

The system of blocks and pulleys shown above is being pulled to the right with a force F. This force is adjusted so that block M_1 neither falls nor rises, i.e. the y component of its acceleration vanishes. All surfaces are frictionless, the pulley is massless and frictionless, and the strings (dotted lines) are massless and inextensible. Strings are marked with their tensions and blocks with their masses. All surfaces shown to be in contact remain in contact at all times; in particular block M_4 does not "tip over". The string connecting blocks M_3 and M_4 makes an angle θ with the horizontal.

- a) (3 points) Draw free body diagrams for all four masses, with all forces clearly shown and labeled.
- b) (2 points) Write Newton's second law for blocks M_1 and M_2 in the x and y directions (i.e. 4 equations).
- c) (2 points) What acceleration a_3 must block M_3 have? (Recall that block M_1 neither falls nor rises). Give your answer in terms of the masses M_1 , M_2 , M_3 , M_4 and gravitational acceleration g.
- d) (1 point) What is the magnitude of the force F?
- e) (1 point) What is the normal force N_4 between the floor and block M_4 ? You may leave your answer in terms of the masses and a_3 .
- f) (1 point) What is the force F_p (magnitude and direction) of the pulley on the string? You may leave your answer in terms of masses and a_3 .