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1. INTRODUCTION

Let F' be a number field, n,m > 1, and 7 = Q/ m,, 7’ = ®] 7} cuspidal, unitary
automorphic representations of GL(n, Ar), GL(m, Ar) respectively. To this data
is associated an Euler product

L(s,mx @) = HL(S,ﬂ'v X ),

which converges absolutely in R(s) > 1. One knows by Jacquet, Piatetski-Shapiro
and Shalika ([JPSS]), and Shahidi ([Sh1]), that this L-function extends to a mero-
morphic function on all of C and admits a functional equation

L(s,mx7') = W(rx ) (N(r x #)d%)2*L(1 — s, 7 x 7'7).

Here 7V (resp. n’") denotes the contragredient of 7 (resp. 7’), dp the discrim-

inant of F, and N(m x 7’) a positive rational number (“the conductor”). The
arithmetically important global root number W (7 x 7’) is non-zero and satisfies
W(r x 7 )YW(x¥ x «’V) = 1. We will be particularly interested in the self-dual
situation, when

W(r xr') = +1.
It is of importance to determine the sign. Our object here is to make some modest
progress on this question.

We will say that a cuspidal automorphic representation n of GL(r,Ar) is of
symplectic type if, for a finite set S of places, the (incomplete) exterior square
L-function L*(s,n, A?) (see section 3 below for a definition) admits a pole at s = 1.
One knows that this cannot happen if r is odd ([JS1]).

Conjecture I. Suppose n,m are even, and w, 7 are both cusp forms of sym-
plectic type. Then W (n x «’) = 1.

As positive evidence, we will prove (in section 5) the following

Theorem A Let w,7" be as in the conjecture with n,m < 4. If n or m is 4,
assume that the conductor of the representation is prime to 2. Then

W(r x ') = 1.

In fact, our proof will show a bit more. If n or m is 4, it suffices to assume that,
at every place v dividing 2, the base change of the local component at v to some
quadratic extension of F), is not supercuspidal.
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If w (resp. ©’) corresponds to a Galois representation o (resp. o) of dimension
2n (resp. 2m) of Artin type, then 7 (resp. #’) being symplectic is equivalent to
the image of o (resp. o¢’) being contained in Sp(2n,C) (resp. Sp(2m,C)). So
o ® o’ would then be orthogonal, and one can deduce the fact that W(oc ® ') =1
by appealing to a well known result due to Frohlich-Queyrut [Fr-Q] and Deligne
[Del]. The problem in attempting such an argument in the automorphic setup
is that there is no global group £ available (as of yet) whose n-dimensional
representations parametrize automorphic representations of GL(n,Ar). In (the
motivational) section 2, we indicate how to get the result on W (o ® ¢’) by using
only a local result of Deligne relating root numbers to Stiefel-Whitney classes.
(Recently, we have come to know that this local argument has already been found
by D. Rohrlich in [Ro], section 1, Prop. 2.) Putting this in a general framework
leads to Conjecture II.

After some preliminaries in section 3, we discuss the status of the local Langlands
conjecture for GL(4) in section 4. In particular we show that the local correspon-
dence works (see Prop. 4.1) for the class of representations of GL(4) satisfying the
ramification condition at primes above 2 which was alluded to above. (In the odd
residual characteristic case, the correspondence for GL(4) is a consequence of the
recent works of M. Harris [Ha] and Jeff Chen [Ch].)

The heart of this paper is in section 5, where we study of W (m x #’) by some
global arguments for automorphic forms on GL(4)/F and lifting to GSp(4)/F.
The key problem (in proving Theorem A) becomes one of showing that, locally at
the ramified places, the representations o, of the Weil-Deligne group defined by
a global 7 of symplectic type have images in the symplectic group (see Theorem
5.1 and Propositions 5.1 - 5.3). Another probem is to know that at such a place,
W (my x mh) = W (o, ® o), which is addressed earlier in section 4 (cf. Proposition
4.2).

When n = 2, it is easy to see that 7 is of symplectic type iff its central character
is trivial. Thus Theorem A proves in particular the triviality of the root number
W(m x n") associated to a pair of cuspidal automorphic representations of m, 7’
PGL(2, Ar). However, the difficult part of the Theorem deals with GL(4)xGL(2)
and GL(4)xGL(4).

