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Discrete-Choice Models of Demand

In these lecture notes we present a framework for estimating demand in industries

which are of particular interest for industrial organization. These are industries where

• There are a large number of competing products (large relative to number of

distinct producers)

• Products are differentiated; no two products are exactly alike.

• Consumers make “discrete choices”: that is, they typically choose only one of

the competing products.

• Examples: soft drinks, pharmaceuticals, potato chips, cars, air travel, &etc.

Consumer Behavioral Model

• There are J alternatives in market, indexed by j = 1, . . . , J . Each purchase

occasion, each consumer i divides her income yi on (at most) one of the alter-

natives, and on an “outside good”:

max
j,z

Ui(xj , z) s.t. pj + pzz = yi

where

– xj are characteristics of brand j, and pj the price

– z is quantity of outside good, and pz its price

– outside good (denoted j = 0) is the non-purchase of any alternative (that

is, spending entire income on other types of goods).

• Substitute in the budget constraint (z =
y−pj

pz
) to derive conditional indirect

utility functions for each brand:

U∗

ij(xj , pj, pz, y) = Ui(xj ,
yi − pn

pz

).
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If outside good is bought:

U∗

i0(pz, y) = Ui(0,
yi − pn

pz

).

• Consumer chooses the brand yielding the highest cond. indirect utility:

max
j

U∗

ij(xj , pj, pz, yi)

Econometric Model

• U∗
ij usually specified as sum of two parts:

U∗

ij(xj , pj, pz, yi) = Vij(xj, pj , pz, yi) + ǫij

ǫij observed by agent i, not by researcher. It represents all else that affects

consumers i’s choosing product j, but is not observed by researcher.

• Because of the ǫij ’s, the product that consumer i chooses is random, from the

researcher’s point of view. Thus this model is known as the “random utility”

model. (Daniel McFadden won the Nobel Prize in Economics for this, in 2000.)

• Specific assumptions about the ǫij ’s will determine consumer i’s choice prob-

abilities, which corresponds to her “demand function”. Probability that con-

sumer i buys brand j is:

Dij(p1 . . . pJ , pz, yi) = Prob
{
ǫi0, . . . , ǫiJ : U∗

ij > U∗

ij′ for j′ 6= j
}

Examples:

For now, consider the simple case where J = 1 (so that consumer i chooses either to

buy good 1, or buy the “outside good, which is nothing at all).

With only two goods, consumer i chooses good 1 if

Vi0 + ǫi0 ≤ Vi1 + ǫi1

⇔Vi0 − Vi1 ≤ ǫi1 − ǫi0.
(1)
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Probit: If we assume

ηi ≡ ǫi1 − ǫi1 ∼ N(0, 1)

then we have the “probit” model. In this case, the choice probabilities are

Pi1 = Pr(ηi ≥ Vi0 − Vi1) = 1 − Φ(Vi0 − Vi1).

In the above, Φ(x) is the cumulative distribution function (CDF) of a standard

normal random variable, ie.

Φ(x) = Pr(ηi < x).

Logit: If (ǫij, j = 0, 1) are distributed i.i.d. type I extreme value across i, with CDF:

F (x) = exp

[

− exp

(

−
x − η

µ

)]

= Pr[ǫ ≤ x]

with η = 0.577 (Euler’s constant), and the scale parameter (usually) µ = 1,

then we have the “logit” model. In this case, the choice probabilities are:

Pi1 =
exp(Vi1)

exp(Vi0) + exp(Vi1)
.

Multinomial Logit: One attractive feature of the logit model is that the choice

probabilities scale up easily,1 when we increase the number of products. For J

products, the choice probabilities take the following “multinomial logit” form:

Pij =
exp(Vij)

∑

j′=0,... ,J exp(Vij′)

Since this is a convenient form, the MNL model is often used in discrete-choice

settings.

Problems with multinomial logit

1This is not true for the probit model.
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• Restrictive implication of multinomial logit: “Odds ratio” (the ratio of two

choice probabilities) between any two brands n, n′ doesn’t depend on number

of alternatives available

Pij

Pin′

=
exp(Vij)

exp(Vin′)

regardless of which alternative brands n′′ 6= n′ 6= n are available.

Consider:Red bus/blue bus problem

– Assume that city has two transportation schemes: walk, and red bus.

Consumer rides bus half the time, and walks to work half the time (ie.

Pi,W = Pi,RB = 0.5). So odds ratio of walk/RB= 1.

– Now consider introduction of third option: train. IIA implies that odds

ratio between walk/red bus is still 1.

