and Dove, 2012, p. 173).

Policy Quality

An important feature of our model is that policies have an endogenous quality dimension, so

it is possible to “buy” votes by developing high-quality policies.1 From an analytical perspective,

quality is simply a second dimension of policy that all key actors agree upon. For example, al-

though policymakers may disagree about how much should be done to mitigate climate change, if

the government decides to pursue a green industrial policy, people across the ideological spectrum

would prefer to financially support well-run companies developing feasible technologies rather than

badly-run ones working on infeasible technologies. More broadly, policies’ quality characteristics

may include cost savings, promotion of economic growth, or efficient and effective administration. A

narrower interpretation of quality when participants are risk-averse over ideology is that it is simply

reduced uncertainty about a policy’s ideological outcome (e.g., Huber and McCarty (2004); Turner

1A large literature analyzes the choice between two fixed policies: Dion et al. (2016) study fili-

busters as a war of attrition where parties have private information about costs of fighting, Gibbs

(2023) analyzes signaling to external constituencies, Anesi and Bowen (2021) study vote buying via

transfers, and Chan et al. (2018) and Anesi and Safronov (2023) analyze how decision rules affect

information acquisition.
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(2017)). Regardless of the interpretation, a central presumption of our model is that that enhancing

a policy’s quality requires costly up-front effort to acquire the requisite information and expertise,

and translate it into a concrete proposal.

A second key feature of our approach is that the return on a developer’s costly investment is

policy-specific, rather than general to policies anywhere in the ideological spectrum; in so doing we

build on Londregan (2000); Bueno De Mesquita and Stephenson (2007); Lax and Cameron (2007);

Ting (2011); and Hirsch and Shotts (2012, 2018). Our approach contrasts with a large literature

building on Crawford and Sobel (1982) in which the return to an expert’s effort is both “general”

(knowledge about the full mapping between all possible policies and outcomes) and “simple” (because

each possible mapping is described by a unique scalar). For example, in climate policy, a single piece

of information—such as the value of a temperature “tipping point”—would inform how much each

actor prefers to invest in mitigation, even though actors would still disagree about the appropriate

level of investment when fully informed. In this classical approach, an expert’s willingness to work

is degraded by his fear that a decisionmaker will learn and exploit his knowledge to implement an

undesirable policy outcome. In contrast, in models like ours an expert can exert informal agenda

power or “real authority” (Aghion and Tirole, 1997) by crafting a high-quality policy, because a

decisionmaker must actually implement her policy to enjoy the benefits of its quality.2 Most closely

related to our work is Hitt, Volden and Wiseman (2017), which briefly analyzes the case of a single

developer facing a veto player. Our analysis differs substantially; we incorporate multiple developers,

and characterize effects on moderation and quality of policies, as well as whether centrists benefit

2In Callander (2008) an expert acquires general expertise about the mapping between policies

and outcomes, but the complexity of such mappings may vary. On maximally complex issues an

expert can reveal which policy achieves his desired outcome while censoring information about the

full mapping. It is thus as if he can generate policy-specific quality but only for his ideal policy; see

also Turner (2017).
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from the presence of veto players.

Finally, because the costs of investing in quality are paid up-front, our model relates to contests

with an “all-pay” component (Baye, Kovenock and de Vries, 1993; Che and Gale, 2003; Siegel,

2009); particularly those involving policy-motivated competitors (Ashworth and Bueno de Mesquita

(2009), Balart, Casas and Troumpounis (2022), Hirsch (2023a)) or multiple decisionmakers (Jordan

and Meirowitz (2012)). Our model has two primary differences with previous contest models that

complicate the equilibrium analysis. The first is that developers are policy-motivated rather than

rent seeking, in that the “loser” cares about the exact policy crafted by the “winner.” This makes

sense for political environments where competing actors care about a collective policy decision. The

second is that our model features players who can only block proposals, i.e., veto players. In the

presence of veto players, investing in quality is strategically beneficial in two ways; it can make a

policy more appealing to the decisionmaker, and also help gain the support of the veto players.

Model

The model takes place in three stages. First, two policy developers simultaneously craft new

policies to add to the set of alternatives available for consideration. Second, a decisionmaker proposes

a policy; either a new one crafted by a developer, or a preexisting one. Finally, a pair of veto players

either approve the policy or block it, in which case a status quo prevails.

Policy has two components: ideology y ∈ R and quality q ∈ [0,∞). Players’ utility functions are:

Ui (b) = q − (xi − y)2

where xi is i’s ideological ideal point.

Policy development Each of two developers (L and R, with ideal points xL < 0 and xR > 0)

may simultaneously invest costly resources to develop a new policy bi = (yi, qi) with ideology yi and

quality qi ≥ 0 at cost αiqi, where αi > 2. A developer thus will not invest in quality simply for its

own sake, but rather to improve her policy’s prospects of being enacted.
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Policy choice In Hirsch and Shotts (2015) and Hirsch (2023b), policy is chosen by a single deci-

sionmaker with ideal ideology xD = 0. We augment this with two veto players xV L < 0 and xV R > 0.

If either rejects the decisionmaker’s proposal an exogenous status quo policy b0 prevails.

The set of possible policy choices consists of all 0-quality policies, any newly-developed policies,

and the status quo b0 = (y0, q0). This assumption reflects the idea that the decisionmaker and the

veto players collectively have the power to choose policy, but not to develop it. We further assume

that the status quo is low-quality (q0 = 0) and within the “gridlock interval” for 0-quality policies

(xV L < y0 < xV R); our analysis is thus restricted to circumstances in which policy is stable absent

the development of new alternatives. Finally, we consider developers who are more extreme than the

veto players (xL ≤ xV L and xR ≥ xV R). This is natural if the set of potential developers consists of

all actors motivated to change policy, while veto players must be empowered by formal institutional

rules.

Robustness The model is unchanged if more veto players are introduced in [xV L, xV R] because

only the two most extreme ones pose binding constraints for policy change. Our equilibria are also

robust to including additional moderate developers in [xL, xR]; if their costs of developing quality

are no higher than the same-sided extremist developer’s costs, they remain inactive. What matters

most for our results is that there is some aspect of quality that each developer, decisionmaker, and

opposite-side veto player agree on. This ensures that a developer can improve a proposal in ways

that appeal to the opposing veto player, with benefits that spill over to the decisionmaker. It is less

important that the developers themselves agree what constitutes quality. Indeed, absent veto players

the decisionmaker benefits if opposing developers disagree about what constitutes quality (Hirsch

and Shotts (2015)).

Application: The U.S. Senate

Before analyzing the model we briefly discuss how to map it to the U.S. Senate. Classic models

(Brady and Volden (1997); Krehbiel (1998)) model legislatures as consisting of n members with
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unidimensional spatial preferences differentiated only by their ideal points. Under these assumptions,

whether a proposed bill will pass hinges on the preferences of a few pivotal legislators explicitly or

implicitly empowered by the rules. Although our model features “one and a half” dimensions by

including quality (Groseclose (2007)), this property is unchanged since all legislators value quality

equally (see also Hitt, Volden and Wiseman (2017)). As applied to the Senate, our model represents

a reduced-form representation of a 100-member legislature; the decisionmaker is the legislator(s)

empowered to set the agenda, the veto players are the outermost pivots implied by the decisionmaking

rules, and the developers are the most extreme policy-motivated actors with the ability and resources

to craft new policies.

Who are these key actors in the Senate? For the veto players the answer is straightforward – the

Senate’s 3/5 requirement to invoke cloture has effectively made it a supermajoritarian institution

for final passage of major legislation (Binder (2015)). Its pivotal members are approximately the

41st and 60th most liberal legislators required to invoke cloture for policy movements rightward or

leftward, respectively. For the decisionmaker (who in our model acts as an agenda setter vis-a-vis

the veto players), the answer is less straightforward. Following Krehbiel (1998), we argue that the

decisionmaker is best thought of as the Senate median; this is “tantamount to assuming that the

legislature decides under an open rule; that is, no restrictions are placed on amendments or on

who can offer them” (Krehbiel, 1998, 25). Although an open rule simplifies the real-world Senate’s

complex procedures, it is arguably reasonable given each individual Senator’s codified right to delay,

the cumbersome nature of cloture (Arenberg and Dove, 2012, 12), and the absence of a germaneness

requirement (Oleszek et al., 2015). This assumption also helps sharpen the question at hand by

stacking the deck against the possibility that veto players will benefit moderates.

Finally, for the developers we argue that the most extreme Senate actors with the ability and

resources to craft new policies are the parties, working as a collective to pursue a common ideological

objective reflected by the median party member’s ideal; while this assumption is a poor fit to the mid-
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20th century committee-centered Congress, it more accurately describes the Congress that emerged

after the 1980s, with party leaders increasingly originating landmark legislation and coordinating its

drafting (Sinclair, 2016).

Preliminary Analysis

In the absence of veto players, the decisionmaker can revise any status quo to a low quality

policy at his ideological ideal. It is thus as if the status quo ideology is y0 = xD = 0, with the

decisionmaker willing to adopt any newly-crafted policy that he prefers over (0, 0). This is depicted

in the top panel of Figure 1.

The presence of veto players creates additional hurdles to policy change, which affects decision-

making in two ways. First, it expands the range of potential status quos to include ones that are

non-centrist: the status quo may be at any y0 ∈ [xV L, xV R]. Second, for policy change to occur a new

policy must be acceptable to both veto players, who are collectively more opposed to policy change

than the decisionmaker. This can be seen by observing that the upper envelope of the veto players’

indifference curves through the status quo is steeper than the decisionmaker’s indifference curve; to

avoid a veto the decisionmaker must choose a policy that is weakly within this upper envelope, which

we call the veto-proof set.

The effect of veto players hinges on how this change in the set of acceptable policies affects

developers’ incentives to invest in quality. A developer may be less willing to invest if she is favorably

disposed to the status quo, or unwilling to satisfy veto players’ demands. Alternatively, she may be

more willing to invest if she strongly dislikes the status quo, and is willing to put in extra work to

satisfy veto players’ demands.

Notation We call the decisionmaker’s utility from a policy its score, s (y, q) = UD (y, q) = q −

y2; scores are useful because they fully characterize how the decisionmaker evaluates the available

veto-proof policies. Absent veto players, it is as if the score of the status quo is s (0, 0) = 0; the
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Figure 1: Veto Players’ Effect on Decisionmaking. Green line is decisionmaker’s indifference curve.

Red dashed lines are veto players’ indifference curves.

decisionmaker chooses the policy with the highest score subject to the constraint that its score is

≥ 0. Veto players increase the range of scores the decisionmaker is willing to accept (to those

≥ UD(y0, 0) = −y20), but restrict the set of acceptable ideologies given each score. The following

defines the set of veto-proof policies in terms of score s and ideology y, as illustrated in Figure 2.

Definition 1. A policy (s, y) with score s and ideology y is veto-proof if and only if y ∈ [zL (s) , zR (s)],

where zL (s) = y0 − s−s0
2|xV R| , zR (s) = y0 +

s−s0
2|xV L| , and s0 = −y20 is the score of the status quo.

After policies have been developed, the decisionmaker chooses the highest-score veto-proof policy
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Figure 2: The Veto-Proof Set. Decisionmaker indifference curves are gray curves. At score s, the

range of veto-proof ideologies is [zL (s) , zR (s)]; the right boundary is determined by the left veto

player while the left boundary is determined by the right veto player.

available.

The Monopolist’s Problem

To see how veto players influence policy development, we first consider the case of a single

developer who is a “monopolist.”3 Because a policy with score s and ideology y must have quality

q = s + y2 the up-front cost to developer i of crafting it is αi

󰀃
s+ y2

󰀄
, and her policy utility if

it is adopted is Vi (s, y) = Ui

󰀃
y, s+ y2

󰀄
= −x2i + s + 2xiy. A monopolist’s objective is to craft a

veto-proof policy (si, yi) that maximizes −αi

󰀃
si + y2i

󰀄
+ Vi (si, yi). It is easily derived that a policy

3See also Hirsch and Shotts (2015), Hitt, Volden and Wiseman (2017), Hirsch and Shotts (2018),

and Hirsch (2023b).
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(si, yi) satisfying this objective is an element of the set:

argmax
{(si,yi):si≥s0,yi∈[zL(si),zR(si)]}

󰀻
󰁁󰀿

󰁁󰀽
− (αi − 1) si󰁿 󰁾󰁽 󰂀

score effect

+ 2xiyi − αiy
2
i󰁿 󰁾󰁽 󰂀

ideology effect

󰀼
󰁁󰁀

󰁁󰀾
. (1)

From Equation 1 it is easy to see that without veto players, a monopolist would craft a policy

no better for the decisionmaker than (0, 0), because it is as if this is the status quo and there is no

constraint on ideology. She sets si = 0 (minimizing the loss in the first term) and targets the unique

ideology that optimally trades off ideological concessions to the decisionmaker against the cost of

compensating him with additional quality (maximizing the second term). This optimal ideology is

yi =
xi
αi
, a convex combination of the decisionmaker’s and monopolist’s ideal points, weighted by the

cost of quality.

Veto players prevent a monopolist from doing this; they force her to develop a policy within

the veto-proof set. What then will a monopolist do? She develops a policy on the closer boundary

of the veto-proof set (zL (sL) for developer L or zR (sR) for developer R), with an ideology that

trades off the marginal benefit of moving the outcome closer to her ideal against the marginal cost of

producing enough quality to gain the opposite-side veto player’s support. Substituting in the optimal

ideology y∗i (s) = zi (si) given a score s into Equation 1, straightforward optimization characterizes

the ideology of the optimal policy for a monopolist to develop. As in Hitt, Volden and Wiseman

(2017), it is an average of her own ideal point and the ideal point of the opposite-side veto player,

weighted by the cost of quality:

ŷi =

󰀻
󰁁󰀿

󰁁󰀽

1
αL

xL +
󰀓
1− 1

αL

󰀔
xV R for i = L

1
αR

xR +
󰀓
1− 1

αR

󰀔
xV L for i = R

If the status quo is closer to the developer than ŷi, the marginal cost of moving policy in her direction

is too high, so she develops no policy and the status quo is maintained. In sum, we have the following.
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Proposition 1. When developer i is a monopolist, she crafts policy (sM∗
i , yM∗

i ), where

yM∗
i =

󰀻
󰁁󰀿

󰁁󰀽

min { y0, ŷL} for i = L

max { y0, ŷR} for i = R

and zi(s
M∗
i ) = yM∗

i . A monopolist invests in policy development if and only if the status quo is

farther from her ideal point than her ideal monopoly policy: sM∗
i > s0 ⇐⇒ |y0 − xi| > |ŷi − xi|.

Whenever a new policy is developed, its ideology ŷi depends on the tradeoff at the margin between

ideological gains and costs of generating quality. With linear costs, this ideology does not depend on

the status quo. The level of quality, however, does depend on the status quo, because a status quo

closer to the opposite-side veto player’s ideal forces the developer to generate more quality to gain

his support. This yields the following.

Corollary 1. At any status quo y0 where policy development occurs (s0 < sM∗
i ), the monopoly score

sM∗
i is strictly increasing (decreasing) in y0 when i = L (R).

The farther is the status quo from the monopolist, the more change she wants, the more quality she

must generate to gain the veto player’s support, and the more the decisionmaker benefits.

The Competitive Problem

We next describe key properties of equilibria in the main model where two developers compete.

We say that developer i is active when she develops a veto-proof policy with score si > s0 (and

strictly positive quality), and inactive if she exerts no effort and “develops” the only low-quality

veto-proof policy, i.e., the status quo.

Equilibria of the competitive model can be complex; one or both developers may be active or

inactive, and when active could mix over a continuum of scores as well combinations of ideology and

quality at each score. However, we show in the Appendix that it is without loss of generality to

consider strategy profiles of the following form.

Remark 1. We consider strategy profiles in which each developer

15



1. only crafts veto-proof policies (si ≥ s0 and yi ∈ [zL (si) , zR (si)])

2. chooses the score si of her policy according to a (potentially degenerate) cumulative distribution

function Fi (si)

3. crafts a unique policy (si, yi (si)) at each score si.

