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Price discrimination is endemic!

@ In these lecture notes we examine the mathematical structure of the
second-degree price discrimination model in more detail

@ compare and contrast with the “usual” monopolist who only sets uniform
price.
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|
The Basic Model

@ A firm produces a single good at marginal cost c.

o Consumers receive utility V(q) — T(q) if they purchase a quantity g and
utility O otherwise.

@ Two cases:

1. 8¢ {917,92}
2. 0€0,6]
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The Two Type Case

@ Monopolist offers two bundles (we assume the monopolist serves both types;
A is sufficiently large):
o (q1, T1), directed at type 61 consumers (in proportion \), and
o (g2, T2), directed at type 0> consumers (in proportion 1 — X).

@ The monopolist's profit is
nm—= )\( T1 — qu) + (1 — )\)(Tz — Cq2)

@ Monopolist faces two types of constraints. The individual rationality
constraint for type 6 (IR(#)) requires that consumers of type 6 are willing to
buy.

e Since 6, consumers can always buy the #; bundle, the relevant IR constraint is
|R(91):
0V(q1) = T1 >0 (1)
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The Two Type Case

@ The incentive compatibility constraint for type 6 (1C(0)) requires that
consumers of type 6 prefer the bundle designed for them rather than that
designed for type 6’

@ The relevant IC constraint is that of the high-valuation consumers, 1C(65):
02V(q2) = T2 > V(1) — Th (2)

@ In fact, we will proceed ignoring IC(#1) and then show that the solution of
the subconstrained problem satisfies it.

@ We thus solve the problem: max MN™ s.t. (1) and (3)
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The Two Type Case

@ The relevant IC constraint is that of the high-valuation consumers, 1C(65,):
hLV(g)— T >60V(q) - T: (3)

This suggests that T, must leave some net surplus to the type 6, consumers,
because they can always buy the bundle (g1, T1) and have net surplus

6:V(q1) — Ta

@ To reduce this net surplus, set T; as high as possible:
o Set Ty = 61V(q1), so IR(A:1) holds with equality.
o Extract all surplus of the low types

@ Now IC(6,) can be written as

T2 < 6:V(q2) — [62V(q1) — Ta] = 02V(q2) — (62 — 01)V(q1)
@ Monopolist maximizes by setting T, as high as possible, ie.

To =602V (q2) — (02 — 01)V(qn)
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The Two Type Case

@ Substituting this into the objective function, the monopolist solves the
following unconstrained problem

maxg,, g, A(01V(q1) — cq1) + (1 = A)[02V(q2) — cg2 — (02 — 01) V(q1)]

First Order Conditions are:

01V'(q1) = _1_(;9291] (4)
02 Vl(qz) =C (5)

o It follows from (5) that the quantity purchased by the high value consumers is
socially optimal (marginal utility equal marginal cost). “No distortion at the
top”

e and from (4) that the quantity consumed by the low-demand consumers is
socially suboptimal: 61V'(q1) > ¢ and their consumption is distorted
downwards. “quantity degradation”
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The Two Type Case

@ It remains to check that the low demand consumers do not want to choose
the high demand consumers’' bundle. Because they have zero surplus, we
require that 0 > 61 V(q2) — T2. But this condition is equivalent to

0> —(62 —01)[V(q2) — V()]

which is satisfied
@ Bundle 2, although offering higher quantity, is too expensive for the low types.
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The Two Type Case

Intuition

@ Monopolist attempt to extract the high demand consumers’ large surplus
faces threat of personal arbitrage:
e High demand consumer can consume the low-demand consumers’ bundle if his
own bundle does not generate enough surplus.

@ To relax this personal arbitrage constraint, the monopolist offers a relatively
low consumption to the low demand consumers.
e OK because typically high demand consumers suffer more from a reduction in
consumption than low demand ones (single crossing property).

e Since low demand consumers are not tempted to exercise personal arbitrage,

no distortion at the top (recall welfare gains can be captured by the
monopolist through an increase in T>.
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The Two Type Case

Nonlinear pricing and “quality degradation”

@ As noted above, one feature of optimal nonlinear pricing by a firm with
market power, typically they will degrade the lower tier products on its
product line.

o Since they can't force people to choose the higher-quality, more expensive
products

e ... they make lower-tier products so poor that people willingly choose
higher-tier products

@ But in real-world markets, do firms really degrade quality?

o Look at cable TV
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Evidence of quality overprovision

TABLE 7—WELFARE EFFECTS OF MARKET POWER OVER QUALITY (AND PRICE)

Market power Market power
over quality over price Total welfare effect
(P75, gO%) vs. (p°%, gF) (p%%, &) vs. (p°F, ¢°F) (7%, q%%) vs. (p°F, g°F)
Mean SD Mean SD Mean SD
(1) @ 3