Given any cuspidal automorphic representation = of GL(2, Ar), it is natural to
look at the symmetric power L-functions {L(s,m,Sym")|r > 1} (see section 4).
These were first defined by Langlands ([Lal]) at almost all places. Thanks to the
work of Shahidi ([Sh 1,2], one knows, for each r < 5, how to extend L(s, 7, Sym")
to a meromorphic function satisfying a functional equation, with a good definition
of bad factors as well. For » = 2, one knows much more by the work of Gel-
bart and Jacquet (|[GJ]), namely that L(s, 7, Sym?) is the standard L-function of
an automorphic form Sym?(r) on GL(3)/F. For r = 3, one also knows, by the
work of Bump, Ginzburg and Hoffstein, that the (symmetric cube) L-function is
holomorphic in {R(s) > 3/4}; but we will not have occasion to use this.

Using [Sh1, 2], we can therefore define the global root number W (7, Sym"), for
each r < 5. In section 6, we will prove
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Theorem B Let 7 be a cuspidal automorphic representation of GL(2,Ar) of
trivial central character. Then

W (m,Sym?) = W(r,Sym*) = 1.

It should be noted that if 7w corresponds to a compatible system {o;} of ¢-
adic representations of Gal(Q/F), then Sym?*(o,) will be an orthogonal similitude
representation of even (motivic) weight, and the assertion that the global root
number is 1 already follows from the work of T. Saito ([Sa]), who generalized the
results of Frohlich and Deligne ([Del]) on Galois representations of Artin type,
and also the result of Coates and Schmidt ([Co-S]) on the symmetric square of a
modular elliptic curve. But our result appears to be new for Maass forms over Q
and for forms of arithmetic type over number fields with a complex place.

Professor Shimura established a number of important special value results for
L-series of pairs (m,n’) of arithmetic type. He also was the first one to prove
the holomorphy of the symmetric square L-function associated to elliptic modular
newforms. Here we study problems of a different sort, but for the same types of
L-series, and we are honoured to dedicate this paper to him.

We would like to thank F. Shahidi for helpful discussions concerning his results
on L-functions, and for his help with Lemma 5 of section 5. We would also like to
thank M. Harris, H. Jacquet, D. Rohrlich and J.-P. Serre for useful conversations/
correspondence. The first author would like to thank Caltech for an invitation to
visit during February 97, when this work was begun. The second author would like
to thank the NSF for support through the grant DMS-9501151.

2. MOTIVATION AND GENERALIZATION

Suppose o (resp. ¢’) is a continuous, irreducible C-representation of the absolute
Galois group Gal(Q/F) of dimension n (resp. m). Then the analogue of W (7 x /)
is the global Artin root number W (o ®¢’). One says that o is symplectic if the
image is in fact contained in Sp(n, C), or in other words, if the exterior square of o
contains the trivial representation. This is known to be equivalent to the existence
of a pole at s = 1 of the Artin L-function L(s, A%(c)). Indeed, this is so because
L(s,7) is invertible at s = 1 for any non-trivial irreducible 7. (This can be seen,
for example, by Prop. 3.4 of [Ta] together with the functional equation.) Clearly,
every symplectic o is self-dual and of even dimension. Similarly for o”.

Though we will stick to Galois representations of Artin type below, much of
what we say will also be valid for compatible systems. However, it should be noted
that, for an irreducible f-adic representation oy, the equivalence between being
symplectic and having the exterior square L-function admit a pole is not known,
though predicted by the Tate conjectures.

One knows by a theorem of Langlands (see [De2] for an elegant global proof)
that there is a factorization

W(e®o') = HWE(U®U'),

where each local constant W, (0 ® ¢’) depends only on the restriction o, ® o7, to
the decomposition group D, at v.
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Now fix a place v, and suppose 7 is a virtual orthogonal representation of
Gal(F,/F,) of determinant 1 and dimension 0. Then, by a fundamental theorem
of Deligne ([Del]), one has the equality

(2.1) Wo(r) = emv=0),

where wy(7) € 37/Z is the image of the second Stiefel-Whitney class of 7 under
the isomorphism H?(F,, {+1}) = 2Br(F,) ~ 1Z/Z.