This is behaviorally unrealistic: if train substitutes more with bus than

walking, then new probs could be:

Pi,W = 0.45

Pi,RB = 0.30

Pi,T = 0.25

In this case, odds ratio walk/RB=1.5.

– Now consider even more extreme case. What if third option were blue bus?

IIA implies that odds ratio between walk/red bus would still be 1. This

is very unrealistic: BB is perfect substitute for RB, so that new choice

probabilities should be

Pi,W = 0.50

Pi,RB = 0.25

Pi,BB = 0.25

and odds ratio walk/RB=2!

– So this is especially troubling if you want to use logit model to predict

penetration of new products.
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– What about using Logit model to predict elections?

Implication: invariant to introduction (or elimination) of some alternatives.

Independence of Irrelevant Alternatives

• Since Dij is demand function, IIA implies restrictive substitution patterns:

εa,c = εb,c, for all brands a, b 6= c

where

ǫa,c =
∂Dia

∂pc

pc

Dia

is the cross-price elasticity of demand between brands c and a. It is the per-

centage change in demand for product a, caused by a change in the price of

product c.

If Vij = βj +α(yi−pj), then εa,c = αpcDc, for all c 6= a: Price decrease in brand

a attracts proportionate chunk of demand from all other brands. Unrealistic!

eg. Consider a price decrease in Cheerios. Naturally, demand for Cheerios would

increase. IIA feature implies that demand for all other brands would decrease

proportionately. This is unrealistic, because you expect that demand would

decrease more for close substitutes of Cheerios (such as Honey Nut Cheerios),

and less from non-substitutes (like Special K).

• Changes to logit framework to overcome IIA: nested logit model

Assume particular correlation structure among (ǫi0, . . . , ǫij). Within-nest brands

are “closer substitutes” than across-nest brands.

(Diagram of demand structure from Goldberg paper)

Another problem: price endogeneity?

Note: in deriving all these examples, implicit assumption is that the distribution of

the ǫij ’s are independent of the prices. This is analogous to assuming that prices are

exogenous.
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Case study: Trajtenberg (1989) study of demand for CAT scanners. Disturbing

finding: coefficient on price is positive, implying that people prefer more expensive

machines!

(Tables of results from Trajtenberg paper)

Possible explanation: quality differentials across products not adequately controlled

for. In differentiated product markets, where each product is valued on the basis

of its characteristics, brands with highly-desired characteristics (higher quality) may

command higher prices. If any of these characteristics are not observed, and hence

not controlled for, we can have endogeneity problems. ie. E(pǫ) 6= 0.

Estimation with aggregate market shares

Next we consider how to estimate demand functions in the presence of price endo-

geneity, and when the researcher only has access to aggregate market shares. This

summarizes findings from Berry (1994).

Data structure: cross-section of market shares:

j ŝj pj X1 X2

A 25% $1.50 red large

B 30% $2.00 blue small

C 45% $2.50 green large

Total market size: M

J brands

Try to estimate demand function from differences in market shares and prices across

brands.

���

Derive market-level share expression from model of discrete-choice at the individual

household level (i indexes household, j is brand):
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Uij = Xjβ − αpj + ξj
︸ ︷︷ ︸

≡δj

+ǫij

where we call δj the “mean utility” for brand j (the part of brand j’s utility which is

common across all households i).

We need to estimate the model parameters (α, β).

���

Econometrician observes neither ξj or ǫij , but household i observes both.

ξ1, . . . , ξJ are commonly interpreted as “unobserved product characteristics” or “un-

observed quality”. All else equal, consumers more willing to pay for brands for which

ξj is high.

Important: ξj, as unobserved quality, is correlated with price pj (and also potentially

with characteristics Xj). It is the source of the endogeneity problem in this demand

model.

Make multinomial logit assumption that ǫij ∼ iid TIEV, across consumers i and

brands j.

Define choice indicators:

yij =

{

1 if i chooses brand j

0 otherwise

Given these assumptions, choice probabilities take MN logit form:

Pr (yij = 1|β, xj′, ξj′, j
′ = 1, . . . , J) =

exp (δj)
∑J

j′=0 exp (δj′)
.
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Aggregate market shares are (for j = 0, . . . , J):

sj =
1

M
[M · Pr (yij = 1|β, xj′, ξj′, j

′ = 1, . . . , J)] =
exp (δj)

∑J

j′=0 exp (δj′)

≡ s̃j (δ0, . . . , δJ) .

s̃(· · · ) is the “predicted share” function, for fixed values of the parameters α and β,

and the unobservables ξ1, . . . , ξJ .