Because each developer crafts a unique policy at each score, to describe equilibria we focus on

the probability distributions over scores that the developers’ policies generate. In a pure strategy

equilibrium these distributions are degenerate, i.e., each developer places probability 1 on a single

score. In a mixed strategy equilibrium they place probability weight on a continuum of scores.

Lemma 1. In any equilibrium satisfying the conditions in Remark 1, there is a developer k and two

scores, s and s, satisfying s0 ≤ s ≤ s such that

• developer k’s score CDF Fk has support s0 ∪ [s, s] and exactly one atom at s0,

• developer −k’s score CDF F−k has support [s, s] and exactly one atom at s.

Appendix B.1 fully characterizes fully characterizes necessary and sufficient conditions for a pair

of score CDFs to constitute an equilibrium. The relative orientation of s and s in Lemma 1 determines

whether the equilibrium is pure or mixed. When s = s the equilibrium is in pure strategies, with at

most one developer −k being active and crafting a score s = s policy. Alternatively, when s < s the

equilibrium is in mixed strategies, with both developers crafting policies over a continuum of scores

[s, s] as well as at their respective atoms.

We now describe some key properties of pure and mixed equilibria. Later, in Proposition 2, we

give parameter conditions for how the type of equilibrium depends on the status quo and the veto

players’ extremism in a special case with symmetric actors.
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Pure Strategy Equilibria

Whenever a pure strategy equilibrium exists it takes the following form.

Lemma 2. In a pure strategy equilibrium (s = s), the developer k with the lower monopoly score is

inactive (i.e., crafts score s0), while the other developer −k crafts her monopoly policy
󰀃
sM∗
−k , y

M∗
−k

󰀄

from Proposition 1 (so that s = s = sM∗
−k ).

In any pure strategy equilibrium at least one developer must be inactive. If both were active,

one would be strictly better off either dropping out or crafting a slightly-higher quality policy to

win for sure. The inactive developer must have the lower monopoly score; otherwise, her opponent

would strictly prefer crafting her monopoly policy rather than allowing her competitor to act as a

monopolist (which results in an even worse policy for her than the status quo). Finally, the active

developer must craft her monopoly policy, because absent competition her incentives are the same

as a monopolist. (If both developers’ monopoly scores are s0, both remain inactive).

While the preceding explains why pure strategy equilibria take a particular form, it doesn’t

explain why they exist at all—why doesn’t the inactive developer simply craft a policy slightly

better for the decisionmaker than her opponent’s policy? Indeed, that’s what occurs in the model

absent veto players, which lacks pure strategy equilibria even when developers differ in extremism

and ability (Hirsch (2023b)). Our model works differently because veto players sometimes force

the active monopolist to craft a policy that is sufficiently high-quality to insulate it from potential

competition. Figure 3 depicts a pure strategy equilibrium for particular parameter values.

Mixed Strategy Equilibria

We now give intuition for the form of mixed equilibria (s < s) in Lemma 1, and flesh out some

details via an example. One developer k has an atom at s0, i.e., she is sometimes inactive. The size

of k’s atom determines the optimal policy (score, ideology, and quality) for the other developer −k

to develop when winning with probability Fk (s0). Developer −k crafts this policy, which has score
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Figure 3: A Pure Strategy Equilibrium. R develops a policy (blue dot) of sufficient quality to gain

the support of the left veto player. L prefers to sit out (purple dot) rather than develop any policy

that can defeat it.

s, with a probability that makes k indifferent between sitting out versus developing a policy with

score s that wins with probability F−k (s). For scores between s and s, the developers mix smoothly,

maintaining each other’s indifference at the margin over paying additional costs to develop higher-

score policies that are more likely to be enacted.4

Figure 4 presents an example of a mixed strategy equilibrium. In the example, L is developer k

(inactive with probability FL (s0)) and R is developer −k (always active). This is intuitive because

y0 < 0, so R is more dissatisfied with the status quo.

Looking at R’s strategy, with probability FR (s) she develops a policy at the blue dot in the

4As shown in the differential equations in Part 3 of Proposition B.1 in Appendix B, developer −i’s

strategy has a density at each score that maintains i’s indifference given i’s expected net marginal

cost of producing a higher-score policy, the possible relaxation of constraints imposed by veto players,

and i’s ideological benefit of winning rather than losing at that score.
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right panel; otherwise she mixes smoothly over policies on the blue curve with scores in (s, s̄]. Her

policies are constrained by the left veto player, i.e., they are on the boundary of the veto-proof

set. It may seem counterintuitive that R sometimes produces a policy at score s, because L (when

active) never develops a score below s; R could therefore develop a lower-score policy and still win

with the same probability, FL (s0). However, R doesn’t just care about the decisionmaker’s support;

she also needs to gain the left veto player’s assent. And just as a monopolist is willing to craft a

policy at a score strictly greater than s0 to gain a veto player’s assent, so too is a developer whose

opponent is sometimes inactive. In this example, R’s optimal score-s policy trades off the up-front

costs to develop a policy that gains the left veto player’s assent against the benefits of getting an

ideological outcome closer to her ideal point when her opponent chooses to be inactive (which occurs

with probability FL (s0)).

Turning to developer L, with probability FL (s0) she is inactive and develops no policy (the purple

dot at the status quo). With the remaining probability she mixes over policies on the purple curve

with scores in (s, s̄]. She is willing to invest in developing policies with scores just above s because

they sometimes win, due to the fact that R has an atom at s. In this example, L’s equilibrium

policies are unconstrained by the veto players, i.e., they are not on the boundary of the veto-proof

set. Finally, the left panel shows that R’s score CDF first order stochastically dominates L’s, implying

that the decisionmaker is strictly more likely to enact R’s policy.

Main Results

We now state our main results. For simplicity we henceforth restrict attention to the case where

developers are equally capable (αL = αR = α), and developers and veto players are equidistant

from the decisionmaker (−xL = xR = xE , −xV L = xV R = xV ).
5 Under these assumptions, any

5Details for the symmetric case are in Appendices C (foundational results) and D (how results

in the main text follow from these). Propositions C.1 and C.2 provide analytical results for y0 = 0,

including the unique mixed equilibrium when a pure equilibrium does not exist. For mixed equilibria
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Figure 4: A Mixed Strategy Equilibrium. Left panel depicts score CDFs. Right panel depicts policies.

asymmetry in developers’ incentives must arise from the location of the status quo.

We refer to the developer farther from the status quo as more-motivated, and her opponent as

less-motivated. The more-motivated developer is more likely to engage in policy development for two

reasons. First, she has more to gain: because ideological loss functions are common and convex, she

places a greater value on shifts in her ideological direction from the status quo. Second, she has an

easier time persuading the opposing veto player to consent to policy changes; e.g., if y0 < 0, it is

easier to get the left veto player to agree to a rightward policy shift than it is to get the right veto

player to agree to a leftward shift.

Patterns of Activity

Patterns of activity depend on incentives to engage in policy development. What incentivizes

a developer to be active? The prospect of shifting policy in her ideological direction; this is more

with y0 ∕= 0, Proposition C.3 analytically proves several key properties, while exact details of devel-

opers’ strategies are computed numerically using the procedure described at the end of Appendix

C, based on analytical results in Proposition B.1. We do not analytically rule out coexistence of

pure and mixed equilibria, or multiple mixed equilibria, but find no parameter values exhibiting

equilibrium multiplicity in our computational analysis.
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attractive when the alternative (either the status quo or her opponent’s policy) is far from her ideal

point. What deters a developer from being active? The cost of crafting a policy that can gain the

support of both veto players and the decisionmaker. This is higher when the opposing veto player

is an extremist, and when the opposing developer crafts a high-quality policy that is very appealing

to the decisionmaker.

The interplay between these motives generates three possible equilibrium patterns of activity:

(i) neither developer is active, (ii) only the more-motivated developer is active, or (iii) the more-

motivated developer is always active, while the less-motivated developer is sometimes active (and

equilibrium is in mixed strategies). Which pattern arises depends on the extremity of the veto players

and the location of the status quo. Figure 5 provides an illustration, varying xV (on the vertical

axis, between 0 and xE) and y0 (on the horizontal axis, between −xV and xV ).
6

The first possibility (that neither developer is active) occurs in the blue region of Figure 5. Here,

the veto players are extreme and the status quo is moderate; each developer chooses not to develop

a policy because it is too costly to get the opposing veto player’s assent. The condition for this

case comes from our monopoly analysis. Recall from Proposition 1 that a monopolist refrains from

developing a policy if the status quo is closer to her ideal point than her monopoly policy ŷi(xV )

(denoting the dependence on xV explicitly). Thus, there is a pure strategy equilibrium exhibiting

gridlock, in which neither developer is active, if the status quo is both to the left of L’s monopoly

policy, and to the right of R’s monopoly policy, i.e., if it’s sufficiently moderate, y0 ∈ [ŷR(xV ), ŷL(xV )].

From the definition of the monopoly policies ŷi(xV ), we can see that the possibility of gridlock requires

the veto players to be sufficiently extreme, i.e., xV ≥ x̄V = xE
α−1 (so that ŷR(xV ) ≤ ŷL(xV )).

Outside of the blue region of Figure 5, at least one developer would be active as a monopolist.

Not surprisingly, the set of active developers always includes the more-motivated one. Whether the

6Although the figure and our discussion are for the symmetric model, the same basic logic for

which developer(s) will be active in equilibrium also holds with asymmetries in costs and preferences.
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Figure 5: Patterns of Activity. Displayed as a function of status quo and veto players’ extremity

less-motivated developer is inactive (the yellow regions) or active with strictly positive probability

(the orange region) depends on what she would like to do when her more-motivated competitor acts

as a monopolist; will she let her policy be enacted, or step in and develop an alternative?

Observe from Proposition 1 that the ideology of a monopolist’s policy ŷi(xV ) is unaffected by the

status quo, but has greater quality the more distant is the status quo. Thus, if the more-motivated

developer acts like a monopolist, it becomes both more difficult and less intrinsically beneficial for the

less-motivated developer to craft a competing policy when the status quo is closer to her. Eventually,

there will be a pure-strategy equilibrium in which the more motivated developer acts as a monopolist,

and the less-motivated developer chooses to be inactive (the yellow regions in Figure 5). In the proof

of Proposition 2 in Appendix D we characterize a cutpoint ȳ(xV ) such that R is inactive if y0 ≥ ȳ(xV )

and L is inactive if y0 ≤ −ȳ(xV ).

Conversely, if the status quo is more moderate than ȳ(xV ) (the orange region in Figure 5),
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equilibrium must sometimes involve active competition. The intuition is as follows. With moderate

veto players and a moderate status quo, the more-motivated developer only needs to invest in a small

amount of quality to get the opposing veto player to agree to a policy change. But if she did this, her

opponent would only need to invest in a small amount of quality to swing policy back in her preferred

direction. Thus, in equilibrium both developers are active—the more-motivated developer always,

and the less-motivated developer with strictly positive probability—and they compete to craft policies

that are appealing to the decisionmaker and acceptable to the veto players. In equilibrium, the

more-motivated developer’s policy is more appealing to the decisionmaker in a first-order stochastic

dominance sense. In sum, we have the following analytically-derived result.

Proposition 2. Equilibria depend on the extremism of the veto players xV and the status quo y0.

1. If xV ≥ x̄V = xE
α−1 and y0 ∈ [ŷR(xV ), ŷL(xV )] there is a unique equilibrium and neither developer

is active.

2. Otherwise, at least one developer is active:

(a) The more-motivated developer is always active.

(b) If y0 /∈ [−ȳ(xV ), ȳ(xV )], there is a pure-strategy equilibrium in which the less-motivated

developer is inactive.

(c) If y0 ∈ [−ȳ(xV ), ȳ(xV )], any equilibrium is in mixed strategies and the less-motivated

developer is sometimes active.

3. The more-motivated developer’s policies have first-order stochastically higher scores, and thus

are strictly more likely to be enacted than the less-motivated developer’s policies.

At a broad level, the proposition shows that asymmetric activity is a fundamental feature of

our model even when the developers are equally extreme and capable, because of their differential

willingness and ability to shift policy from a non-centrist status quo.
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Effect of veto players’ ideological extremism We next examine how the veto players’ ideolog-

ical extremism affects patterns of policy development. As can be seen toward the bottom of Figure

5, if veto players and the status quo are moderate, the more-motivated developer is always active

but her opponent only sometimes is. As xV increases (moving vertically), the probability that the

less-motivated developer is active decreases monotonically. For sufficiently high values of xV , even

the more-motivated developer is deterred from developing an enactable policy. Formally, we have

the following computationally-derived result.

Proposition 3. The extremism of the veto players affects policy development activity as follows.

1. The probability that the less-motivated developer is active is strictly decreasing in xV unless the

equilibrium is in pure strategies, in which case it is constant at 0.7

2. The more-motivated developer is active if and only if the veto players are sufficiently moderate,

xV < α|y0|+xE

α−1 .

Increasingly extreme veto players reduce participation in policy development. At lower levels of

extremism they make activity more asymmetric; the less-motivated developer increasingly disengages,

while the more motivated developer continues to participate. At higher levels of extremism they also

deter the more motivated developer from engaging, resulting in gridlock.

Changes in Senate policymaking Returning to our application, we argue that our predictions

are broadly consistent with patterns of policymaking since the 1970s. It is well-established that

the Senate has become increasingly polarized. More crucially, the Senate’s veto players under the

7This property is exhibited by our computational solutions across the entire parameter space

whenever the equilibrium is mixed. We also show analytically that whenever there is a pure equi-

librium for a particular xV (so that the less-motivated developer is always inactive) there remains a

pure equilibrium for strictly higher values of xV – see Appendix D.
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Figure 6: Senate Filibuster Pivots since 1970s

filibuster (the 41st and 60th most liberal senators) have diverged, as shown in Figure 6. Indeed,

they have diverged more rapidly than the party medians (who we’ve argued are represented by the

developers), so the ratio xV
xE

of veto player-to-developer extremism has increased over time. (Although

Proposition 3.1 is stated in terms of xV , the same results obtain if the ratio xV
xE

increases: increasingly

asymmetric policy development, followed by gridlock.) Both patterns are well-documented in the

empirical literature.

The first pattern—asymmetric activity—can be seen by contrasting the current highly-partisan

policy development process with the traditional “textbook Congress,” in which members of both

parties actively worked in committees to develop serious proposals. Over time, majority leaders have

played an increasingly central role in “negotiating the details of major bills” (Smith, 2011, p. 135)

and “shaping the content of legislation” (Smith and Gamm, 2020, p. 216). For their part, members

of the minority have disengaged from creating serious proposals, and instead adopted a strategy of
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obstructionism (Lee, 2016).

The second pattern—stalemate—is also well-established. It has become increasingly difficult for

anyone, including majority party leaders, to get substantial new policies enacted. Nowadays, major

policy changes most often occur via budget reconciliation (which doesn’t require supermajorities)

or during extraordinary crises such as 9/11, the financial meltdown of 2007-8, and Covid-19. For

most policy issues, including salient ones, legislative gridlock and stalemate have become common

(Binder, 2015).

Thus, both the increasing asymmetry in policy development activity and the overall decline in

successful policy development are consistent with our model. Many scholars see these twin devel-

opments as hallmarks of the Senate’s decline as an effective institution for crafting public policy.

As noted by Smith (2014) (p. 14), “an institution that once encouraged creativity, cross-party

collaboration, individual expression, and the incubation of new policy ideas has become gridlocked.”

Decisionmaker Utility

We next analyze how veto players affect a centrist decisionmaker’s utility. We do this not as

a normative measure of social welfare, but rather to make predictions about institutional design

choices in settings where centrists have decisive power over such choices.

In spatial models without policy development the decisionmaker always benefits from eliminating

veto players, because doing so allows him to revise any non-centrist status quo y0 ∕= 0 to reflect his

own ideal ideology. With policy development, however, veto players don’t always induce gridlock –

policy change can still occur if a developer crafts a sufficiently-high quality policy to gain the veto

players’ assent (see also Hitt, Volden and Wiseman (2017)). This opens up the possibility that veto

players may benefit the decisionmaker.

Without veto players We first establish a baseline for decisionmaker utility absent veto players.