The motivation for the conjecture made in the introduction arises from the fol-
lowing

Proposition 2.1. Let 0,0’ be both symplectic of respective dimensions 2n,2m.
Then
W ®o) = 1.

When o, ¢/ are symplectic, their tensor product is clearly orthogonal, and so this
Proposition is an immediate consequence of a theorem of Frohlich-Queyrut ([Fr-Q])
and Deligne ([Del]). But in the automorphic context, there is (as of yet) no analog
of the global Galois group, and a starting point for this paper is supplied by the
following

Alternate Proof. Let v be any place. Since o, and o/, are both symplectic,
their tensor product must be orthogonal and of determinant 1. Put

T = (0, ®0) © dnm]l],

where [1] denotes the trivial representation. Then 7 is of dimension 0, determinat 1,
and of orthogonal type, and so by Deligne, W, (1) = e™%2(7), Note that W, ([1])* =
1 = em™w2(lD), For any N > 1, let Spin(XN, C) denote the two-fold covering group of
SO(N, C). Clearly, o, ®0?, lies in SO(4nm, C). It follows then, by the definition and
properties of Stiefel-Whitney classes (cf. [Del]), that W, (c®c’) can be —1 iff o, Q0
cannot be lifted to a representation into Spin(4nm,C). But this representation
factors through Sp(2n,C)x Sp(2m, C), which is simply connected as an algebraic
group. Now we appeal to the following basic Lemma, whose proof is left to the
reader.

Lemma 1. Let ¢ : H — H' be a morphism of semisimple algebraic groups over
C, and let H be connected and simply connected as an algebraic group. Let H'
denote the universal cover of H' (in the sense of algebraic groups), with covering
map p: H — H'. Then there exists a lifting ¢ : H — H' such that ¢ = po ¢.

We apply this with H = Sp(2n, C)x Sp(2m, C) and H' = SO(4nm, C), and note
that H' is then none other than Spin(4nm, C). Consequently, wy(c, ® o’) is 1. So

is Wy(o, ® o)) by (2.1). Now we are done as every local factor of W(o ® o') is 1.
O

Remark: We have recently learnt from D. Rohrlich that this argument above has
already been found by him, see [Ro], section 1, Prop. 2 and the following remark.

More generally, let ¢ be a Galois representation with values in the C-points of a
simply connected semisimple group G, and let

r: G — GL(N,C),
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be an algebraic representation whose image is contained in SO(N,C). Then the
argument proves that W, (r(c)) = 1, for every v.

This suggests a general conjecture about, the root numbers of automorphic L-
functions associated to a split semisimple group G over F' when the (Langlands) dual
group Gis simply connected. The reason is this. The automorphic representations
of G(A) are expected, modulo some anomalous ones, to be parametrized by the
conjugacy classes of homomorphisms ¢ into G from a conjectural, pro-reductive
group £5, which should be an extension of Gal(F'/F) by its connected component.
(See [La3] for a discussion of anomaly.) The cuspidal ones among them should
correspond to those (classes of) ¢ with im(¢) not contained in any Levi subgroup.

ConjectureII. Let G be a split semisimple group over F with a simply connected
(Langlands) dual group G’, and let w be a non-anomalous, cuspidal automorphic
representation of G(Ap). Suppose 71 is an algebraic representation of G which
is orthogonal. Then one should have W,(w,r) = 1 for every v.

Whether or not (& is simply connected, the global root number of 7 relative to
an orthogonal representation r of G is expected to be 1; but it will be very subtle
to establish, requiring a product formula, as the local root numbers need not be 1.

When G = PGL(n, Arp), G is SL(n,C), and every cuspidal automorphic repre-
sentation of G(Ap) is non-anomalous, called isobaric in this context. When G =
SO(2n+1)x SO(2m+1), G is Sp(2n, C)x Sp(2m, C), and if r is the tensor product
representation of G into GL(4nm, C), then im(r) lies in SO(4nm, C), and the Con-
jecture IT applies, giving a strengthening of Conjecture I stated in the introduction.
The connection is understood via the functoriality principle, which predicts that
isobaric automorphic forms of symplectic type on GL(2n)/F correspond to packets
of non-anomalous ones on SO(2n + 1)/F.