���

Estimation principle

• Data contains observed shares: denote by ŝj , j = 1, . . . , J

(Share of outside good is just ŝ0 = 1 −
∑J

j=1 ŝj.)

• Model + parameters give you predicted shares: s̃j(α, β, ξ1, . . . , ξJ), j = 1, . . . , J

• Principle: Estimate parameters α, β by finding those values which “match”

observed shares to predicted shares: find α, β so that s̃j(α, β) is as close to ŝj

as possible, for j = 1, . . . , J .

Berry (1994) suggests a clever IV-based estimation approach.

Assume there exist instruments Z so that

E (ξZ) = 0 (2)

Note that

ξ = δ − Xβ0 + α0p

where (α0, β0) are the true, but unknown values of the model parameters. Hence,

equation (2) can be written as

E[(δ − Xβ0 + α0p)Z] = 0. (3)
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Sample version of this moment condition is

1

J

J∑

j=1

(δj − Xjβ + αpj)Zj ≡ Qj(α, β).

We will estimate (αβ) by minimizing

min
α,β

[QJ (α, β)]2. (4)

Why does this work? As J gets large, by the law of large numbers, QJ(α, β) converges

to E[(δ−Xβ+αp)Z]. By equation (3), this is equal to zero at the true values (α0, β0).

Hence, the (α, β) that minimize (4) should be close to (α0, β0). (And indeed, should

converge to (α0, β0) as J → ∞.)

Problem with estimating: we do not know δj ! Berry suggest a two-step approach

First step: Inversion

• If we equate ŝj to s̃j (δ0, . . . , δJ), for all j, we get a system of J + 1 nonlinear

equations in the J + 1 unknowns δ0, . . . , δJ :

ŝ0 = s̃0 (δ0, . . . , δJ)

ŝ1 = s̃1 (δ0, . . . , δJ)

...
...

ŝJ = s̃J (δ0, . . . , δJ)

• Note: the outside good is j = 0. Since 1 =
∑J

j=0 ŝj by construction, the

equations are linear dependent. So you need to normalize δ0 = 0, and only use

the J equations for s1, . . . , sJ .

• Now you can “invert” this system of equations to solve for δ1, . . . , δJ as a func-

tion of the observed ŝ0, . . . , ŝJ .

• Output from this step: δ̂j ≡ δj (ŝ0, . . . , ŝJ) , j = 1, . . . , J (J numbers)
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Second step: IV estimation

• Going back to definition of δj ’s:

δ1 = X1β − αp1 + ξ1

...
...

δJ = XJβ − αpJ + ξJ

• Now, using estimated δ̂j ’s, you can calculate QJ(α, β)

1

J

J∑

j=1

(

δ̂j − Xjβ + αpj

)

Zj

and solve for α, β as in equation (4) above.

���

The multonomial logit model yields a simple example of the inversion step.

MNL case: predicted share s̃j (δ1, . . . , δJ) =
exp(δj)

1+
PJ

j′=1
exp(δj′)

The system of equations from matching actual to predicted shares is (note that here

we have set δ0 = 0):

ŝ0 =
1

1 +
∑J

j=1 exp(δj)

ŝ1 =
exp(δ1)

1 +
∑J

j=1 exp(δj)

...
...

ŝJ =
exp(δJ)

1 +
∑J

j=1 exp(δj)
.
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Taking logs, we get system of linear equations for δj’s:

log ŝ1 = δ1 − log (denom)

...
...

log ŝJ = δJ − log (denom)

log ŝ0 = 0 − log (denom)

which yield

δj = log ŝj − log ŝ0, j = 1, . . . , J.

So in second step, run IV regression of

(log ŝj − log ŝ0) = Xjβ − αpj + ξj. (5)

Eq. (5) is called a “logistic regression” by bio-statisticians, who use this logistic trans-

formation to model “grouped” data. So in the simplest MNL logit, the estimation

method can be described as “logistic IV regression”.

See Berry paper for additional examples (nested logit, vertical differentiation).

���

What are appropriate instruments (Berry, p. 249)?

• Usual demand case: cost shifters. But since we have cross-sectional (across

brands) data, we require instruments to very across brands in a market.

• Take the example of automobiles. In traditional approach, one natural cost

shifter could be wages in Michigan.