This is not the decisionmaker’s utility for a zero-quality policy at his ideal point (as it would be in a

classic spatial model), but rather his expected utility from competitive policy development without
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Figure 7: Decisionmaker’s Net Utility Gain from Eliminating Veto Players. Red region shows gains

and green shows losses from eliminating veto players. Darkness of shading indicates magnitude of

gain or loss.

veto players. In the Hirsch and Shotts (2015) model, both developers are always active, and mix

over policies with strictly positive scores.

Corollary 2. Absent veto players the decisionmaker’s utility is

EU0
D = 4x2E

󰀕󰁝 1

0
2F

󰀕󰁝 F

0

G

α (α−G)
dG

󰀖
dF

󰀖
= 4x2E

󰀕
α+

1

2
− 2

3α
− (α2 − 1) ln

󰀕
α

α− 1

󰀖󰀖
.

This utility does not depend on the status quo because it is “as if’ the status quo is the decisionmaker’s

ideal point with 0 quality when there is unrestricted competition. Also note that EU0
D > 0; a unitary

decisionmaker strictly benefits from competitive policy development relative to enacting his own ideal

with zero quality.
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With veto players We next examine the decisionmaker’s expected utility with veto players using

Proposition 2, which we denote as EUV P
D (xV , y0). When there is gridlock, EUV P

D (xV , y0) = −y20,

which is unambiguously worse than his utility from competitive policy development absent veto

players. When there is a pure strategy equilibrium with one active developer, EUV P
D (xV , y0) is

the score of that developer’s monopoly policy from Proposition 1. When there is a mixed strategy

equilibrium we calculate EUV P
D (xV , y0) using numerical integration (see Appendix C.3). Comparing

EUV P
D (xV , y0) against EU0

D yields the following.8

Proposition 4. The decisionmaker prefers to eliminate the veto players if they or the status quo

are sufficiently moderate. Otherwise he prefers to maintain them.

Figure 7 illustrates when the decisionmaker would be better off eliminating the veto players as a

function of their extremism (on the vertical axis) and the location of the status quo (on the horizontal

axis). In the red region the decisionmaker benefits from eliminating them; clearly, this includes the

region where veto players induce gridlock (the inner triangle). Conversely, in the green region he

benefits from preserving them.

The figure has three important features. First, there is a green region—in contrast to a classic

spatial model, the decisionmaker can sometimes benefit from veto players. Second, a necessary

condition for the decisionmaker to benefit is that the status quo is sufficiently noncentrist—this

contrasts with a classic spatial model, in which the worst status quos for a centrist are those gridlocked

far from his ideal point. Third, observable competition isn’t necessary for this benefit to obtain;

8This result is derived using a mixture of analytic and numerical analysis; see Appendix D.

We analytically derive necessary and sufficient conditions for a pure strategy equilibrium with veto

players, as well as decisionmaker utility when these conditions hold. We further prove analytically

that the decisionmaker is strictly worse off with veto players whenever y0 = 0. When y0 ∕= 0 and the

equilibrium with veto players is mixed, we conduct the utility comparison using numerical integration

of the computationally-derived mixed equilibria, which are always unique.
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indeed, within most of the green region in Figure 7 only the more-motivated developer is active, as

can be seen by comparison with Figure 5.

Why can a centrist decisionmaker benefit from veto players when the status quo is very noncen-

trist? Because one developer is highly motivated to change it, and a somewhat-extreme opposing

veto player demands a high quality alternative in order to do so. Why does this coincide with re-

duced policy development activity? Because these demands force the motivated developer to craft

an appealing policy that is difficult to defeat (see Corollary 1), thereby deterring her less-motivated

competitor from trying. The surprising empirical implication is that the absence of observable

competition—and apparent monopoly over development by one side—is not prima facie evidence of

dysfunctional politics or agenda control. Rather, in the presence of veto players this occurs when

the status quo is extreme, and only one side is highly motivated to change it.

Having discussed when and why the decisionmaker can benefit from veto players, we now discuss

what can go wrong, i.e., what happens in the red region of Figure 7. Veto players can have three

distinct negative effects: (i) dampening productive competition, (ii) inducing gridlock, and (iii)

allowing for new non-centrist policies that are relatively low quality.

The first effect occurs when the veto players and the status quo are very moderate, as in the

bottom center of Figure 7. Here, policy change is easy to achieve, but the developers aren’t highly

motivated to invest in quality because the status quo is also moderate. Although equilibrium involves

both developers sometimes being active (see Figure 5), veto players simply dampen the intensity

of their productive competition. This is because veto players limit both the upside of engaging in

development (by constraining policy change in one’s own direction), and the downside of disengaging

from development (by constraining policy change in one’s opponent’s direction).

The second effect occurs when veto players are more extreme but the status quo is still moderate.

In this case, veto players demand high quality to consent to change, but a moderate status quo

limits the developers’ motivation to provide this quality. The result is gridlock, with both developers
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declining to craft a new policy (the triangular region in the top center of Figure 7, which corresponds

to the blue triangle in Figure 5). Veto-player induced gridlock in our model is actually worse for the

decisionmaker than in the classic spatial model because it does not just stop the decisionmaker from

getting his ideal; it also prevents productive competition.

The third effect occurs when the veto players are more extreme and the status quo is neither

sufficiently moderate to induce gridlock, nor sufficiently extreme to adequately motivate the more-

distant developer. This effect dominates in the portions of the red region in Figure 7 for which only

the more-distant developer is active (i.e., the overlap with the yellow regions of Figure 5). Here the

active developer crafts a non-centrist policy of sufficient quality to gain veto players’ support over

the status quo, but of insufficient quality to surpass the benefit from unconstrained competition.

A final property worth noting is that if policy development costs are sufficiently high (α > α̃ ≈

3.68, as in Figure 7 where α = 3.75), then it is not only very moderate veto players who are harmful

regardless of the status quo – it is very extreme ones as well. Under these circumstances, no feasible

status quo is extreme enough to induce the more-motivated developer to craft a policy better for the

decisionmaker than what he would have received under unconstrained competition.

Filibusters We last use our model to reexamine a critical question in legislative studies: why does

the Senate allow a submajority of 41 members to block legislation that a majority prefers to the

status quo? The Senate is a self-organizing body, and both constitutional scholarship and Senate

history support the proposition that a simple majority may eliminate or modify the filibuster (Gold

and Gupta, 2004). However, as documented by Binder and Smith (2001), there has there never been

a Senate majority in support of eliminating the filibuster by reducing the cloture requirement to 51

votes. Most recently, in 2022 the Senate voted 52-48 against a one-time exception to the filibuster

to pass a voting rights bill. At the time, 21 Democrats supported eliminating the filibuster, 27

supported changes such as requiring a “talking filibuster,” and two of the most moderate (Manchin

and Sinema) opposed any changes (Rieger and Adrian, 2022).
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In classic spatial models, supermajority rules harm centrists by preventing them from altering

policies to reflect their own ideal point, so centrists’ support for the filibuster presents a puzzle. One

previously-offered explanation is that centrists use supermajority requirements to counterbalance the

power of non-centrist agenda-setters (Peress (2009); Krehbiel and Krehbiel (2023)). As previously

described, however, it is unclear whether formal agenda setting power is actually robust in the

Senate. Moreover, if it is, then such agenda power can only exist with the consent of a Senate

majority (Krehbiel, 1992); any theoretical explanation of the filibuster that relies on formal agenda

power must therefore also explain why the majority would add an additional procedure (the filibuster)

to address its shortcomings, rather than simply revoke it.

In contrast, our model shows that even absent formal agenda power centrists can benefit from

supermajority requirements that create de facto veto players, because they can encourage the de-

velopment of higher quality and more moderate policies. As shown in Proposition 4 and Figure 7,

centrists are most likely to benefit from the filibuster when the 41th and 60th most liberal Senators

are somewhat non-centrist and the status quo is also non-centrist. A non-centrist status quo could

occur in policy areas that are rapidly changing such as financial regulation or health care; given limits

on Senators’ time and attention, the issues most likely to receive legislative attention are arguably

precisely such issues.

Finally, it’s important to note that our model does not imply that centrists always benefit from

the filibuster. Rather, as shown in Proposition 4 and Figure 7, there are several circumstances where

veto players are harmful. In the context of recent debates about the filibuster, one is particularly

relevant: when veto players are very extreme and policy development is very costly. Does this

describe the contemporary Senate? As shown in Figure 6, the filibuster pivots have indeed become

increasingly polarized over time. Simultaneously, Congress has disinvested in its own policymaking

capacity by reducing the proportion of staffers who work on policy in members’ offices (Crosson et al.,

2021), limiting personnel funding, and reducing funding for agencies like the CBO, CRS, and GAO
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(Reynolds, 2020). Indeed, scholars and commentators have become concerned that it is increasingly

difficult for members’ offices to craft high-quality policies. Thus, our model suggests that although

centrists may have benefitted from the filibuster in the past, calls for reform may become increasingly

persuasive if these trends persist.

Conclusion

In this paper we have analyzed how veto players affect competitive policy development. Absent

veto players, competing developers always craft policies that benefit a centrist decisionmaker. The

effect of veto players depends on the status quo. If veto players are quite moderate, then they

dampen productive competition, thereby making the decisionmaker worse off. If they are sufficiently

noncentrist, however, a developer dissatisfied with the status quo is willing to work hard to craft

a high-quality alternative, and an opposing veto player forces her to do so, thereby benefitting the

decisionmaker. By implication, veto players benefit a centrist decisionmaker precisely when stan-

dard spatial models predict that they are most harmful, i.e., when the status quo is non-centrist.

Under such circumstances, the developer satisfied with the status quo often refrains from craft-

ing a competing policy, reflecting the fact that a veto player has already forced her competitor to

craft a reasonably-moderate and high quality policy. Veto players are thus most beneficial to the

decisionmaker when they also inhibit observable competition.

Our model yields testable predictions on the number of well-developed policy proposals that are

created for a given issue: multiple serious proposals are likely when the status quo is centrist or when

veto players are absent. It further yields predictions about the quality of policies that are adopted;

centrist policies that are enacted tend to be of lower quality relative to noncentrist ones, because the

latter must be more carefully crafted to gain broad approval.

Our model also has surprising implications for the allocation of policymaking capacity in Congress.

A natural intuition is that the best way to allocate policymaking capacity in polarized times is to

invest in shared resources that are accessible to all members. Our model suggests that this intu-
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ition may be off-target; reformers may do better by instead giving resources to non-centrist policy

developers. A natural fear is that such developers will exploit their capacity to further extreme

objectives, as suggested by the pejorative characterization of “adversarial clientilism” in Drutman

and LaPira (2020). However, if the developers are constrained—by potential competition or oppos-

ing veto players—then they need to craft policies that are sufficiently high-quality and moderate to

actually be enacted.

Our model suggests a number of avenues for future work. First, we do not consider dynamic ef-

fects, as in models of pivotal politics where yesterday’s policies become today’s status quos (Buisseret

and Bernhardt (2017), Dziuda and Loeper (2018)). It would be interesting to examine how such

dynamic considerations shape legislators’ preferences over quality; for example, might a legislator

actually prefer that a policy far from her ideological ideal be low-quality so as to make it easier to

dislodge in the future? (e.g., Callander and Martin (2017)).

Second, we have focused on the effects of eliminating veto players, because that is the focus of

recent debates about the filibuster. However, it also would be possible to shift their location by raising

or lowering the supermajority threshold, rather than completely doing away with the filibuster; this

is a natural topic for future work.

Finally, our model also could be extended to examine broader questions about institutional

design. Suppose the decisionmaker could determine both the location of veto players (either directly

or indirectly via supermajority rules) and the resources for each developer (e.g., party or committee

staff allocations); would empowering veto players and granting policy development resources be used

as complements or substitutes? And how do these tools affect the ideology of the resulting policies?

Suppose the decisionmaker could also choose the developers’ ideologies, as in a chamber majority

choosing the chairs of key legislative committees; would supermajority constraints and “preference

outlier” committee chairs be linked, and if so how? We hope to explore these and other avenues in

future work.
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A General Equilibrium Analysis

We use notation DM (decisionmaker), DEV (developer), and VP (veto player). The following

definitions are easily verified.

Definition A.1.

1. The implied quality of a policy (s, y) is q = s+ y2, and the score of the status quo is s0 = −y20.

2. Player i’s utility for policy (s, y) is Vi (s, y) = Ui

󰀃
y, s+ y2

󰀄
= −x2i + s+ 2xiy.

3. DEV i’s cost to craft policy (s, y) is αi

󰀃
s+ y2

󰀄
.

4. All VPs weakly prefer policy (s, y) to the status quo if and only if s ≥ s0 and y ∈ YV (s) =

[zL (s) , zR (s)], where zi (s) = y0 − s−s0
2xV −i

.

1



A.1 Proof of Proposition 1 (Equilibrium of Monopoly Variant)

(s0, y0) is the unique veto-proof policy already available to DM, and any policy both VPs weakly

prefer to (s0, y0) is also weakly preferred by DM. So it’s optimal for DM to propose whatever the

monopolist crafts – any other feasible proposal is vetoed and proposing DEV’s policy only results in

an outcome different from (s0, y0) when it’s veto proof and therefore also weakly preferred by DM

over (s0, y0). We henceforth restrict attention to such profiles.

Thus the game is as if DEV is an agenda setter directly proposing to the VPs, who break

indifference in her favor. Wlog we restrict DEV’s choice space to veto-proof policies since (s0, y0) is a

free veto-proof option and crafting any non veto-proof policy results in the same outcome at weakly

higher cost. It is easily verified that an optimal (sM∗
i , yM∗

i ) for DEV must satisfy

argmax
{(si,yi):si≥s0,yi∈[zL(si),zR(si)]}

󰀻
󰁁󰀿

󰁁󰀽
− (αi − 1) si󰁿 󰁾󰁽 󰂀

score effect

+ 2xiyi − αiy
2
i󰁿 󰁾󰁽 󰂀

ideology effect

󰀼
󰁁󰁀

󰁁󰀾
. (A.1)

Wlog suppose DEV is i = R. Our assumptions that y0 ∈ [xV L,xV R] and xV R ≤ xR imply

y0 ≤ xR, so DEV wishes to move policy rightward. We proceed in three steps. Step 1. R never

develops (sR, yR) with yR < y0 because she would be better off proposing (s0, y0) at zero cost.

Because xV L < 0 < xV R, any policy developed with yR ≥ y0 is veto proof iff the left VP weakly

prefers it to (s0, y0). Step 2. At any yR ≥ y0, R’s optimal policy must satisfy yR = zR(sR); because

αR > 1, for any policy not on the boundary of the veto proof set, R is strictly better off developing

a lower quality policy at the same ideology on the boundary.

Step 3. We find the optimal (sR, yR) for R with yR ≥ y0 and yR = zR(sR). Applying Step 2 and

Def. A.1, the optimal sR at yR is sR = 2xV L (y0 − yR)− s0. Substituting into Eq. A.1, R maximizes

− (αR − 1) (2xV L (y0 − yR)− s0) + 2xRyR − αRy
2
R. Differentiating w.r.t. yR and setting = 0 yields

ŷR = 1
αR

xR +
󰀓
1− 1

αR

󰀔
xV L. For y0 ≤ ŷR, DEV optimally crafts a policy at ŷR. For ŷR < y0 she is

strictly better off sitting out than with any (sR, yR) with yR > y0 and yR = zR(sR).

A.2 Preliminary Analysis of Competitive Model

A DEV pure strategy (si, yi) is a two-dimensional element of the set of scores and ideologies

implying weakly positive-quality policies: B ≡
󰀋
(s, y) ∈ R2 |

󰀃
s− y20

󰀄
+ y2 ≥ 0

󰀌
. A mixed strategy
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σi is a probability measure over the Borel subsets of B.1 We first justify restricting attention to

strategy profiles consisting of only veto-proof policies.

Lemma A.1. Consider an equilibrium strategy profile in which the DEVs sometimes develop policies

that fail veto-proofness; then the modified strategy profile in which each DEV develops the status quo

whenever the original profile called for her to develop a policy that failed veto-proofness is also an

equilibrium that yields the same distribution over outcomes and payoffs.