3. PRELIMINARIES

Given any unitary, cuspidal automorphic representation 7 of GL(n,AF), one
has, at every finite place v where 7, is unramified, a (Langlands) conjugacy class
A, () in GL(n, C), represented by a diagonal matrix [a1,4, .- . , n,»]. Let S be any
finite set of places containing the archimedean and ramified places (for 7). If r is
any algebraic representation of GL(n, C), we put

Lo (s,m,1) = H L(s,m, 1),
vegsS
where
L(s,m,7) = det(I — (Nv)*r(A,(n))) "%

Of particular interest is when r is the exterior square A2, or the symmetric kth
power Sym*, for some k > 1, of the standard represenation.

One knows (cf. [JS1], [BF], [Shl]) that L“(s, 7, A%) converges absolutely in
R(s) > 1 and admits a meromorphic continuation with a functional equation of the
usual type relating s and 1 — s.

Definition. 7 is of symplectic type iff L°(s, 7, A?) has a pole at s = 1.

Here is a simple Lemma which will be needed later.
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Lemma 2. If 7 is of symplectic type, then it is self-dual.

Proof. We have the factorization
L(s,m x w) = L%(s,m, A*)L° (s, 7, Sym?).

One knows by Shahidi ([Sh1]) that L®(s,n, Sym?) has no zero at s = 1. Thus, if
7 is of symplectic type, the pole at s = 1 of L(s,m, A?) will introduce a pole of
L3(s,m x m) at s = 1. This implies, by a theorem of Jacquet and Shalika ([JS2]),

that 7 is equivalent to V.
O

Thus, for every place v, the local component 7, of a cusp form = on GL(n)/F
of symplectic type is self-dual. It is not clear, however, that the conjecturally
associated representation (by the local Langlands conjecture)

oy : Wr — GL(n,C)

should be symplectic. (One could equally well use the modified Weil group WFU =
Wg, x SL(2,C); in this setting, the indecomposable module sp(n) corresponds to
1 ® Sym™ !(st), where st denotes the standard representation of SL(2,C).) This
leads to the following

Conjecture ITI. Letn > 1, and let @ be a cuspidal automorphic representation
of GL(2n,Ar) of symplectic type. Let v be a place such that 7, is functorially
associated to a 2n-dimensional representation o, of W;,U. Then o, is symplectic,
i.e., the image of o, lies in Sp(2n, C).

If n = 2, it is easy to see that this conjecture is true. Indeed, as remarked earlier,
a cusp form on GL(2)/F is of symplectic type iff its central chacter w is trivial.
Now if v is a place, then the determinant of o, is equal to w,, which is trivial. Since
0, is two-dimensional, it must then be symplectic. In the next section, on the way
to proving Theorem A, we will prove this conjecture for cusp forms (of symplectic
type) on GL(4)/F satistying a condition above 2.

We end this section discussing base change and automorphic induction for
GL(n)/F. We will rely on the results of Arthur and Clozel in [AC]. We will use the
modern terminology of isobaric representations together with the “sum operation”
B ([La3], [JS2]). These representations are suitable subquotients of parabolically
induced representations from essentially unitary cuspidal (resp. essentially square-
integrable) representations when F' is global (resp. local). For every n > 1, denote
by Isob(n, F) (resp. Isob(n, F,)) the set of irreducible, isobaric automorphic (resp.
admissible) representations of GL(n, Ar) (resp. GL(n, F,)). Then in [AC], chapter
3 (sec. 3 - 6), one finds a construction, for any cyclic extension K/F with [K : F]|
a prime ¢, of maps

bi/F : Isob(n, F') — Isob(n, K), m — 7x  (base change)
and
Ig/p @ Isob(n, K) — Isob(nt, '), 7 — I(m) (automorphic induction),

such that at every place v of F' which is finite and unramified for the representations
and K/F (or archimedean) and a place w of K above v, we have (respectively)

(3.1) res (0(my)) ~ o((Tx)w),
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and

o(I(m)y) ~ indf{“w ().
Given any local field E, if # an unramified representation of GL(r, E) (or if E is
archimedean), we write o((3) to signify the associated r-dimensional representation
of Wi, (or Wg).