• But here it doesn’t work, because its the same across all car brands (specifically,

if you ran 2SLS with wages in Michigan as the IV, first stage regression of price

pj on wage would yield the same predicted price for all brands).
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• BLP exploit competition within market to derive instruments. They use IV’s

like: characteristics of cars of competing manufacturers. Intuition: oligopolistic

competition makes firm j set pj as a function of characteristics of cars produced

by firms i 6= j (e.g. GM’s price for the Hum-Vee will depend on how closely

substitutable a Jeep is with a Hum-Vee). However, characteristics of rival cars

should not affect households’ valuation of firm j’s car.

• In multiproduct context, similar argument for using characteristics of all other

cars produced by same manufacturer as IV.

• With panel dataset, where prices and market shares for same products are ob-

served across many markets, could also use prices of product j in other markets

as instrument for price of product j in market t (eg. Nevo (2001), Hausman

(1996)).

���
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0.1 Measuring market power: recovering markups

• Next, we show how demand estimates can be used to derive estimates of firms’

markups (as in monopoly example from the beginning).

• From our demand estimation, we have estimated the demand function for brand

j, which we denote as follows:

Dj




X1, . . . , XJ

︸ ︷︷ ︸

≡ ~X

; p1, . . . , pJ
︸ ︷︷ ︸

≡~p

; ξ1, . . . , ξJ
︸ ︷︷ ︸

≡~ξ






• Specify costs of producing brand j:

Cj (qj)

where qj is total production of brand j.

• Then profits for brand j are:

Πj = Dj
(

~X, ~p, ~ξ
)

pj − Cj
(

Dj
(

~X, ~p, ~ξ
))

• For multiproduct firm: assume that firm k produces all brands j ∈ K. Then its

profits are

Π̃k =
∑

j∈K

Πj =
∑

j∈K

[

Dj
(

~X, ~p, ~ξ
)

pj − Cj
(

Dj
(

~X, ~p, ~ξ
))]

.

Importantly, we assume that there are no (dis-)economies of scope, so that

production costs are simply additive across car models, for a multiproduct firm.

Aside Assume a firm produces two items (call it “1” and “2”). Let C(q1, q2)

denotes the total cost function of producing q1 units of good 1 and q2 units of

good 2. Let C1(q1) be the total cost function of just producing good 1; and

C2(q2) be total cost function of just producing good 2.

– Economies of scope: C(q1, q2) < C1(q1) + C2(q2)

– Diseconomies of scope: C(q1, q2) > C1(q1) + C2(q2)

13
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– No economies of diseconomies of scope: C(q1, q2) = C1(q1) + C2(q2)

• In order to proceed, we need to assume a particular model of oligopolistic com-

petition.

One common assumption is Bertrand (price) competition. (Note that because

firms produce differentiated products, Bertrand solution does not result in

marginal cost pricing.)

That is, firm k chooses prices pj , j ∈ K, to maximize Π̃k (defined above)

• Under price competition, equilibrium prices are characterized by J equations

(which are the J pricing first-order conditions for the J brands):

∂Π̃k

∂pj

= 0, ∀j ∈ K, ∀k

⇔Dj +
∑

j′∈K

∂Dj′

∂pj

(

pj′ − C
j′

1 |qj′=Dj′

)

= 0

where C
j
1 denotes the derivative of Cj with respect to argument (which is the

marginal cost function).

• Note that because we have already estimated the demand side, the demand

functions Dj, j = 1, . . . , J and full set of demand slopes ∂Dj′

∂pj
, ∀j, j′ = 1, . . . , J

can be calculated.

Indeed, for the MNL model, and assuming that Vj = Xjβ − αpj, then

∂Dj′

∂pj

=

{

−αDj(1 − Dj) if j = j′

αDj′Dj if j 6= j′

Hence, from these J equations, we can solve for the J margins pj −C
j
1. In fact,

the system of equations is linear, so the solution of the marginal costs C
j
1 is just

~c = ~p + (∆D)−1 ~D

where c and D denote the J-vector of marginal costs and demands, and the

derivative matrix ∆D is a J × J matrix where

∆D(i,j) =

{
∂Di

∂pj
if models (i, j) produced by the same firm

0 otherwise.
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The markups measures can then be obtained as
pj−C

j
1

pj
.

This is the oligopolistic equivalent of using the “inverse-elasticity” condition to

calculate a monopolist’s market power.

Random coefficient logit model In recent applications of discrete-choice demand

models, focus on a more complicated version of MNL.

For agent i, utility from brand j is:

U∗

ij = X ′

jβi − αipj + ξj + ǫij

(coefficients are agent-specific).