Proof: Because xV L < 0 < xV R, (s0, y0) is the unique score-minimizing policy among those that are

veto proof, and the unique veto-proof policy that is 0-quality. Now consider any {(si, yi), (s−i, y−i)}

s.t. i’s policy fails veto-proofness; we argue that the alternative profile {(si = s0, yi = y0), (s−i, y−i)}

in which i develops (s0, y0) yields the same probability distribution over outcomes. If (s−i, y−i) is

both veto-proof and distinct from (s0, y0) then s−i > 0, in either profile DM is strictly better off

proposing (s−i, y−i) than any other feasible policy, and it will be accepted for sure. Otherwise, in

either profile any feasible proposal either fails veto-proofness or is equal to (s0, y0), so any feasible

proposal by DM results in (s0, y0).

The preceding observation yields the desired result through a series of observations. First, in

any equilibrium strategy profile, each DEV must never develop a strictly positive-quality policy

that fails veto proofness; a DEV who did so could profitably deviate to a strategy in which she

instead develops (s0, y0), because outcomes would be unaffected and she would strictly save on costs.

Second, whenever developing a 0-quality policy that fails veto-proofness is a best response for i, so

too is developing (s0, y0); thus, altering i’s equilibrium strategy to have her develop (s0, y0) whenever

she previously developed a 0-quality policy that failed veto-proofness remains a best response for i.

Finally, altering i’s equilibrium strategy to have her develop the status quo whenever she previously

developed a 0-quality policy that failed veto proofness does not change −i’s utility from developing

any (s−i, y−i), and therefore the set of strategies that are a best response for her. QED

Having restricted strategy profiles to veto-proof policies YV , let Fi (s) denote the CDF over scores

induced by i’s mixed strategy σi; when both DEVs’ policies are veto proof, a policy with the strictly

highest score is the outcome. We derive necessary and sufficient equilibrium conditions in a series

1For technical convenience we restrict attention to strategies generating score CDFs that can be

written as the sum of an absolutely continuous and a discrete distribution.
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of lemmas. Let Π̄i (si, yi;σ−i) denote i’s expected utility for developing (si, yi) ∈ YV if a score tie is

broken in her favor, which is i’s utility from developing a policy with si ≥ s0 where −i has no atom.

Regardless of whether −i has an atom at si, i can achieve utility arbitrarily close to Π̄i (si, yi;σ−i)

by developing an ε−higher score policy, so

Π̄i (si, yi;σ−i) = −αi

󰀃
si + y2

󰀄
+ F−i (si) · Vi (si, yi) +

󰁝

s−i>si

Vi (s−i, y−i) dσ−i. (A.2)

The first term is the up-front cost of quality. With probability F−i (si) , i’s opponent develops a

policy with a lower score; in this case, i’s policy is enacted, yielding utility Vi (si, yi). With the

remaining probability −i’s policy is enacted, yielding utility Vi (s−i, y−i). Only the first two terms of

Eq A.2 are affected by yi. Differentiating yields −2αiyi + 2F−i (si)xi, which is strictly decreasing in

yi. Given si, there’s a unique strictly optimal value of yi in the veto-proof interval [zL (si) , zR (si)].

Lemma A.2. At any score s ≥ s0 where F−i (·) has no atom or i would win in a tie, (s, y∗i (s)) is

i’s strictly best score-s policy where y∗i (s) = ŷi(s;F−i(s)) and

ŷi (s;F−i) = min

󰀝
max

󰀝
zL (s) ,

xi
αi

F−i

󰀞
, zR (s)

󰀞
.

Lemma A.2 states that at s > s0, i’s best combination of ideology and quality to generate a veto-

proof policy is unique. The optimal ideology is the closest veto-proof ideology to the unconstrained

optimal ideology xi
αi
F−i(s), which only depends on the score s indirectly through its impact on the

probability of winning F−i(s). We say a strategy profile satisfies ideological optimality if the DEVs

target the strictly best veto proof ideologies (i.e. yi = y∗i (si)) with probability 1.

We next establish the absence of ties at scores > s0, a property we term no ties.

Lemma A.3. In equilibrium there is 0-probability of a tie at scores s > s0.

Proof: Suppose not, so there’s a strictly positive probability of a tie at a score s > s0; we show at

least one DEV must have a strictly profitable deviation. Let psi > 0 denote the probability developer i

crafts a score-s policy; this may involve mixing over distinct policies with the same score. Next let ȳsi

be the expected ideology of i’s policy conditional on crafting a score-s policy; the up-front cost to i of

crafting (s, ȳsi ) is weakly lower than the expected cost of mixing according to her strategy conditional

on crafting a score s policy (since from part 3 of Def A.1 quality costs are convex in ideology holding

score fixed). Third, let ysD = max {min {0, zR (s)} , zL (s)}; this is the closest veto-proof ideology to

4



0, and from part 3 of Def A.1 is the cheapest score-s veto-proof ideology to target. Finally, let ȳs

denote the expected ideology of the final policy outcome conditional on a tie at score s.

To see at least one DEV has a strictly profitable deviation, first observe each DEV can achieve

her equilibrium utility by mixing according to her strategy conditional on developing only score-s

policies; it thus suffices to show at least one can do strictly better deviating. Next recall each DEV’s

policy utility Vi(s, y) is linear in y, so getting (s, y) for sure or a mix of score-s outcomes with

expected ideology y yields identical policy utility. There are then three subcases to consider.

Suppose first ȳs ∕= ysD. Because the DEVs wish to move ideology in strictly opposite directions

holding score fixed (part 2 of Def A.1), exactly one DEV k strictly prefers policy (s, ysD) to policy

(s, ȳs), implying her policy utility from getting the former for sure is strictly higher than her expected

policy utility from a tie at score s. If k plays according to her strategy conditional on crafting a

score-s policy, she gets policy utility Vk(s, ȳ
s
k) with probability F−k(s) − ps−k (when her opponent

crafts a policy with strictly lower score than s) and Vk(s, ȳ
s) with probability ps−k (when her opponent

crafts a score-s policy). If she were instead to deviate and craft (s, ysD) with probability
p−k

F−k(s)
and

(s, ȳsk) with probability 1 − p−k

F−k(s)
and always win in a tie at score s, she would get policy utility

Vk(s, ȳ
s
k) with probability F−k(s) − ps−k and policy utility Vk(s, y

s
D) > Vk(s, ȳ

s) with probability

ps−k. This would be strictly profitable since the latter strategy yields strictly higher policy utility

at a weakly lower up-front cost. Finally, while k may not be able to achieve exactly this utility

(since she’s not assured to win in a tie at score s) she can achieve utility arbitrarily close to it using

otherwise-identical policies with scores just above s, and therefore has a strictly profitable deviation.

Suppose next that ysD = ȳs. If at least one DEV k crafts a policy other than (s, ysD) with strictly

positive probability, then the deviation in the preceding paragraph is profitable, because she would

strictly save on the up-front cost of policy development when crafting (s, ȳsk).

Suppose finally that ysD = ȳs and both DEVs craft (s, ysD) with probability 1 conditional on

crafting a score-s policy. Then each DEV’s utility from crafting (s, ysD) is as if she always wins

in a tie so her equilibrium utility is exactly Π̄i (s, y
s
D;σ−i). If at least one DEV k’s strictly-best

veto proof ideology y∗k (s) at score s from Lemma A.2 differs from ysD, she has a strictly profitable

deviation to developing a policy at ideology y∗k (s) with score just above s. Alternatively, if both

DEVs’ strictly-best veto proof ideologies at score s are exactly ysD, then (using the definition of

y∗i (s) in Lemma A.2 and that Fi (s) > 0 ∀i) ysD must be on the boundary of the veto-proof set

5



(ysD = zj(s) for some j ∈ {L,R}). If −j were to deviate by crafting (s0, y0) her net utility gain would

be α−j

󰀓
s+ (zj (s))

2
󰀔
+

󰁕 s
s0
(V−j (sj , yj)− V−j (s, zj (s))) dσj . Finally, since |xi| ≥ |xV i| ∀i, we have

that (s, zj (s)) is the weakly worst veto proof policy with score s−j ∈ [s0, s] for −j; hence the utility

gain is strictly positive and this is a profitable deviation. QED

Lemmas A.2 – A.3 jointly imply that in equilibrium, DEV i can compute her expected util-

ity as if her opponent only crafts veto-proof policies of the form
󰀃
s−i, y

∗
−i (s−i)

󰀄
. Her expected

utility from crafting any veto-proof policy (si, yi) with score si ≥ s0 where −i has no atom (or a

tie would be broken in i’s favor) is therefore Π̄∗
i (si, yi;F) = −αi

󰀃
si + y2i

󰀄
+ F−i (si) · Vi (si, yi) +

󰁕
si

∞
Vi

󰀃
s−i, y

∗
−i (s−i)

󰀄
dF−i, and her utility from crafting the best veto-proof policy with score si

(where −i has no atom or a tie would be broken in her favor) is Π̄∗
i (si, y

∗
i (si) ;F) =

Π̄∗
i (si;F) = −αi

󰀓
si + [y∗i (si)]

2
󰀔
+ F−i (si) · Vi (si, y

∗
i (si)) +

󰁝

si

∞
Vi

󰀃
s−i, y

∗
−i (s−i)

󰀄
dF−i. (A.3)

We now establish several useful properties.

Lemma A.4. Π̄∗
i (s;F) is right-continuous, and lim

s→ŝ−

󰀋
Π̄∗

i (s;F)
󰀌

≤ Π̄∗
i (ŝ;F) ∀ŝ > s0 when the

strategy profile satisfies ideological optimality and no ties.

Proof: Π̄∗
i (s;F) inherits right-continuity of F−i(s); its only potential points of discontinuity

over ŝ > s0 are at scores where −i has an atom. We show that lim
s→ŝ−

󰀋
Π̄∗

i (s;F)
󰀌

≤ Π̄∗
i (ŝ;F) for

ŝ > s0. The property holds if Π̄∗
i (s;F) is continuous at ŝ, so suppose −i has an atom at ŝ; then by

Lemma A.3 i does not, and at the atom −i develops
󰀃
ŝ, y∗−i (ŝ)

󰀄
. Let yŝ−i = lim

s→ŝ−
{y∗i (s)} denote

i’s optimal ideology if she were to just lose at score ŝ. Then Π̄∗
i

󰀓
ŝ, yŝ−i ;F

󰀔
− lim

s→ŝ−

󰀋
Π̄∗

i (s;F)
󰀌
=

pŝ−i

󰀓
Vi

󰀓
ŝ, yŝ−i

󰀔
− Vi

󰀃
ŝ, y∗−i (ŝ)

󰀄󰀔
. Finally, we have Vi

󰀓
ŝ, yŝ−i

󰀔
− Vi

󰀃
ŝ, y∗−i (ŝ)

󰀄
≥ 0 because we have

Vi

󰀓
ŝ, yŝ−i

󰀔
≥ Vi

󰀃
ŝ, yŝD

󰀄
≥ Vi

󰀃
ŝ, y∗−i (ŝ)

󰀄
, recalling that yŝD is defined in the proof of Lemma A.3

as the ideology closest to 0 that may be attached a score-ŝ policy and remain veto-proof. The first

inequality comes from Lemma A.2 applied to i; the second inequality comes from Lemma A.2 applied

to −i. Finally Π̄∗
i (ŝ;F) ≥ Π̄∗

i

󰀓
ŝ, yŝ−i ;F

󰀔
from the definition of Π̄∗

i (ŝ;F). QED

We next show that in equilibrium any score in the support of DEV i’s score CDF Fi(s) must

maximize Π̄∗ (si;F), a property we term score optimality.

Lemma A.5. For all i and ŝ in the support of Fi(·), Π̄∗
i (ŝ;F) = maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
.
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Proof: First, equilibrium requires maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
to be well-defined; otherwise i would not

have a best response. Next, for any ŝ ≥ s0, Π̄
∗
i (ŝ;F) ≤ maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
; hence it suffices to show

that ŝ in the support of Fi implies Π̄∗
i (ŝ;F) ≥ maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
.

Suppose first that ŝ ≥ s0 is the support of Fi (·) but Pr (si ∈ (ŝ− 󰂃, ŝ)) = 0 for sufficiently small 󰂃.

Then either i has an atom at ŝ or Pr (si ∈ (ŝ, ŝ+ 󰂃)) > 0 ∀󰂃. If i has an atom at ŝ her utility at ŝ must

be exactly Π̄∗
i (ŝ;F) – either because ŝ > s0 and −i has no atom there by Lemma A.3, or because

ŝ = s0 and there is a unique veto proof ideology y0 (so the DM’s tie breaking rule doesn’t matter).

Regardless, lim
s→ŝ+

󰀋
Π̄∗

i (s;F)
󰀌
= Π̄∗

i (ŝ;F) ≥ maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
; otherwise i would have a strictly

profitable deviation taking probability weight from ŝ or a neighborhood above and reallocating to

scores yielding utility arbitrarily close to maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
.

Suppose next that ŝ ≥ s0 is in the support of Fi (·) and Pr (si ∈ (ŝ− 󰂃, ŝ)) > 0 ∀󰂃 > 0. Then

ŝ > s0 (by the restriction to veto-proof policies) and lim
s→ŝ−

󰀋
Π̄∗

i (s;F)
󰀌
≥ maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
, since

otherwise i would have a strictly profitable deviation taking probability weight from a neighborhood

below ŝ and reallocating to scores that yield utility arbitrarily close to maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
. But by

Lemma A.4 Π̄∗
i (ŝ;F) ≥ lim

s→ŝ−

󰀋
Π̄∗

i (s;F)
󰀌
so Π̄∗

i (ŝ;F) ≥ maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
. QED

Finally, we show the preceding necessary conditions are also sufficient for equilibrium.

Lemma A.6. When each DEV only crafts veto-proof policies, the properties of ideological optimality,

no ties, and score optimality are jointly necessary and sufficient for equilibrium.

Proof: Necessity is already shown. Note that strategy profile satisfying no ties, ideological opti-

mality, and score optimality yields utility equal to maxs≥s0

󰀋
Π̄∗

i (s;F)
󰀌
= U∗

i . Also, i’s utility for de-

veloping (si, yi) where −i has no atom is Π̄∗
i (si, yi;F) ≤ Π̄∗

i (si;F) ≤ U∗
i , so consider (ŝ, ŷi) at ŝ where

−i has an atom; then i’s utility Π∗
i (ŝ, ŷi;F) from (ŝ, ŷi) is ≤ max

󰀝
Π̄∗

i (ŷi, ŝ;F) , lim
s→ŝ−

󰀋
Π̄∗

i (ŷi, ŝ;F)
󰀌󰀞

since either Vi (ŝ, ŷi) ≥ Vi (ŝ, ŷ−i (ŝ)) (so i prefers to always win at the atom) or Vi (ŝ, ŷi) < Vi (ŝ, ŷ−i (ŝ))

(so i prefers to always lose at the atom). But both quantities are ≤ Π̄∗
i (ŝ;F) ≤ U∗

i since we have

lim
s→ŝ−

󰀋
Π̄∗

i (ŷi, ŝ;F)
󰀌
≤ lim

s→ŝ−

󰀋
Π̄∗

i (ŝ;F)
󰀌
≤ Π̄∗

i (ŝ;F) by Lemmas A.2 and A.4. QED

B Characterizing Score-Optimal CDFs

We begin by establishing some preliminary properties. We first rule out the possibility that in

equilibrium a DEV crafts a veto-proof policy with score si > s0 and ideology y∗i (si) further away

from her ideal ideology than y0. This will also imply that a DEV only crafts policies interior to the

7



veto proof set or on the closer boundary.

Lemma B.1. If si > s0 is ∈ supp{Fi(·)} then F−i(s) >
y0

xi/αi
and |xi − y∗i (s)| < |xi − y0|.