There are also local analogs of these maps, customarily called “local base change”
and “local automorphic induction”. The former is constructed and discussed in
great detail in chapter 1 of [AC]. The later is discussed briefly in [C] and the relevant
assertions are consequences of the results of [AC]. An alternate construction of the
local automorphic induction for essentially tempered representations, which works
also in characteristic p, is given in the paper [HH] of Henniart and Herb. The
properties we will need are summarized below:

Proposition 3.1. Let K/F be a cyclic extension of number fields or local fields of
degree €, a prime. Let 0 be a generator of Gal(K/F), and let x denote the character
of the idele class group (resp. multiplicative group) of F in the global (resp. local)
case associated to K. Then
1. The image of b r consists precisely of those 3 €lsob(n, K) such that (3 ~
Bob.

2. The image of Ir/p consists precisely of those 1 €lsob(nt, F') such that m =~

T X.
3. For every w €lsob(m, F') and 3 €lsob(n, K), we have the adjointness prop-
erty:
Lis,m x 1(8)) = L{s,7x x 6),
and
-1
E(Sa T X I(ﬂ))é‘(b, lK)nm = E(Sa T X ﬂ) H 5(85 Xj)nm.
§=0

4. Suppose (3 is cuspidal (resp. supercuspidal) in Isob(n, K), for K global (resp.
local). Then
I(B)kx ~ B Bot.
Moreover, 1(8) is cuspidal (resp. supercuspidal) iff B is not isomorphic to
Bob.
5. Suppose T is cuspidal (resp. supercuspidal) in Isob(n, F), for F global (resp.
local). Then
I(7rg) ~ EEI?;(lﬂr ®x’.
Moreover, wx is cuspidal (resp. supercuspidal) iff © is not isomorphic to
T X.

For a proof of 1., 2. and the second half of 5., see [AC], [C] and [HH]. There
one also finds formulae for the L- and e-factors of pairs (7, 7% ) and (I(5'), I(5)),
which do not quite imply the identities of 3. In any case, one gets the adjointness
formulae, as it is well known to experts, by a similar global argument, which we will
briefly indicate here for completeness. First let us consider the global case. By using
the identities (3.1), one sees easily that for almost all v (including the unramified
and archimedean ones), the local factors at v of the functions L(s, 7 x I(3)) and
L(s, g x (3), both viewed as Euler products over F', coincide. Such a relationship
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holds with 7 replaced by m ® u, for any character u. Now fix a ramified place
vg. We may choose a finite order character g which is 1 at vy and is sufficiently
ramified at all the other ramified places u to ensure that the L-factors on both sides
(and their contragredient factors) are 1 at each w. (This is easily done by using
the formula in [JS2] for the L-factors for GL(m)xGL(nf).) Consequently, one
gets, by comparing the functional equations of both global L-functions, the desired
identity of the local factors at vg. The L-function identity of 3. follows in the
global case. To get this locally, one reduces the problem, by inductivity, to the case
when the representations are supercuspidal, which can then be realized as the local
components of cuspidal automorphic representations by using the trace formula.
The local identity then follows from the global one. (This argument is very similar
to the proof of Proposition 6.9 in chapter 1 of [AC].) For epsilon factors, which are
non-trivial only at a finite set S of places, we exploit the following trick used in
[He2]. (We may assume that S consists only of finite places as the archimedean
comparison poses no problem.) By a theorem of Jacquet and Shalika ([JS3]), if u
is sufficiently ramified at a place v, then €(s, 7, X 7}, ® u,)) has a simple expression,
depending only on the central characters of m, 7’ and the twisting character. Now
pick any place vg in S, and pick u to be 1 at vg, but sufficiently ramified at every
other place w in S. Then, by comparing the functional equations of the u-twisted
L-functions in question, we can isolate the epsilon factors at vy and deduce the
assertion. (It should be noted that the extraneous looking factors appear for the
epsilon identity as these factors are inductive only in degree zero.)