Prices
Low-quality products - - —0.330 0.180 —0.330 0.180
Medium-quality products - - —0.590 0.220 —0.590 0.220
High-quality products - - -« —0.740 0.130 —0.740 0.130
Qualities
Low-quality products 0.550 0.720 - - 0.910
Medium-quality products 0.070 0.110 - - 0.410
High-quality products 0.070 0.040 - - 0.260

e Firms actually offer consumers too much quality (and charge a lot)

@ Consumers would prefer lower quality (and appropriately lower price)
o Starbucks (“Venti"), Broadband internet (940Mbps)
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The Continuum of Types Case

Now we consider a mathematical generalization.
o Let 0 be distributed with density f(#) (and CDF F) on an interval [0, 0].

Monopolist offers a nonlinear tariff T(q). A consumer with type 6 purchases
q(#) and pays T(q(0)).

Monopolist's aggregate profit (across all consumer types) is:

0
" = [ [7(a(®)) - ca®)lf(6)a
0

The monopolist maximizes his profit subject to two types of constraints
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IR constraints

e For all 6,
0V (q(0)) — T(q(0)) >0

@ As before, it suffices that IR (8) holds:

0V(q(0)) — T(q(@)) = 0 (6)

@ If (6) holds, any type 6 can realize a nonegative surplus consuming 6's bundle:

0V(q(0)) — T(a(0)) = (0 - 0)V(q(0)) = 0
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The Continuum of Types Case

|C constraints

@ 0 should not consume the bundle designed for § (4 # 6)
o 1C(6): for all 0, 4:

U(6) = U(9,6) = 0V(q(9)) — T(q(6)) = 6V(q(0)) — T(a(6)) = U(9,6) (7)

@ These constraints are not very tractable in this form. However, we can show
that it suffices to require that the ICs are satisfied “locally”; i.e., a necessary
and sufficient condition for

0 = argmaxzU(0,0) = 0V (q(d)) — T(q(d))
is given by the FOC (evaluated at the true type 0):

oV’ (q(0)) = T'(q(8)) (8)

@ This says that a small increase in the quantity consumed by they type 6
consumer generates a marginal surplus V'(q(0)) equal to the marginal
payment T'(q(#)). Thus, the consumer does not want to modify the
quantity at the margin.
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The Continuum of Types Case

@ Now from the IC

U(6) = maxz6V(q(6)) — T(a(h))

@ Using the envelope theorem (red part =0):

atajiée) = V(q(0))+4'(0) [0V'(a(0)) — T'(q(0))]

@ Thus we can write (use U(f) =0)

0 [’
U(G):/H al{;sf)dwu(e)_/e V(q(t))dt
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The Continuum of Types Case

@ Note that consumer’s utility grows with 6 at a rate that increases with g(8).

@ This is important for the derivation of the optimal quantity function, as it
implies that higher quantities “differentiate” different types more, in that the
utility differentials are higher.

@ Since leaving a surplus to the consumer is costly to the monopolist (recall
T(q(0)) =6V (q(6)) — U(H)), the monopolist will tend to reduce U and to
do so, will induce (most) consumers to consume a suboptimal quantity.

@ Intuition from the previous equations is that optimality will imply a bigger
distortion for low-6 consumers.
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The Continuum of Types Case

@ Since T(q(6)) =6V (q(9)) —U(0) =0V (q(0)) — f; V(q(t))dt, we can write

0 6
nmz/e (W(q(e))—/e V(q(t))dt—cq(0)> £(6)d6 (9)
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The Continuum of Types Case

Recall: Integration by Parts

e If u and v are continuous functions on [a, b] that are differentiable on (a, b),
and if u and v are integrable on [a, b], then

b b
/ u()V (x)dx + / o ()v(x)dx = u(b)v(b) — u(a)v(a)

° L%t g = uv. Then g'=uv’' + vu’. By the fundamental theorem of calculus,
J. & =g(b) —g(a). Then
b
/ &' (x)dx = u(b)v(b) — u(a)v(a),

and the result follows.
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The Continuum of Types Case

e Now, integrating by parts, with f(0) = F’(6) and f; V(q(t))dt = G(0),

7 0
/ l / V(q(t))dt} £(0)do
9 A

is equal to

0 7 9
[ viatonde o~ [ via@)F@)ds = | via@)i - Fea
2] 0 0

@ Then going back to (9)
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The Continuum of Types Case

@ We can write

ﬂm:/@ <9V(q(9))—/0 V(q(t))df—CQ(9)> f(6)do

7
nw = / (10V(q(8)) — cq(0)]F(6) — V(a(9))[1 — F(6)]) 46

@ Now max MN™ w.r.t. g(-) requires that the term under the integral be
maximized w.r.t. (@) for all 6, yielding:

[0V'(q(0)) — c]f(6) — V'(q(9))[L — F(0)] =0
or equivalently

0V/(q(0)) =  + “f(’;)””w(q(o)) (10)
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The Continuum of Types Case

OV'(q(0)) = c + V'(q(0)) > c

@ Thus marginal willingness to pay for the good 0V’(q(f)) exceeds the
marginal cost c for all but the highest value consumer 8 =6
@ So again, we have:

o No distortion at the top (MU = MC) for 0
o Quantity degradation (for 6 < )
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The Continuum of Types Case

@ Moreover, for this specification of preferences, we can get a simple expression
for the price-cost margin.

Let T'(q) = p(q) denote the marginal price when the consumer is consuming
g units.

@ From consumer optimization

T'(q(0)) = 0V'(a(0)) = V'(a(0)) = — == = =

Substituting in (10), which | write again here

L A=FO,,

S AC O

0V'(q(0)) =

we have:

pa(0) —c [1— F(0)
)~ 070) (1)
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The Continuum of Types Case

Price-cost margins

@ We will assume that the “hazard rate” of the distribution of types, = (F() )],
increasing in 6 (common assumption, satisfied by a variety of distributions).
p(a0)) —c [D-F@O)] 1

p(a(6)) —  6f(6)  Or(9)
@ The derivative of the RHS with respect to 6 is:

@ Recall

[]2 [F(0)+9F’( )] <0

@ Thus % decreases with consumer type,and therefore with output

e This is the margin for the “marginal unit”. Note that the total profit obtained
by the monopolist is always increasing in type though.
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Quantities

@ The (pointwise in ) first-order condition (10) as:

(e - “;(Z)””) V/(q(0)) = c

@ Or letting I'(0) = (9 — W) simply as:

r@)V'(q(0)) = c.

where ['(6) > 0 by our increasing-hazard-rate assumption
o Totally differentiating (with variables g(6) and 6), we obtain:
dq(0) _ _T"(0) V'(a(9))

a0~ () Vig(e) "

using V' concave and I''(9) > 0

@ Thus ¢'(8) > 0: g(0) increases with 6. (Higher types get higher quantity)
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Quantity discounts

o Finally, recall T'(gq) = 6V’(q). Hence
T"(q) =0V"(q) for V concave

@ Thus T(q) is concave . As a result:

e Average price per unit T(q)/q decreases with g (Maskin and Riley’s quantity
discount result).

o Because a concave function is the lower envelope of its tangents, the optimal
nonlinear payment schedule can also be implemented by offering a menu of
two part tariffs (where the monopolist lets the consumer choose among the
continuum of two-part tariffs)
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Key takeaways

In this set of lecture notes, we studied the nonlinear pricing (2nd-degree price
discrimination) model in more mathematical rigor and established key properties:
Quality degradation (6V'(q(6)) > c) for all types 6 < @

. except for highest type §: no distortion at the top (0V'(q()) = c)
(empirical evidence from cable TV shows the opposite though..)

q'(0) > 0: higher types get more quality

T"(6) < 0: quantity discounts
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The Continuum of Types Case

|C constraints

@ We argued that it was enough to require that the ICs are satisfied “locally”;
i.e., that a necessary and sufficient condition for

0 = argmaxzU(0,0) = V(q(),0) — T(q(0))
is given by the FOC (evaluated at the true type 6):

oVv(q(0).0) _ -
g T (a(0))

@ This is because of the single crossing property, % >0
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The Inverse Elasticity Rule Again [skip]

@ Decompose the aggregate demand function into independent demands for
marginal units of consumption. Fix a quantity g and consider the demand for
the g unit of consumption. By definition, the unit has price p. The
proportion of consumers willing to buy the unit is

Dq(p) =1 = F(04(p))

, where 07 (p) denotes the type of consumer who is indifferent between
buying and not buying the g*" unit at price p:

O0a(P)V'(a)=p (12)

@ The demand for the g-th unit is independent of the demand for the §th unit
for § # g (due to no income effects). We can thus apply the inverse elasticity
rule.
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The Inverse Elasticity Rule Again [skip]

@ The optimal price for the gth unit is given by

p-c__ D,
p dDq p
@ However 40 (p)
dD . *(p
== f( q(p))qi
dp dp
and from (12)
dbg(p) _ dp
05(p) P

@ We thus obtain .
p—c 1—F(0;(p))

p 0:(p)f(05(p)
@ which is equation (11), thus unifying the theories of second degree and third
degree price discrimination
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