Proof: We show |xi − y∗i (si)| ≥ |xi − y0| implies Π̄∗
i (si;F) − Π̄∗

i (s0;F) < 0, which yields our

desired property by contrapositive and score optimality. Suppose |xi − y∗i (si)| ≥ |xi − y0|; from

the definition of y∗i (si), sign (xi) = sign (y0) and F−i (s) ≤ y0
xi/αi

. Now i’s utility difference from

developing any veto proof policy (si, yi) with score si > s0 vs. developing no policy is:

Π̄∗
i (si, yi;F)− Π̄∗

i (s0;F) = −αi

󰀃
si + y2i

󰀄
+

󰁝 si

s0

󰀃
Vi (si, yi)− Vi

󰀃
s−i, y

∗
−i (s−i)

󰀄󰀄
dF−i

Since each DEV is weakly more extreme than the same-sided VP, (si, z−i (si)) is weakly worst for

i among veto-proof policies with s ∈ [s0, si], so from part 2 of Def A.1 this utility difference is

≤ −αi

󰀃
si + y2i

󰀄
+ F−i (si) · 2xi (yi − z−i (si)), which is strictly negative when F−i (s) ≤ y0

xi/αi
. Since

(si, yi) is veto proof, the preceding is ≤ −αi

󰀃
si + y2i

󰀄
+
󰀓

y0
xi/αi

󰀔
·2xi (yi − z−i (si)). From Lemma A.2

the veto proof yi maximizing the preceding is y∗i = min
󰁱
max

󰁱
z−i (s) , ŷi

󰀓
s; y0

xi/αi

󰀔
, zi (s)

󰁲󰁲
= y0;

substituting and simplifying yields −αi

󰀓
1− y0

xV i

󰀔 󰀃
si + y20

󰀄
, which is < 0 since |y0| ≤ |xV i|. QED

Next, the form of the equilibrium score CDFs depends on the objective functions Π̄∗
i (si;F) at

continuity points. Using Eq A.3, differentiating2 and simplifying at points of continuity yields:

∂Π̄∗
i (si;F)

∂si
= − (αi − F−i (si)) + max {Di (si, F−i (si)) , 0}

+f−i (si) ·
󰀃
Vi (si, y

∗
i (si))− Vi

󰀃
si, y

∗
−i (si)

󰀄󰀄
(A.4)

where Di (s, F ) ≡ αi󰀏󰀏󰀏xV−i

󰀏󰀏󰀏
· sign (xi) ·

󰀓
F xi

αi
− zi (s)

󰀔
. The 1st and 3rd terms are identical to the model

without VPs (Hirsch and Shotts (2015)): they are the net quality cost to a developer of raising her

score and the net ideological benefit of doing so. The 2nd term is due to VPs and captures a DEV’s

benefit from increasing her score when y∗i (s) is constrained by VPs. Di (s, F ) is continuous in s and

F , strictly decreasing (increasing) in the former (latter), and y∗i (s) =
xi
αi
F−i(s) → Di (s, F−i(s)) ≤ 0.

Also, since y∗i (si) = ŷi (si;F−i (si)), Π̄
∗
i (si;F) may be written as:

Π̄∗
i (si;F) = F−i (si) · Vi (s0, y0) +

󰁝 si

s0

(− (αi − F−i (si)) + max {Di (s̃, F−i (si)) , 0}) ds̃

+

󰁝

si

∞
Vi

󰀃
s−i, y

∗
−i (s−i)

󰀄
dF−i (A.5)

2At points of left-discontinuity the expression that follows is actually the right-derivative.
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by observing that −αi

󰀓
si + [ŷi (si;F−i (si))]

2
󰀔
+ F−i (si) · Vi (si, ŷi (si;F−i (si)))

= −αi

󰀓
s0 + [ŷi (s0;F−i (si))]

2
󰀔
+ F−i (si) · Vi (s0, ŷi (s0;F−i (si)))

+

󰁝 si

s0

∂

∂s̃

󰀓
−αi

󰀓
s̃+ [ŷi (s̃;F−i (si))]

2
󰀔
+ F−i (si) · Vi (s̃, ŷi (s̃;F−i (si)))

󰀔
ds̃

= F−i (si) · Vi (s0, y0) +

󰁝 si

s0

(− (αi − F−i (si)) + max {Di (s̃, F−i (si)) , 0}) ds̃.

The final equality uses the fact that ŷi (s0;F−i (si)) = y0 and −αi

󰀓
s0 + [ŷi (s0;F−i (si))]

2
󰀔
= 0.

We next prove our first lemma on the form of equilibrium score CDFs, which states that if a

DEV targets a score ŝi despite there being a veto-proof lower score si ∈ [s0, ŝi) winning with equal

probability (F−i (si) = F−i (ŝi)), then y∗i (ŝi) = zi (ŝi) and ŝi must be the lowest score in the support

of i’s score CDF (which we henceforth denote si = mins{supp{Fi (·)}}).

Lemma B.2. If ŝi ∈ supp{Fi(·)} and there exists some si ∈ [s0, ŝi) such that F−i(si) = F−i(ŝi),

then F−i(ŝi) > 0, ŝi = si and y∗i (ŝi) = zi(ŝi).

Proof: Suppose ŝi ∈supp{Fi (·)} and ∃s ∈ [s0, ŝi) s.t. F−i (s) = F−i (ŝi). Let ŝi ≥ s0 be

min {si : F−i (si) = F−i (ŝi)}, which is well-defined by right-continuity of CDFs. We first argue that

ŝi must be i’s only support point over [ŝi, ŝi]. From Eq A.4, since F−i (si) is constant and = F−i (ŝi)

over this interval, Π̄∗
i (si;F) is continuous and for almost all si ∈ (ŝi, ŝi)

∂Π̄∗
i (si;F)

∂si
= − (αi − F−i (ŝi)) + max {Di (si, F−i (ŝi)) , 0} (A.6)

Thus y∗i (ŝi) ∕= F−i (ŝi)
xi
αi

(otherwise ŝi could not be in the support by Lemma A.5) so y∗i (si) =

zi (si) ∀si ∈ [ŝi, ŝi]. Then Eq A.6 is linear and strictly decreasing in si over [ŝi, ŝi], so Π̄∗
i (si;F)

is strictly concave. So if ŝi is in i’s support, it can be the only maximizer and − (αi − F−i (ŝi)) +

Di (si, F−i (ŝi)) > 0, ∀si ∈ [s0, ŝi). Finally, F−i (ŝi) > 0, since F−i (ŝi) = 0 implies the above evaluated

at si = s0 is −αi

󰀓
1− y0

xV−i

󰀔
< 0.

We next show ŝi must be i’s lowest support point. Suppose not. Since supports are closed, i

has a next lowest support point s′i ∈ [s0, ŝi), and F−i (s
′
i) < F−i (ŝi), so −i has a strictly positive

probability of crafting a score in (s′i, ŝi]. We then argue that (a) −i must have an atom at ŝi ∈ (s′i, ŝi)

with y∗−i (ŝi) = z−i (ŝi) and (b) F−i (si) is constant around s′i (so i too works on the boundary at s′i).

To see this, recall that since i has no support over (s′i, ŝi), Fi (s−i) is constant over [s′i, ŝi] (because

ŝi < ŝi and CDFs are right-continuous). By the argument in the preceding paragraph, now applied
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to −i, this implies −i has a unique support point over this closed interval at which she crafts a policy

on her boundary. This then yields the desired properties when combined with the definition of ŝi

and F−i (s
′
i) < F−i (ŝi) = F−i (ŝi).

We last show Π̄∗
i (ŝi;F)− Π̄∗

i (s
′
i;F) is strictly positive, implying s′i cannot be in i’s support. We

rewrite Π̄∗
i (ŝi;F) = −αi

󰀓
ŝi + [zi (ŝi)]

2
󰀔
+ F−i (ŝi) · Vi (ŝi, zi (ŝi)) +

󰁕

ŝi

∞
Vi

󰀃
s−i, y

∗
−i (s−i)

󰀄
dF−i as

−αi

󰀓
s′i +

󰀅
zi
󰀃
s′i
󰀄󰀆2󰀔

+ F−i

󰀃
s′i
󰀄
· Vi

󰀃
s′i, zi

󰀃
s′i
󰀄󰀄

+ p
ŝi
−i · Vi

󰀃
s′i, zi

󰀃
s′i
󰀄󰀄

+

󰁝 ŝi

s′i

(− (αi − F−i (ŝi)) +Di (si, F−i (ŝi))) dsi +

󰁝

ŝi

∞
Vi

󰀃
s−i, y

∗
−i (s−i)

󰀄
dF−i

which then yields (since y∗i (s
′
i) = zi (s

′
i)) that Π̄

∗
i (ŝi;F)− Π̄∗

i (s
′
i;F) =

󰁝 ŝi

s′i

(− (αi − F−i (ŝi)) +Di (si, F−i (ŝi))) dsi + p
ŝi
−i ·

󰀃
Vi

󰀃
s′i, zi

󰀃
s′i
󰀄󰀄

− Vi (ŝi, z−i (ŝi))
󰀄

The second term is positive since (ŝi, z−i (ŝi)) is the weakly worst veto proof policy for i with score

∈ [s0, ŝi] (recalling that each developer is more extreme than the same sided veto player). The first

term has already been shown to be strictly positive. QED

B.1 Equilibrium Conditions on Score CDFs

Using the preceding we now characterize necessary and sufficient conditions for a pair of score

CDFs to support an equilibrium. There are four types of potential equilibria, each characterized

by the combination of two properties: (a) whether one of the DEVs is always active (i.e., crafts a

policy with score s > s0 with probability 1), and (b) whether the equilibrium is pure or mixed.

Which type of equilibrium a particular candidate set of score CDFs (FL (·) , FR (·)) must be, and

thus the necessary and sufficient conditions for score optimality, may be determined by considering

two quantities; (a) the maximum lowest score in the support of the two CDFs – which we denote

s = maxi {si} – and the maximum highest score in the support of the two CDFs – which we denote

s̄ = maxi {s̄i}, where s̄i = maxs{supp{Fi (·)}}.

Proposition B.1. A profile of score CDFs F satisfies score optimality i.f.f. the following hold.

1. If s0 = s = s (so that Fi (s0) = 1 ∀i), then αi − 1 ≥ Di (s0; 1) ∀i.

2. If s0 < s, then there exists a k ∈ {L,R} such that
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• DEV k is sometimes-inactive (i.e. s0 = sk < s), never crafts a policy with score

∈ (s0, s] (so that 0 < Fk (s0) = Fk (s)), and has a probability of inactivity Fk (s) satisfying

α−k − Fk (s) = D−k (s;Fk (s))

• DEV −k is always-active (i.e. s0 < s−k = s so that F−k (s) = 0 ∀s ∈ [s0, s)), and has a

probability F−k (s) of crafting a score-s policy satisfying Π̄∗
k (s0;F) ≥ Π̄∗

k (s;F), which may

written in the following two equivalent forms:

αk

󰀃
s+ [y∗k (s)]

2
󰀄
≥ F−k (s) · 2xk · (y∗k (s)− z−k (s))

󰁝 s

s0

((αk − F−k (s))−max {Dk (s;F−k (s)) , 0}) ds ≥ F−k (s) ·
󰀕

xk
xVk

− 1

󰀖
(s− s0)

3. If s < s̄, then ∀i ∈ {L,R} and s ∈ [s, s] the score CDF F−i(s) is continuous and satisfies:

(αi − F−i (s))−max {Di (s;F−i (s)) , 0} = f−i (s) · 2 |xi| (y∗R (s)− y∗L (s))

4. If both s0 < s and s < s̄, then DEV −k’s probability F−k (s) of crafting a score-s policy also

satisfies Π̄∗
k (s0;F) ≤ Π̄∗

k (s;F)

Before the proof we explain how Prop. B.1 characterizes both pure and mixed equilibrium conditions.

First observe that any pure strategy equilibrium must satisfy s = s, since Condition (3) dictates

that both DEVs’ equilibrium score CDFs have full support over [s, s]. There are then only two

possible forms of pure strategy equilibria. The first is that both DEVs are inactive (s0 = s = s).

Condition (1) is the necessary and sufficient condition for this to be an equilibrium, and it is easily

verified that it is exactly equivalent to both DEVs’ monopoly scores sM∗
i being equal to s0 (see

Proposition 1). The second is that some DEV −k is always active and develops exactly score s > s0

(i.e., F−k(s) = 1s≥s) while the other DEV k is always inactive (i.e., Fk(s) = 1 ∀s ≥ s0). The

necessary and sufficient conditions for such an equilibrium are those in Condition (2) with these

CDFs substituted in. It is easily verified that the first bullet point is equivalent to s being DEV −k’s

monopoly score; thus, such an equilibrium may only exist if an equilibrium with both DEVs inactive

does not. The second bullet point states that DEV k weakly prefers to stay out and accept policy

(s, y∗−k(s)) rather than enter herself with the policy (s, y∗k(s)) and win for sure.
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When Condition (1) doesn’t hold, and Condition (2) doesn’t hold with either possible assignment

of DEV −k ∈ {L,R} (with s = sM∗
−k , Fk(s) = 1, and F−k(s) = 1s≥s) then any equilibrium must

necessarily be in mixed strategies with s < s. (Appendix D explicitly derives existence conditions for

pure strategy equilibria in terms of underlying parameters using these steps in the symmetric special

case). Existence of a mixed equilibrium when a pure one is absent is a straightforward implication

of Simon and Zame (1990), observing that the strategy space is compact after eliminating strictly

dominated strategies. Condition (3) describes the differential equations that govern any equilibrium

score CDFs over the positive-measure mixing interval [s, s]. There are then again two possible

equilibrium forms (although the second is non-generic). The first form is that s0 < s (one DEV −k

is always active); then the boundary condition on Fk(s) is determined by the first bullet point in

Condition (2) (which states that DEV −k wants to “work up” to score s > s0), while the boundary

condition on F−k(s) is determined by the combination of the second bullet point in Condition (2) and

Condition (4) (which together imply that DEV k is indifferent between staying out and targeting score

s if she is assured to win in a tie). The second form is that s0 = s (both DEVs are sometimes inactive);

Condition (3) then fully characterizes both the differential equations and boundary conditions (since

y∗R(s)− y∗L(s) = 0), with Conditions (2) and (4) being either redundant or trivially satisfied.

Proof: (Necessity) We first show necessity of (1). If s0 = s = s then Fi(si) = 1 ∀i ∈

{L,R} and si ≥ s0 and Π̄∗
i (si;F) is continuously differentiable; thus score optimality requires that

∂Π̄∗
i (si;F)
∂si

󰀏󰀏󰀏
si=s0

≤ 0 ∀i, which is exactly the stated condition.

We now show necessity of (2). Suppose s > s0; then there must be exactly one DEV with si = s

(if both had si = s then by Lemma B.2 each has an atom at s, violating Lemma A.3). Denote this

DEV −k. By the definition of s, sk ∈ [s0, s). Because F−k (sk) = 0 ∀sk ∈ (s0, s), no such score can

be in the support of F−k (·) by the first property in Lemma B.2, so sk = s0. Moreover, k cannot have

an atom at s (because then −k could not have an atom at s by Lemma A.3, which would in turn

imply a contradiction via the first part of Lemma B.2). Thus k must have an atom at s0 equal to

Fk (s), with Fk (sk) constant over sk ∈ [s0, s]. And applying Lemma B.2, the fact that s ∈supp{F−k}

and Fk (sk) is constant over sk ∈ [s0, s] implies F−k (s) > 0.

Having established the form of the DEVs’ strategies, we now characterize F−k (s). The fact that

Π̄∗
k (s0;F) ≥ Π̄∗

k (s;F) , in the second bullet point of (2), follows from Lemma A.5. For the two

equivalent conditions on F−k (s) , first recall that, as shown above, k doesn’t have an atom at s,
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which implies, via Lemma B.2, that y∗−k (s) = z−k (s) . The first equivalence in the second bullet

point of (2) comes from Eq A.3 and the second equivalence comes from Eq A.5.

We last turn to to the characterization of Fk (s). Since CDFs are right continuous, Π̄∗
−k (s−k;F)

is constant over [s0, s) and continuous over [s0, s + 󰂃) for sufficiently small 󰂃, so − (α−k − Fk (s)) +

D−k (s, Fk (s)) + fk (s) ·
󰀃
V−k

󰀃
s, y∗−k (s)

󰀄
− V−k (s, y

∗
k (s))

󰀄
is the right derivative of Π̄∗

−k (s;F); the

first two terms are the left derivative of Π̄∗
−k (s;F), and the third term is ≥ 0. So the first two terms

must = 0; if they were strictly negative (positive) a score s−k a little bit below (above) s would yield

a strictly higher value of Π̄∗
−k (s;F), violating score optimality.