Now we prove part 4. In the global case, once again, the L-functions of both
sides of the identity agree at all the unramified (and archimedean) places. Twisting
by a suitable character and comparing functional equations, we get the assertion
at every place. (Locally, we employ the same trick as above.) Suppose first that
£ is not isomorphic to 3o #. Let 7w be a cuspidal element of Isob(m, F') which
occurs in the isobaric sum decomposition ([La2]) of I(3). Then L(s, 7" x I(3)),
and hence L(s, 7}, x ) by the adjointness formula, admits a pole at s = 1 by [JS2].
(In the local case, one exploits the pole at s = 0.) This means that 7mx contains
[ in its isobaric sum decomposition. But 7 is invariant under 6 by part 1. So it
must contain 3o @’ for all j, and so I(3)x. Since 7 occurs in I(/3), we must have
m ~ (), and so I(3) is cuspidal. Conversely, suppose I(3) is cuspidal. If we had
B ~ Bo#6, then by part 1., we can find some 1 €lsob(n, F') such that 8 ~ nx. Now
we interject and observe that the identity of part 5. can be established by the same
idea used for the identity of part 4. Consequently,

1(B) ~ I(nx) ~ BZinex,

which contradicts the cuspidality of I(3). The local argument is the same.
Thus the assertions of the Proposition hold.

4. ON THE LOCAL CORRESPONDENCE FOR GL(4)

We begin with a technical definition restricting the amount of ramification, to
be used at places above 2. This is necessitated by the lack of knowledge of the local
Langlands conjecture for GL(4).

Definition Let E be a non-archimedean local field. An irreducible, admissible
representation 1) of GL(4, E) is allowable iff the following condition is satisfied:
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(R(E)) There exists a quadratic extension K of E such that the base change ng
of n to K is not supercuspidal.

Proposition 4.1. Let E be a non-archimedean local field of characteristic zero.
Then the local Langlands conjecture holds for GL(4) if the residual characetristic
is odd. In the even residual characteristic case, it holds for the class of irreducible
admissible representations 8 of GL(4, E) satisfying the condition (R(E)). To be
explicit, this class is in bijection, preserving local factors, with the class of rep-
resentations T of W such that the restriction of T to Wy, for some quadratic
extension K of E, is not irreducible.

Proof. Let p denote the residual characteristic of E. By using inductivity and
the proof of the local Langlands conjecture for GL(2) and GL(3) due respectively to
Kutzko ([Ku]) and Henniart ([Hel]), we may reduce to proving the bijection between
supercuspidals of GL(4, ) and irreducibles of Wg of dimension 4, satisfying the
hypothesis for p = 2. A recent theorem of Michael Harris (Hal]) furnishes, for any
n > 1, a family of bijections ¢,, : § — 7 between supercuspidals § of GL(m, E)
and irreducibles 7 of W of dimension m, for every m < n, compatible with taking
contragredients, such that, if m,n are prime to p, the following identity of epsilon
factors holds, for all pairs (3,3') of supercuspidals of GL(n, E) and GL(m, E)
respectively:

(4.1) e(s,8x3) = e(s,7®1).

From this, using a criterion of Henniart ([He3]), he concludes the local Langlands
conjecture for n < p, which of course gives the Proposition for GL(4) if p > 5.
Another recent result, due to Jeff Chen ([Ch]), gives a finer criterion than that of
Henniart for n = 4, and says that it suffices, in order to verify that a given bijection
is the right one, to check the equality of epsilon factors of pairs for (n,m) = (4,1)
and (4, 2). So for any odd p, we have the needed identity thanks to Harris (namely
(4.1)), and so the local Langlands conjecture follows for GL(4) for any odd p.

Now we begin the proof for p = 2. Since ( satisfies (R(F)), there exists a
quadratic extension K/FE such that the base change Bk is not supercuspidal. Ap-
pealing to properties of base change ([AC]), more precisely Proposition 3.1 of this
article, we then see that 3 must be a local automorphic induction Ix /g (), for a
supercuspidal A of GL(2, K). Let u be the associated irreducible, two-dimensional
representation of Wy, given by [Ku]. Since (3 is cuspidal, A must be inequivalent
to A o p, where p denotes the non-trivial automorphism of K over E (see part 4.
of the same Prop. 3.1). This implies that p is not isomorphic to the representa-
tion pl?!) defined by w — p(pwp™') (Vw € Wk). Let T be the representation of
WEg induced by p. Then it must be irreducible by Mackey theory. Having defined
(B — 7, we must check that it is well defined, i.e., independent of K, and has the
right functorial properties. For this, it suffices, by Chen ([Ch]), to show that