ǫij remain TIEV, so underlying model is logit. However now the coefficients βi and

αi differ across households i.

Assume that βi and αi are distributed across consumers according to a normal dis-

tribution N([ᾱ, β̄]′, Σ).

Then you can write the above as:

U∗

ij = X ′

jβ̄ − ᾱpj + ξj
︸ ︷︷ ︸

δj

+X ′

j(βi − β̄) − (αi − ᾱ)pj + ǫij

where δj denotes mean utility, as before.

Hence, in this model, aggregate market share is not equal to consumer-level choice

probability. In fact, aggregate market share is integral of consumer-level choice prob-

abilities.

Consumer-level choice probability:

Pij =
exp(δj + X ′

j(βi − β̄) − (αi − ᾱ)pj)

1 +
∑J

j′=1 exp(δj′X
′
j′(βi − β̄) − (αi − ᾱ)pj′)

15
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Then aggregate market share is

Dj =

∫

PijdF (αi, βi)

=
exp(δj + X ′

j(βi − β̄) − (αi − ᾱ)pj)

1 +
∑J

j′=1 exp(δj′X
′
j′(βi − β̄) − (αi − ᾱ)pj′)

dF (αi, βi).

It turns out estimation of this model (and accommodating endogeneity) is quite com-

plicated and involved, and we will not discuss it here.

1 Applications

Applications of this methodology have been voluminous. Here discuss just a few.

1. evaluation of VERs In Berry, Levinsohn, and Pakes (1999), this methodology

is applied to evaluate the effects of voluntary export restraints (VERs). These were

voluntary quotas that the Japanese auto manufacturers abided by which restricted

their exports to the United States during the 1980’s.

The VERs do not affect the demand-side, but only the supply-side. Namely, firm

profits are given by:

πk =
∑

j∈K

(pj − cj − λV ERk)D
j.

In the above, V ERk are dummy variables for whether firm k is subject to VER (so

whether firm k is Japanese firm). VER is modelled as an “implicit tax”, with λ ≥ 0

functioning as a per-unit tax: if λ = 0, then the VER has no effect on behavior, while

λ > 0 implies that VER is having an effect similar to increase in marginal cost cj .

The coefficient λ is an additional parameter to be estimated, on the supply-side.

Results (effects of VER on firm profits and consumer welfare)

16
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2. Welfare from new goods, and merger evaluation After cost function

parameters γ are estimated, you can simulate equilibrium prices under alternative

market structures, such as mergers, or entry (or exit) of firms or goods. These

counterfactual prices are valid assuming that consumer preferences and firms’ cost

functions don’t change as market structures change. Petrin (2002) presents consumer

welfare benefits from introduction of the minivan, and Nevo (2001) presents merger

simulation results for the ready-to-eat cereal industry.

3. Geographic differentiation In our description of BLP model, we assume that

all consumer heterogeneity is unobserved. Some models have considered types of

consumer heterogeneity where the marginal distribution of the heterogeneity in the

population is observed. In BLP’s original paper, they include household income in

the utility functions, and integrate out over the population income distribution (from

the Current Population Survey) in simulating the predicted market shares.

Another important example of this type of obbserved consumer heterogeneity is con-

sumers’ location. The idea is that the products are geographically differentiated, so

that consumers might prefer choices which are located closer to their home. Assume

you want to model competition among movie theaters, as in Davis (2006). The utility

of consumer i from theater j is:

Uij = −αpj + β(Li − Lj) + ξj + ǫij

where (Li − Lj) denotes the geographic distance between the locations of consumer

I and theater j. The predicted market shares for each theater can be calculated

by integrating out over the marginal empirical population density (ie. integrating

over the distribution of Li). See also Thomadsen (2005) for a model of the fast-

food industry, and Houde (2006) for retail gasoline markets. The latter paper is

noteworthy because instead of integrating over the marginal distribution of where

people live, Houde integrates over the distribution of commuting routes. He argues

that consumers are probably more sensitive to a gasoline station’s location relative

to their driving routes, rather than relative to their homes.

17



Lecture notes: Discrete-Choice Models of Demand 18

2 Panel data and fixed-effects regression

Define: panel dataset is a dataset which contains multiple observations for the same

unit, over time. Let i index units, and t index time periods.

Suppose you are interested in estimating the relationship:

Yit = α + βXit + ǫit.

Having panel data allow you to control for unit-specific unobservables γi as well as

time-specific unobservables δt:

Yit = α + βXit + γi + δt + ǫit.

18
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