We next show necessity of (3). Consider s < s. For any si > s ≥ s0 in the support of Fi (·),

F−i (s) < F−i (si) ∀s ∈ [s0, si); if not then by Lemma B.2 si = si, contradicting the definition of s.

Next we argue that any support points strictly above smust be common; if not then ∃ ŝi ∈supp{Fi (·)}

s.t. ŝi > s and ŝi ∕∈supp{F−i (·)} and therefore F−i (ŝi − 󰂃) = F−i (ŝi) for sufficiently small 󰂃, which

by Lemma B.2 implies si = ŝi > s, a contradiction. Next we argue that the set of (common) support

points strictly above s must be convex. If not, there would exist ŝ > s ≥ s0 in the common support

s.t. neither developer has support in a neighborhood immediately below, so Fi (s) < Fi (ŝ) ∀s ∈ [s0, ŝ)

would require both developers to have atoms at ŝ, contradicting the no ties from Lemma A.3. Since

supports are closed, the interval [s, s̄] must therefore be in the support of both developer’s CDFs.

Thus by the score optimality property in Lemma A.5, Π̄∗
i (s;F) = U∗

i ∀s ∈ [s, s̄], further implying

that the score CDFs are absolutely continuous over (s, s̄), and therefore that ∂
∂s

󰀃
Π̄∗

i (s;F)
󰀄
= 0 for

almost all s ∈ [s, s̄]. This straightforwardly yields the stated differential equation.

We last show necessity of (4). If s0 < s < s then by (3), s is also in the support of Fk (·); score

optimality thus requires Π̄∗
k (s0;F) ≤ Π̄∗

k (s;F).

This concludes the argument that (1)− (4) are necessary for score optimality.

(Sufficiency) For all possibilities, Π̄∗
i (s;F) = Π̄∗

i (s̄;F) ∀i (since s = s̄ or s < s̄ and both are in

the support of both DEVs’ CDFs); so to show score optimality for i we need only show that scores

si > s̄ and scores si ∈ [s0, s] outside of i’s support cannot deliver a strictly higher value of Π̄∗
i (·;F).

To argue that Π̄∗
i (si;F) ≤ Π̄∗

i (s̄;F) ∀i and si > s̄, observe that from Eq A.6, ∂
∂si

󰀃
Π̄∗

i (s;F)
󰀄
=

− (αi − 1)+max {Di (si, 1) , 0} for si > s and is weakly decreasing in si; thus it suffices to show that

at s̄, − (αi − 1) + max {Di (s̄, 1) , 0} ≤ 0. If (1) holds this is immediate. If (3) holds, it follows from

the differential equation since y∗R (s̄) > y∗L (s̄).
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If neither (1) nor (3) hold then s0 < s = s so Fi (s) = Fi (s̄) = 1. Then (2) implies there is an

always-active DEV −k, and the condition holds for −k from the first bullet point of (2) since Fk (s) =

1. For k, the second bullet point in (2) combined with s0 < s = s and Fi (s) = Fi (s̄) = 1 yields
󰁕 s
s0
((αk − 1)−max {Dk (s; 1) , 0}) ds ≥

󰀓
xk
xVk

− 1
󰀔
(s̄− s0) . Thus − (αk − 1) + max {Dk (s̄; 1) , 0} >

0, combined with the fact that Dk (s;F ) is strictly decreasing in s, would imply the left hand side is

strictly negative, contradicting the inequality since
󰀓

xk
xVk

− 1
󰀔
(s̄− s0) ≥ 0.

Finally, the property that Π̄∗
i (si;F) ≤ Π̄∗

i (s;F) ∀i and si ≤ s that are also not in supp{Fi (·)}

is true by construction of the necessary conditions. Observe that the potential existence of such a

score requires s0 < s (property 2), a sometimes inactive DEV k with sk = 0, and DEV −k always

active with s−k = s. The condition in the first bullet point of (2) implies Π̄∗
−k (s;F) > Π̄∗

−k (s−k;F)

∀s−k ∈ [s0, s). Also, F−k (sk) = 0 ∀sk ∈ [s0, s) implies Π̄∗
k (s0;F) > Π̄∗

k (sk;F), and the condition in

the second bullet point of (2) is that Π̄∗
k (s0;F) ≥ Π̄∗

k (s;F), completing the argument. QED

We also note that since F−i (s) is assumed to be a mixture of discrete and absolutely continuous

distributions, it’s absolutely continuous over [s, s]. Also, Di (s;F−i (s)) and y∗i (s) = ŷi(s;F−i(s)) are

continuous in F−i(s); thus, part (3) of Prop B.1 implies fi (s) is continuous over [s, s̄] .

C Symmetric Special Case

We now impose |xV l| = |xV r| = xV ≤ |xL| = |xR| = xE and αL = αR = αR and prove

properties of equilibrium for this case. Under symmetry, zi(s) = 2y0 − z−i(s) at any s, DEV

i is strictly constrained by VPs iff xE
α F−i (s) > sign (xi) · zi (s) = sign (xi) · y0 + s−s0

2xV
, so that

Di (s, F ) = α
xV

󰀓
F xE

α −
󰀓
sign (xi) · y0 + s−s0

2xV

󰀔󰀔
, and Di(s, F )−D−i(s, F ) = −sign(xi)· α

xV
2y0. Thus

y0 = 0 → DL (s, F ) = DR (s, F ) and y0 < (>) 0 → DR (s, F ) > (<)DL (s, F ); this determines which

DEV is more active.

C.1 Equilibrium with y0 = 0

Proposition C.1. Suppose y0 = 0 so that s0 = 0, DL (s, F ) = DR (s, F ) = D (s, F ) = α
xV

󰀓
F xE

α − s
2xV

󰀔
,

and −zL (s) = zR (s) = z (s) = s−s0
2xV

).

• If α − 1 ≥ DR (s0, 1) ⇐⇒ α ≥ xE
xV

+ 1, then in equilibrium both DEVs are inactive with

probability F (0) = 1 (so 0 = s = s̄)

• If α ∈
󰀓
2, 1 + xE

xV

󰀔
then in equilibrium both DEVs are inactive with probability F (0) = α

1+
xE
xV

<

1 so 0 = s < s̄. Now let s (F ) denote the inverse of F (s) (so s (F (0)) = 0), let F̆ =
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min

󰀝
F (0) ·

󰀕
1+3

xE
xV

1+2
xE
xV

󰀖
, 1

󰀞
, and let s̆ solve xE

α F̆ = z(s̆) ⇐⇒ s̆ = 2xExV
α F̆ .

– for F ∈
󰁫
F (0) , F̆

󰁬
we have |y∗i (s (F ))| = z (s) and s (F ) equal to

ŝ (F ) =
2x2V
α

󰀕
3
xE
xV

+ 1

󰀖
· (F − F (0))

– for F ∈ (F̆ , 1] we have |y∗i (s (F ))| = xE
α F and s (F ) equal to

s̃ (F ) = s̆+

󰁝 F

F̆
4x2E

G

α (α−G)
dG = s̆+ 4x2E

󰀣
ln

󰀣
α− F̆

α− F

󰀤
− F − F̆

α

󰀤

Finally, the DM’s equilibrium utility is
󰁕 F̆
F (0) 2F · ŝ (F ) dF +

󰁕 1
F̆ 2F · s̃ (F ) dF =

4x2V
α

󰀕
3
xE
xV

+ 1

󰀖󰀳

󰁃
[F (0)]3 − F̆ 2

󰀓
3F (0)− 2F̆

󰀔

6

󰀴

󰁄

+s̆ ·
󰀓
1− F̆ 2

󰀔
+ 4x2E

󰀳

󰁃
󰀓
1− F̆

󰀔
󰀳

󰁃α+
1 + F̆

2
−

2− F̆
󰀓
1− F̆

󰀔

3α

󰀴

󰁄−
󰀃
α2 − 1

󰀄
log

󰀣
α− F̆

α− 1

󰀤󰀴

󰁄

Proof: We show by construction that there exists a solution to score optimality satisfying s =

s0 = 0, and that it is the unique solution with this property.

For the first bullet point, note that if D (s0, 1) = xE
xV

≤ α − 1 ⇐⇒ α
1+

xE
xV

≥ 1, inactivity

(s0 = s = s̄) is the unique equilibrium of the form s0 = s.

For the second bullet point, note that if D (s0, 1) =
xE
xV

> α−1, inactivity (0 = s0 = s = s̄) is not

an equilibrium. We solve for a solution of the form 0 = s0 = s < s̄ which is unique by construction.

Since y∗i (s0) = y0 = 0 ∀i, α−F−i (0)−D (0;F−i (0)) = 0 ⇐⇒ F−i (0) =
α

1+
xE
xV

∀i. In a neighborhood

above 0, y∗i (s) = zi (s) and D (si, Fi (s)) ≥ 0; substituting into the differential equations from part 3

of Prop B.1, simplifying, and rearranging yields α −
󰀓
1 + xE

xV

󰀔
F−i (s) +

α
2x2

V
s = f−i (s) · 2xE

xV
· s, ∀i.

Since the differential equation and boundary condition at s0 = 0 is the same ∀i the solution in this

neighborhood is a common CDF F̂ (s) satisfying α−
󰀓
1 + xE

xV

󰀔
F̂ (s) + α

2x2
V
s = f̂ (s) · 2xE

xV
· s and the

boundary condition is α−
󰀓
1 + xE

xV

󰀔
F̂ (0) = 0. The system has the following linear solution, whose

inverse is the function ŝ (F ) in the proposition: F̂ (s) =
󰀓

α
2x2

V

󰀔󰀕
1

3
xE
xV

+1

󰀖
s + F (0) . By linearity of

F̂ (·) and z (s) there is a unique s̆ s.t. xE
α F̂ (s̆) = s̆

2xV
, which is s̆ = 2x2V

󰀕
1+3

xE
xV

1+
xE
xV

󰀖󰀕 xE
xV

1+2
xE
xV

󰀖
so F̂ (s̆) =
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α

󰀣 󰀓
1+3

xE
xV

󰀔

󰀓
1+

xE
xV

󰀔󰀓
1+2

xE
xV

󰀔

󰀤
, and a unique ŝ s.t. F̂ (ŝ) = 1, which is ŝ = 2x2V

󰀕
1+3

xE
xV

1+
xE
xV

󰀖󰀕
1+

xE
xV
α − 1

󰀖
. Then

we have two possibilities for the unique solution.

First, we may have s̆ ≥ ŝ, which occurs when α ≥
󰀓
1+

xE
xV

󰀔󰀓
1+2

xE
xV

󰀔

󰀓
1+3

xE
xV

󰀔 . In this case xE
α F̂ (s) > s

2xV

∀s ∈ [0, ŝ), so 0 = s < s̄ = ŝ with Fi (s) = F̂ (s) ∀i is the unique solution of the form s0 = s < s̄ so

the inverse is ŝ (F ) for F ∈ [F (0) , 1].

Second, we may have s̆ < ŝ. Then F̂ (s̆) = F̆ = α

󰀣 󰀓
1+3

xE
xV

󰀔

󰀓
1+

xE
xV

󰀔󰀓
1+2

xE
xV

󰀔

󰀤
< 1 and the differential

equation in a neighborhood above s̆ is α−F−i (s) = f−i (s) ·
x2
E
α (F−i (s) + Fi (s)), ∀i, with boundary

condition F−i (s̆) = Fi (s̆) = F̆ . The solution is a common CDF F−i (s) = Fi (s) = F̃ (s) satisfying

F̃ (s̆) = F̆ and f̃ (s) = α
4x2

E

α−F̃ (s)

F̃ (s)
∀s ∈ [s̆, s̄]. This is strictly concave; since z (s) is linear we then

have xE
α F̃ (s) < z (s) for s ∈ (s̆, s̄] as required. To derive an analytic expression observe that the

inverse s̃ (F ) of F̃ (s) satisfies s̃′ (F ) =
4x2

E
α

󰀓
F

α−F

󰀔
and s̃

󰀓
F̆
󰀔
= s̆, so s̃ (F ) = s̆+

󰁕 F
F̆ 4x2E

G
α(α−G)dG.

Lastly, in any symmetric mixed strategy equilibrium with s = s0 = 0 ≤ s̄ the DM’s payoff is the

maximum of the two scores offered. So DM utility is
󰁕 s̄
0 s · ∂

∂s

󰀓
[F (s)]2

󰀔
ds =

󰁕 s̄
0 s · 2F (s) f (s) ds =

󰁕 s̄
0 2F (s) · s (F (s)) · f (s) ds =

󰁕 1
F (0) 2F · s (F ) dF, where the last equality follows from a change

of variables and F (s̄) = 1. Thus in the model with VPs, DM utility is
󰁕 F̆
F (0) 2F · ŝ (F ) dF +

󰁕 1
F̆ 2F ·s̃ (F ) dF =

󰁕 F̆
F (0) 2F ·

󰀓
2x2

V
α

󰀓
3xE
xV

+ 1
󰀔
· (F − F (0))

󰀔
dF +

󰁕 1
F̆ 2F ·

󰀓
s̆+

󰁕 F
F̆ 4x2E

G
α(α−G)dG

󰀔
dF =

4x2
V

α

󰀓
3xE
xV

+ 1
󰀔 󰁕 F̆

F (0) F · (F − F (0)) dF +
󰀓
1− F̆ 2

󰀔
s̆ +4x2E

󰁕 1
F̆ 2F

󰀓󰁕 F
F̆

G
α(α−G)dG

󰀔
dF , which evalu-

ates to the expression in the proposition. QED

Proposition C.2. If y0 = 0 the DM’s equilibrium payoff in the model without VPs FOSD her payoff

in the symmetric equilibrium that we characterize in in Prop C.1 with VPs.

Proof: Let FV (s) denote the DEVs’ common score CDF in Prop C.1, and let FC (s) denote

their common score CDF in the unique symmetric equilibrium of the model without VPS in Hirsch

and Shotts (2015). In both models the DM chooses the policy with the maximum score, so to show

FOSD of DM utility without veto players it suffices to show FOSD of the equilibrium score CDF.

Let r = xE
xV

and note that r ≥ 1 by assumption. From Hirsch and Shotts (2015) FC (s) is a

continuous strictly increasing function over [0, s̄C ] satisfying FC (0) = 0 and FC (s̄C) = 1 where

s̄C = 4x2E

󰀓
log

󰀓
α

α−1

󰀔
− 1

α

󰀔
> 0; the CDF has a (well-defined) inverse over F ∈ [0, 1], s̃C (F ) =

4x2E
󰁕 F
0

G
α(α−G)dG.
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Using Prop C.1, FOSD holds immediately when α ≥ 1+r, because DEVs are completely inactive

with VPs. Consider next when the equilibrium with VPs has activity and is mixed, i.e. α ∈ (2, 1 + r)

so FV (0) = α
1+r ∈ (0, 1). We wish to show FC (s) < FV (s) ∀s ∈ [0, s̄V ] (where FV (s̄V ) = 1), further

implying that FC (s) < FV (s) = 1 ∀s ∈ (s̄V , s̄C) and FC (s) = FV (s) = 1 ∀s ≥ s̄C . To do so we

work with the inverse score CDFs and show sC (F ) > sV (F ) ∀F ∈ [FV (0) , 1].

Recall from Prop C.1 that sV (F ) = ŝ (F ) =
2x2

V
α (3r + 1) (F − FV (0)) for F ∈

󰁫
F (0) , F̆

󰁬
, where

F̆ = min
󰁱

α
1+r

󰀓
1+3r
1+2r

󰀔
, 1
󰁲

> FV (0). Also, ŝ (F ) is linear and note that s̃C (F ) is strictly convex.

Straightforwardly, ŝ′
󰀓

α
1+r

󰀓
1+3r
1+2r

󰀔󰀔
= s̃′C

󰀓
α

1+r

󰀓
1+3r
1+2r

󰀔󰀔
=

2x2
V

α (3r + 1). It thus suffices to show

s̃C

󰀓
F̆
󰀔

> ŝ
󰀓
F̆
󰀔

since (using Prop C.1) either (a) F̆ = 1 ⇐⇒ α
1+r

󰀓
1+3r
1+2r

󰀔
≥ 1, sV (F ) = ŝ (F )

and s̃′C (F ) < ŝ
′
(F ) ∀F ∈ [F (0) , 1], or (b) F̆ < 1 ⇐⇒ α

1+r

󰀓
1+3r
1+2r

󰀔
< 1, sV (F ) = ŝ (F ) and

s̃′C (F ) < ŝ
′
(F ) ∀F ≤

󰁫
F̆ (0) , F̆

󰁬
, and sV (F ) = s̃ (F ) and s̃′ (F ) = s̃′C (F ) = 4xE

G
α(α−G) ∀F ∈

(F̆ , 1]. So we need only show 4x2E
󰁕 F̆
0

G
α(α−G)dG >

2x2
V

α (3r + 1)
󰀓
F̆ −

󰀓
α

1+r

󰀔󰀔
⇔ 2r2

󰁕 F̆
0

G
α(α−G)dG >

1
α (3r + 1)

󰀓
F̆ −

󰀓
α

1+r

󰀔󰀔
. Either F̆ = α

1+r

󰀓
1+3r
1+2r

󰀔
< 1 and the r.h.s. reduces to 1

α F̆ r, or F̆ = 1 ⇐⇒
α

1+r

󰀓
1+3r
1+2r

󰀔
≥ 1 ⇐⇒ α

1+r ≥ 1+2r
1+3r and the r.h.s is ≤ (3r + 1)

󰀓
1− 1+2r

1+3r

󰀔
= 1

αr = 1
α F̆ r. In either

case, the inequality holds when 2r2
󰁕 F̆
0

G
α(α−G)dG > 1

α F̆ r, which reduces to 2r
󰁕 F̆
0

G
α−GdG > F̆ . Since

α−G ≥ α− 1 the preceding holds if 2r
α−1

󰁕 F̆
0 G · dG > F̆ , which reduces to r

α−1 F̆ > 1. If F̆ = 1 this

holds, because FV (0) < 1 implies α < 1+ r. If F̆ = α
1+r

󰀓
1+3r
1+2r

󰀔
< 1 then because 1+3r

1+2r > 1 it suffices

to show that r
α−1

α
1+r > 1 which holds because α < 1 + r. QED

C.2 Equilibrium with y0 ∕= 0

We next partially characterize equilibrium when y0 ∕= 0. Wlog we consider y0 < 0.

Proposition C.3. Suppose y0 < 0 so that s0 = −y20 < 0, and

DL (s, F ) =
α

xV

󰀓
F
xE
α

+ zL (s)
󰀔
=

α

xV

󰀓
F
xE
α

− zR (s) + 2y0

󰀔

<
α

xV

󰀓
F
xE
α

− zR (s)
󰀔
= DR (s, F ) ∀ (s, F )

Then in any equilibrium with activity (s0 < s̄), participation is asymmetric (so s0 < s ≤ s̄)

• if a DEV is unconstrained at a particular score (F−i (ŝ)
xE
α ≤ sign (xi) · zi (ŝ)) they are uncon-

strained at all higher scores (F−i (s)
xE
α < sign (xi) · zi (s) ∀s > ŝ)

• L is sometimes inactive (L = k); R is always active (R = −k) and therefore strictly constrained

by the VPs at the lowest score s
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• whenever R is unconstrained (xE
α FL(s) ≤ zR(s)) so is L (xE

α FR(s) > zL(s))

• R’s score CDF is first-order stochastically dominant, i.e. FR (s) ≤ FL (s), and ∃s̆ ∈ (s, s̄] such

that FR(s) < FL(s) for s < s̆ and FR(s) = FL(s) for s ≥ s̆.

Proof: We first consider pure strategy equilibria with activity (s0 < s = s̄). From Prop B.1

and symmetry for all parameters except y0, any such equilibrium with activity must be asymmetric,

have α− 1 = D−k (s; 1) and
󰁝 s

s0

((α− 1)−max {Dk (s; 1) , 0}) ds ≥
󰀕
xE
xV

− 1

󰀖
(s− s0) ≥ 0, (A.7)

Suppose −k = L and k = R; then DL (s; 1) = α− 1 (from the first condition). But since DL (s; 1) <

DR (s; 1) and Di (s; 1) is strictly decreasing in s, the left hand side of Eq A.7 would be strictly

negative, a contradiction. Thus any pure strategy equilibrium with activity must have k = L and

−k = R, and it is easily verified that only one pure strategy equilibrium can exist and satisfies the

remaining properties in Prop C.3.

We next consider mixed strategy equilibria (s0 ≤ s < s̄). Now, at any s ∈ (s, s̄] where

Di (s;Fi (s)) < 0 ⇐⇒ xE
α F−i (s) < sign (xi) · zi (s) we must have F−i (s) strictly concave, be-

cause from the differential equations in part (3) of Prop B.1, f−i (s) = α−F−i(s)

2xE ·(y∗R(s)−y∗L(s))
, which is

strictly decreasing in s.

Next, we show that at any s̆ ∈ (s, s̄] where Di (s̆;F−i (s̆)) = 0 ⇐⇒ xE
α F−i (s̆) = zi (s̆) and also

Di (s;F−i (s)) > 0 ⇐⇒ xE
α F−i (s) > sign (xi) · zi (s) in a neighborhood immediately below, F−i (s)

is also strictly concave at s̆ and in a neighborhood below, and xE
α f−i (s̆) <

∂(sign(xi)·zi(s))
∂s = 1

2xV
. To

see this first observe that xE
α f−i (s̆) ≤ ∂(sign(xi)·zi(s))

∂s = 1
2xV

; otherwise xE
α F−i (s̆) = zi (s̆) would imply

xE
α F−i (s) < sign (xi)·zi (s) in a neighborhood below s̆, contradicting our premise. Next, our premises

imply that in a neighborhood below s̆, (α− F−i (s))−Di (s;F−i (s)) = f−i (s) ·2xE · (y∗R (s)− y∗L (s))

⇐⇒ f−i (s) =
(α−F−i(s))+

α
xV

(F−i(s)
xE
α

−sign(xi)·zi(s))
2xE ·(y∗R(s)−y∗L(s))

. Since y∗R (s) − y∗L (s) is strictly increasing in

s, to show f−i (s) strictly decreasing (i.e., F−i (s) strictly concave) in a neighborhood below s̆ it

suffices to show the numerator is strictly decreasing. The derivative of the numerator is −f−i (s) +

α
xV

󰀓
f−i (s)

xE
α − 1

2xV

󰀔
, which is < 0 at s̆ and in a neighborhood below s̆ since f−i (s̆)

xE
α − 1

2xV
≤ 0.

Lastly, since F−i (s) is strictly concave at s̆ and in a neighborhood below s̆ and sign (xi) · zi (s) is

linear, we cannot have f−i (s̆)
xE
α = 1

2xV
since if so we would have xE

α FL (s) < sign (xi) · zi (s) in a

neighborhood below s̆, again contradicting our premise.
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Finally, note that the preceding arguments jointly imply that whenever xE
α F−i(s) “reaches”

sign (xi) · zi (s) from above, it crosses at exactly a single point s̆ and stays strictly below there-

after (since zi(s) is linear, F−i(s) is strictly concave in a neighborhood around s̆, and once xE
α F−i(s)

is strictly below sign (xi) · zi (s) the CDF F−i(s) remains strictly concave).

Having established basic properties of score CDFs in neighborhoods around “crossings” between

a developer’s unbounded optimum and her boundary of the veto proof set, we make some statements

about FL (s) − FR (s) in neighborhoods below scores where it crosses 0 (i.e., scores s̆ ∈ (s, s] where

FL (s̆)−FR (s̆) = 0). Specifically, if FL (s̆)−FR (s̆) = 0 and ∂
∂s (FL (s)− FR (s)) = fL (s)−fR (s) < 0

in a neighborhood below s̆ then FL (s̆) − FR (s̆) is strictly decreasing in a neighborhood below s̆,

implying FL − FR (s) > 0 in a neighborhood below s̆ . To sign FL (s) − FR (s) in a neighborhood

below crossings of FL(s)−FR(s) with 0 it thus suffices to sign fL (s)− fR (s). From part (3) of Prop

B.1, ∀i ∈ {L,R} and s ∈ (s, s] the CDFs are continuous and satisfy:

(fR (s)− fL (s)) · 2xE (y∗R (s)− y∗L (s)) = FL (s)− FR (s)

+ max {DR (s;FL (s)) , 0}−max {DL (s;FR (s)) , 0} (A.8)

with y∗R (s)− y∗L (s) > 0, which we use to sign fR (s)− fL (s) around crossings FL (s̆)− FR (s̆) = 0.

(Case 1) Suppose DR (s̆;FL (s̆)) > 0. Then fR (s̆) > fL (s̆) (using that DR (s;F ) > DL (s;F )

∀ (s, F )), so FL (s)− FR (s) > 0 and strictly decreasing in a neighborhood below s̆ (using that score

CDFs F are absolutely continuous over (s, s)).

(Case 2) Suppose DR (s̆;FL (s̆)) ≤ 0. Then DR (s;F ) −DL (s;F ) = α
xV

2 |y0| > 0 and FL (s̆) −

FR (s̆) = 0 jointly imply that DL (s̆;FR (s̆)) < 0. We consider two subcases.

(Subcase 2.i) Suppose DR (s;FL (s)) ≤ 0 in a neighborhood below s̆. Then over this region the

differential equations are α− F−i (s) = f−i (s) · 2xE (y∗R (s)− y∗L (s)) ∀i. Then fi(s)
α−Fi(s)

= f−i(s)
α−F−i(s)

→
󰁕 s̆
s

fi(t)
α−Fi(t)

dt =
󰁕 s̆
s

f−i(t)
α−F−i(t)

dt → log
󰀓
α−Fi(s)
α−Fi(s̆)

󰀔
= log

󰀓
α−F−i(s)
α−F−i(s̆)

󰀔
→ Fi (s)−F−i (s) = 0 when combined

with the boundary condition Fi (s̆) = F−i (s̆).

(Subcase 2.ii) SupposeDR (s;FL (s)) > 0 in a neighborhood below s̆, further implyingDR (s̆;FL (s̆)) =

0 ⇐⇒ xE
α FL (s̆) = zR (s̆) when combined with DR (s̆;FL (s̆)) ≤ 0 by continuity. By our initial ar-

guments, FL (s) is strictly concave in a neighborhood below s̆ and xE
α fL (s̆) < z′R (s̆) = 1

2xV
. We

show this implies FL (s)− FR (s) > 0 and strictly decreasing in a neighborhood below s̆. Under our

premises, in a neighborhood below s̆ Eq (A.8) reduces to (fR (s)− fL (s)) · 2xE (y∗R (s)− y∗L (s)) =

(FL (s)− FR (s))+DR (s;FL (s)) = (FL (s)− FR (s))+ α
xV

󰀃
FL (s) xE

α − zR (s)
󰀄
. Since FL (s̆) = FR (s̆)
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and FL (s̆) xE
α = zR (s̆) we rewrite the r.h.s. as

󰁕 s̆
s (fR (t)− fL (t)) dt+ α

xV

󰁕 s̆
s

󰀃
z′R (t)− fL (t) xE

α

󰀄
dt =

󰁕 s̆
s

󰀓
(fR (t)− fL (t)) + α

xV

󰀓
1

2xV
− fL (t) xE

α

󰀔󰀔
dt. Since lim

s→s̆

󰀓
(fR (s)− fL (s)) + α

xV

󰀓
1

2xV
− fL (s) xE

α

󰀔󰀔

= α
xV

󰀓
1

2xV
− fL (s̆) xE

α

󰀔
> 0, the r.h.s. is > 0 for s in a neighborhood below s̆, so the l.h.s. is also

strictly positive in a neighborhood below s̆, implying fR (s)− fL (s) > 0 in a neighborhood below s̆,

which yields the desired property.

We now prove the main results. We first show weak FOSD (FR (s) ≤ FL (s) ∀s ∈ [s, s̄]). Suppose

not, so ∃s ∈ [s, s) s.t. FL (s)−FR (s) < 0. Since FL (s̄)−FR (s̄) = 0, ∃s̆ ∈ (s, s̄] s.t. FL (s̆)−FR (s̆) = 0

and FL (s) − FR (s) < 0 in a neighborhood below; but the preceding arguments already imply

FL (s)− FR (s) ≥ 0 in a neighborhood below any s̆ where FL (s̆)− FR (s̆) = 0.

We next argue s0 < s < s̄ (any mixed equilibrium is asymmetric). Suppose s0 = s; since

y∗R (s0) = y∗L (s0) = 0 by part (3) of Prop B.1, α−F−i (s) = Di (s0;F−i (s0)) ∀i; but since DR (s;F ) >

DL (s;F ) ∀ (s, F ) and Di (s, F ) is strictly increasing in F , satisfying both equalities would require

that FL (s0) < FR (s0), contradicting FOSD.

We next argue that in any asymmetric equilibrium k = L and −k = R. Part (2) of Prop B.1

requires α−Fk (s) = D−k (s;Fk (s)) and
󰁕 s
s0
((α− F−k (s))−max {Dk (s;F−k (s)) , 0}) ds ≥ F−k (s) ·󰀓

xE
xV

− 1
󰀔
(s− s0) ≥ 0. Suppose instead k = R and −k = L; then α − FR (s) = DL (s;FR (s))

implying α − FR (s) < DR (s;FR (s)). Then FL (s) ≥ FR (s) would imply that
󰁕 s
s0
(((α− FL (s))

−max {DR (s;FL (s)) , 0})ds < 0, which would violate the inequality, so instead FL (s) < FR (s), but

this would violate FOSD.

We next show FR (s) < FL (s) ∀s ∈ [s0, s], which is equivalent to FR (s) < FL (s); by FOSD

it suffices to rule out FR (s) = FL (s). Suppose so. By the first bullet point of part (2) of Prop

B.1, DR (s;FL (s)) = α − FL (s) > 0; letting f+
i (s) = lims→s+ (fi (s)), Eq A.8 would then imply

󰀃
f+
R (s)− f+

L (s)
󰀄
·2xE (y∗R (s)− y∗L (s)) = DR (s;FL (s))−max {DL (s;FR (s)) , 0} = DR (s;FL (s))−

max {DL (s;FL (s)) , 0} > 0, implying f+
R (s) > f+

L (s); but then FR (s)−FL (s) > 0 in a neighborhood

above s, violating FOSD.

We last show ∃s̆ ∈ (s, s̄] s.t. FR(s) < FL(s) for s < s̆ and FR(s) = FL(s) for s ≥ s̆. Recall that

(i) FL (s) is strictly concave at any s ∈ (s, s̄] where DR (s;FL (s)) < 0, and (ii) at any s̆ ∈ (s, s̄] where

DR (s̆;FL (s̆)) = 0 ⇐⇒ xE
α FL (s̆) = zR (s̆) and also DR (s;FL (s)) > 0 ⇐⇒ xE

α FL (s) > zR (s) in

a neighborhood immediately below, xE
α fL (s̆) < z′R (s̆) = 1

2xV
. When combined with the property

that DR (s;FL (s)) = α− FL (s) these imply that DR (s;FL (s)) crosses 0 at most once at a s̆ (since
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DR (s̆;FL (s̆)) = 0 and xE
α fL (s̆) < z′R (s̆) imply DL (s;FL (s)) < 0 in a neighborhood above s̆ and

therefore FL (s) is strictly concave and remains strictly concave thereafter by the first argument in

this section of the proof on mixed strategy equilibria). Thus either (i) DR (s;FL (s)) > 0 ∀s ∈ [s, s̄)

implying FR (s) < FL (s) ∀s ∈ [s, s̄), or (ii) there ∃s̆ ∈ (s, s̄) s.t. DR (s;FL (s)) > (<) (=) 0 ⇐⇒ s <

(>) (=) s̆. Since FR (s) ≤ FL (s) ∀s and DR (s;F ) ≥ DL (s;F ), DR (s;FL (s)) ≤ 0 → DL (s;FR (s)) <

0, so over [s̆, s̄] the differential equations are α− F−i (s) = f−i (s) · 2xE (y∗R (s)− y∗L (s)) ∀i which as

shown in the proof of Subcase 2.i requires Fi (s) − F−i (s) = 0 when combined with the boundary

condition that Fi (s̄) = F−i (s̄) = 1. QED

C.3 Computational Procedure

The preceding analytical results justify the following computational procedure to numerically

calculate asymmetric equilibria for y0 ∕= 0. We describe the process for the case y0 < 0. First, check

whether no activity (s̄ = s0) is a pure strategy equilibrium – it is easy to verify from Proposition B.1

that a no-activity pure-strategy equilibrium must be the unique equilibrium. Next, when inactivity

fails to be an equilibrium, check whether the unique required strategy profile for a pure strategy

equilibrium with activity (s0 < s = s) with k = L is indeed an equilibrium. If not, search for an

asymmetric mixed equilibrium with s0 < s < s with k = L, which we identify for all parameters

(Equilibrium existence can be proved using Simon and Zame (1990)).

Our analytical results handle some, but not all, potential issues of equilibrium multiplicity. When

inactivity is an equilibrium it is unique. When inactivity fails to be an equilibrium, any equilibrium

exhibits asymmetric participation (s0 < s) with the more-motivated DEV always active. And when-

ever an asymmetric pure strategy equilibrium exists, it is the unique pure strategy equilibrium. Our

analytical results do not rule out coexistence of a pure and mixed asymmetric equilibrium both with

the more motivated DEV always active, nor coexistence of two distinct mixed asymmetric equilibria

both with the more motivated DEV always active. We conjecture (and our computational analysis

supports) that equilibrium with symmetric DEVs and VPs is unique.

D Competitive Model Results

We now prove the results in the main paper.

Lemma 1. Prop B.1 implies that in a pure strategy equilibrium at most one DEV is active. The

case where neither is active is covered in part (1) of the proposition, noting that in this case each

DEV’s optimal policy to develop is the status quo (s0, y0) . When exactly one DEV is active, she
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develops her monopoly policy. To see that the active DEV must be the one with the higher monopoly

score, suppose instead sM∗
−k > sM∗

k > s0 and only k is active, developing
󰀃
sM∗
k , yM∗

k

󰀄
. But −k strictly

prefers to develop
󰀃
sM∗
−k , y

M∗
−k

󰀄
and have it enacted rather than (s0, y0) and because |x−k| ≥ |xV−k|,

−k strictly prefers (s0, y0) over
󰀃
sM∗
k , yM∗

k

󰀄
. Thus −k strictly prefers to enter, a contradiction. QED

Remark 1. (1) follows from Lemma A.1. (3) follows from Lemmas A.2 and A.3. For (2), given (3)

the only choice for the DEV is the CDF she uses when choosing score. QED

Lemma 1. Follows from Prop B.1. QED

Proposition 2. For (1), a necessary and sufficient condition for L to develop a policy if R sits out is

y0 > ŷL (xV ) = − 1
αxE+

󰀃
1− 1

α

󰀄
xV and a necessary and sufficient condition for R to develop a policy

if L sits out is y0 < ŷR (xV ) =
1
αxE +

󰀃
1− 1

α

󰀄
(−xV ) . Combining yields a necessary and sufficient

condition for existence of a pure strategy equilibrium in which both sit out: ŷR (xV ) ≤ y0 ≤ ŷL (xV ) .

This requires ŷR (xV ) ≤ ŷL (xV ) , i.e., xV ≥ xE
α−1 = x̄V .

For (2), from above, in equilibrium at least one DEV must be active when y0 /∈ [ŷR (xV ) , ŷL (xV )] .

From Prop C.3, the more-motivated one is always active. The question is whether the less-motivated

developer is active too, in a mixed strategy equilibrium as characterized in Prop C.3. We characterize

a cutpoint ȳ (xV ) ≥ 0 s.t. there is a pure strategy equilibrium in which the less-motivated DEV is

inactive iff y0 /∈ [−ȳ (xV ) , ȳ (xV )] . Wlog let y0 > 0 so L is more-motivated. We determine whether

R’s best response is to enter or to sit out when L develops her monopoly policy from Lemma 2.

Recall that L’s monopoly policy is
󰀃
sM∗
L , yM∗

L

󰀄
where yM∗

L = − 1
αxE +

󰀃
1− 1

α

󰀄
xV = zL

󰀃
sM∗
L

󰀄
. Note

that from Def A.1, zR (s)− zL (s) = 2 (y0 − zL (s)) and thus zR (s) = 2y0 − zL (s) .

It is never optimal for R to develop a policy with a score > sM∗
L ; since y0 > 0, |zR (s)| >

|zL (s)| so DR (s, 1) < DL (s, 1). By Lemma A.2, if R’s best response is to beat L’s monopoly

policy, it will be at score sM∗
L and ideology min

󰀋
max

󰀋
zL

󰀃
sM∗
L

󰀄
, xE

α

󰀌
, zR

󰀃
sM∗
L

󰀄󰀌
. If zL

󰀃
sM∗
L

󰀄
=

min
󰀋
max

󰀋
zL

󰀃
sM∗
L

󰀄
, xE

α

󰀌
, zR

󰀃
sM∗
L

󰀄󰀌
, R won’t enter because doing so means paying costs to develop

the same policy L develops. So the best ideology for R with score sM∗
L is min

󰀋
xE
α , zR

󰀃
sM∗
L

󰀄󰀌
.

Note that zR
󰀃
sM∗
L

󰀄
= 2y0−zL

󰀃
sM∗
L

󰀄
= 2y0+

1
αxE−

󰀃
1− 1

α

󰀄
xV so zR

󰀃
sM∗
L

󰀄
≤ xE

α iff y0 ≤ α−1
2α xV .

We first consider the case y0 ≤ α−1
2α xV , for which R’s optimal score-sM∗

L policy is on the boundary

and R’s net benefit from entering with a policy at
󰀃
sM∗
L , zR

󰀃
sM∗
L

󰀄󰀄
is 2xE

󰀃
zR

󰀃
sM∗
L

󰀄
− zL

󰀃
sM∗
L

󰀄󰀄

−α
󰀓
sM∗
L +

󰀅
zR

󰀃
sM∗
L

󰀄󰀆2󰀔
= 4xE

󰀃
y0 − zL

󰀃
sM∗
L

󰀄󰀄
−α

󰀓
sM∗
L +

󰀃
2y0 − zL

󰀃
sM∗
L

󰀄󰀄2󰀔
= 4xE

󰀃
y0 − yM∗

L

󰀄

−α
󰀓
sL

󰀃
yM∗
L ; y0

󰀄
+

󰀃
2y0 − yM∗

L

󰀄2󰀔
=

󰀃
y0 − yM∗

L

󰀄
·
󰀃
4xE − α

󰀃
2xV + 3y0 − yM∗

L

󰀄󰀄
. This is a concave
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quadratic function of y0 with zeroes at y0 = yM∗
L and at y̌ (xV ) that solves

0 = 4xE − α
󰀃
2xV + 3y0 − yM∗

L

󰀄
, so

y̌ (xV ) =
xE
α

− xV (α+ 1)

3α
(A.9)

For L to enter as a monopolist requires y0 > yM∗
L , so for R to have a profitable deviation to enter

and win with policy
󰀃
sM∗
L , zR

󰀃
sM∗
L

󰀄󰀄
also requires y0 < y̌ (xV ) .

Next consider the case y0 > α−1
2α xV , for which R’s optimal score-sM∗

L policy is off the boundary

and R’s net benefit from entering at
󰀃
sM∗
L , xE

α

󰀄
is:

G̃ (y0;xV , xE) = 2xE

󰀓xE
α

− zL
󰀃
sM∗
L

󰀄󰀔
− α

󰀕
sM∗
L +

󰁫xE
α

󰁬2󰀖

= 2xE

󰀓xE
α

− yM∗
L

󰀔
− α

󰀕󰀃
−y20 + 2xV

󰀃
y0 − yM∗

L

󰀄󰀄
+

󰁫xE
α

󰁬2󰀖

= αy20 − 2αxV y0 + 3
x2E
α

− 4xV xE + 2xExV
1

α
+ 2x2V α

󰀕
1− 1

α

󰀖
(A.10)

This has zeroes at y0 = xV ± 1
α

󰁵
α2x2V − α

󰀓
3
x2
E
α − 4xV xE + 2xExV

1
α + 2x2V α

󰀃
1− 1

α

󰀄󰀔
. If the de-

terminant is negative the benefit of entering at
󰀃
sM∗
L , xE

α

󰀄
is strictly positive ∀y0 ∈

󰀅
α−1
2α xV , xV

󰀆
.

Otherwise, R strictly gains from entering iff y0 ∈
󰀅
α−1
2α xV , ỹ (xV )

󰀄
where ỹ (xV )

= xV − 1
α

󰁵
α2x2V − α

󰀓
3
x2
E
α − 4xV xE + 2xExV

1
α + 2x2V α

󰀃
1− 1

α

󰀄󰀔
. Thus, letting

ȳ (xV ) =

󰀻
󰀿

󰀽
y̌ (xV ) if y0 ∈

󰀃
0, α−1

2α xV
󰀆

ỹ (xV ) if y0 ∈
󰀅
α−1
2α xV , xV

󰀆 (A.11)

we have shown that for y0 > 0 there is an equilibrium with only L active iff y0 ∈ (0, ȳ (xV )] .

Although not covered in part 2 of Prop 2, we note what happens for y0 = 0; Prop C.1 characterizes

a symmetric equilibrium. Also, if y0 = 0 there cannot be an equilibrium with exactly one DEV active

because −k’s monopoly policy
󰀃
0, yM∗

−k (0)
󰀄
is k’s strictly-worst zero-score policy, so if −k develops

󰀃
0, yM∗

−k (0)
󰀄
then k is strictly better off entering.

(3) follows from Prop. C.3. QED

Proposition 3. For (1), first note that within a pure strategy equilibrium, the less-motivated

DEV’s probability of being active is constant at 0.

We next show that if there is a pure strategy equilibrium at x̃V , there is a pure strategy equilib-

rium ∀xV > x̃V . Wlog we show this for y0 > 0.
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First note that because a mixed strategy equilibrium requires that the more-motivated DEV L

be active, there is a pure strategy equilibrium with neither active iff yM∗
L > y0 ⇔ xV > αy0+xE

α−1 .

Otherwise, any pure strategy equilibrium must have L active. From Prop 2, this requires y0 >

ȳ (xV ) , where ȳ (xV ) =

󰀻
󰀿

󰀽
y̌ (xV ) if y0 ∈

󰀃
0, α−1

2α xV
󰀆

ỹ (xV ) if y0 ∈
󰀅
α−1
2α xV , xV

󰀆 from Eq A.11.

For y0 ≤ α−1
2α xV , from Eq A.9 a pure strategy equilibrium requires y0 > y̌ (xV ) =

xE
α − xV (α+1)

3α ⇔

xV > 3α
α+1

󰀃
xE
α − y0

󰀄
.

For y0 ≥ α−1
2α xV , a pure strategy equilibrium requires that R’s net benefit from entering at

󰀃
sM∗
L , xE

α

󰀄
if L develops her monopoly policy must be negative, i.e., from Eq A.10, G̃ (y0;xV , xE) ≤ 0.

We show that if G̃ (y0; x̃V , xE) ≤ 0 for some x̃V ∈ (0, xE) then G̃ (y0;xV , xE) ≤ 0 ∀xV ∈ [x̃V , xE ] , i.e.,

there is still a pure strategy equilibrium if veto players are more extreme. Note that G̃ (y0;xV , xE) is

a strictly convex quadratic function of xV . Thus if G̃ (y0; x̆V , xE) > 0 for some x̆V ∈ (x̃V , xE), then

G̃ (y0;xV , xE) > 0 ∀xV > [x̆V , xE ], and G̃ (y0;xE , xE) > 0. But this cannot be the case, because if

xV = xE then yM∗
L > 0 and yR∗

R < 0 and hence R strictly prefers not to pay the marginal cost of

moving policy rightward from L’s monopoly policy.

We also note that at y0 = α−1
2α xV , y̌ (xV ) = ỹ (xV ) (via algebra). Thus if xV increases from a

value < α−1
2α xV to a value > α−1

2α xV , the arguments above imply that if there is a pure strategy

equilibrium at the lower value of xV there is a also pure strategy equilibrium at the higher value.

The final component of the result is that within a mixed strategy equilibrium region, the probabil-

ity that the less-motivated DEV is active is strictly decreasing in xV . This follows from computational

analysis of the equilibrium in Prop C.3, holding fixed all parameters except for xV .

Part 2. Follows directly from Prop 1’s condition for a monopolist to invest. QED

Corollary 2. Follows from Eq 3 and Footnote 4 of Hirsch and Shotts (2015). QED

Proposition 4. This follows from a combination of analytical and computational results. The

analytical results are the following. First, absent VPs, EU0
D is characterized in Corollary 2. Second,

if y0 = 0, DM utility with VPs is characterized in Prop C.1, and Prop C.2 shows it is < EU0
D.

Third, for parameters where neither DEV is active, DM utility is s0 = −y20 < 0 < EU0
D. Fourth,

for parameters where exactly one DEV is active, DM utility is the monopoly score, sM∗
i , which from

Corollary 1 is strictly increasing in |y0|.

The final piece of the results is for parameters where both DEVs are active and y0 ∕= 0. In this
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case, we compute DM utility by numerical evaluation of the equilibrium in Prop C.3. QED

Extremist VPs harm DM when α > α̃. In our discussion of DM utility, we note that if α >

α̃ ≈ 3.68, and VPs are extreme then for any y0 DM utility is higher without VPs. We show this for

xV = xE , noting that by continuity it holds for xV in a neighborhood below xE .

We first argue that for xV = xE and any y0 any equilibrium is in pure strategies. Suppose not,

i.e., there is an equilibrium in mixed strategies. Note that the less-motivated DEV k must weakly

prefer the status quo over any policy in the support of −k’s strategy, because one VP is at k’s ideal

ideology. Also, sign (y0) = sign (xk) because α > 2, so there is no policy that k weakly prefers to

develop and enact over the status quo, which is a contradiction.

Also note that for any y0 at which neither DEV is active, DM utility is ≤ 0 and so < EU0
D =

4x2E
󰁕 1
0 2F

󰀓󰁕 F
0

G
α(α−G)dG

󰀔
dF from Corollary 2.

Thus we only need to consider equilibria with exactly one active DEV. From Corollary 1, when

policy development occurs, the monopoly score is increasing in |y0|, so to characterize a bound on α

we set y0 = −xV = −xE < 0, calculate DM utility with R as a monopolist sM∗
R , and compare it with

EU0
D. From Prop 2, yM∗

R = 1
αxE +

󰀃
1− 1

α

󰀄
(−xV ) =

2
αxE − xE . Also, because the left veto player is

indifferent, q∗R =
󰀃
yM∗
R − (−xV )

󰀄2 − (y0 − (−xV ))
2 = 4

α2x
2
E so DM utility is sM∗

R = x2E
󰀃
4
α − 1

󰀄
.

Without VPs, from Corollary 2 EU0
D = 4x2E

󰁕 1
0 2F

󰀓󰁕 F
0

G
α(α−G)dG

󰀔
dF , which evaluates to EU0

D =

4x2E

󰀓󰀓
α+ 1

2 − 2
3α −

󰀃
α2 − 1

󰀄
ln
󰀓

α
α−1

󰀔󰀔󰀔
. Both sM∗

R and EU0
D are strictly decreasing in α. Evaluat-

ing numerically, EU0
D > sM∗

R , ∀α > α̃ ≈ 3.68. QED

E Data Notes

Figure 6 uses Nominate scores (from voteview.com, 2/26/2023). If a state had more than 2

Senators during a session, we use scores for the 2 who served longest within that session. We

calculate the left filibuster pivot as the 41st most liberal Senator and the right filibuster pivot as the

60th. When calculating party medians, Senators who were independent or members of minor parties

but caucused with a major party are treated as members of that party.
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