(*) 5(55 B x ﬂ/) = E(Sa T® T/)a

for all supercuspidal representations [ of GL(k, E), k < 2, with corresponding
irreducibles 7/ of Wg of dimension k. But 7 ® 7’ is isomorphic to IndZ (u ® %),
where IndE denotes the induction from Wy to Wg and 7 the restriction of 7/ to
Wk . The epsilon factor is additive, but inductive only in dimension zero; so we get

e(s,7 @7 )e(s, Ind% (1)) 2% = e(s, p @ 14 )e(s, 1) 72,
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where 1x denotes the trivial representation of Wg. By the base change theory (see
Prop. 3.1), we know that a similar formula holds with 7®7’ (resp. p®T7}) replaced
by m x @’ (resp. A x O%).

Then the desired identity (*), and hence Proposition 4.1, is a consequence of
knowing that the factor e(s, A x (%) is the same as (s, u ® O ). If k =1, or if
k = 2 with % reducible, this is clear. The case when g is irreducible is settled
by appealing to the n = m = 2 case of the following

Proposition 4.2. Let E be a non-archimedean local field, n,m € {2,4}, and A
(resp. X') a supercuspidal representation of GL(n, E) (resp. GL(m,E)), functori-
ally associated to an irreducible p (resp. ') of Wg. IF n or m is 4 and E has
residual characteristic 2, assume that the supercuspidal representation in question
is allowable. Then we have

(s, Ax X)) = e(s, p@p).

Proof.  If the residual characteristic p is odd, this is the content of Harris’s
identity (4.1). So assume that p = 2. If © and y’ are local automorphic inductions
of characters of cyclic extensions, the assertion is a special case of a general result of
Henniart (see part (iii) of Theorem on page 146 of [He2]). In the general case, the
proof is still similar, the key point being the existence of global (automorphic) rep-
resentations II, I’ with local components A\, X’ respectively. We give the complete
argument.

To begin, we may assume that n > m, and after twisting by suitable unramified
characters, that p and p’ are continuous (irreducible) representations of Gal(E/E),
where E denotes an algebraic closure of E. Let L (resp. L') denote the Galois
extension of F cut out by the kernel of 7 (resp. 7’), and let L denote the compositum
of L and L'.

The following simple, but useful, lemma was shown to the second author some
time ago by J.-P. Serre.

Lemma 3. Let E be a non-archimedean local field of characteristic zero and of
residual characteristic p. Fiz a finite set S of rational primes other than p, but
possibly including co. Let E'/E be a finite Galois extension. Then there ezists a
finite Galois extension k' /k of number fields, and a place v of k extending to a place
v of k', such that (i) k, = E, (i) kl, =E', and (iii) the decomposition group of
v’ in Gal(k'/k) is the whole group. Moreover, all the primes in S split completely
ink'.

This lemma is a consequence of Krasner’s lemma and its proof will be left to the
reader. A slightly weaker version can be found in [De2], page 544, as Lemme 4.13.

Applying this lemma to our setup, we get a Galois extension M /k of number
fields with local extension L/E, such that Gal(M /k) = Gal(L/E). Then Gal(E/L)
and Gal(FE/L’) are subgroups of Gal(M /k), and let us denote their fixed fields in M
by M’ and M respectively. It is easy to see that L (resp. L’) is a local completion
of M (resp. M’) at a place u (resp. ') with Gal(L/E) = Gal(M/k) (resp.
Gal(L'/E) = Gal(M'/k). Thus we get continuous, irreducible representations [
and 3 of Gal(Q/k), acting via the respective quotients Gal(L/k) and Gal(L'/k),
such that = 3, and p/ = 3,.

Note that the image of 3 (resp. §') in GL,(C) (resp. GL,,(C)) is solvable.
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Now suppose n = m = 2. Then, by the theorems of Langlands ([La2]) and Tun-
nell ([Tu]) on tetrahedral and octahedral Galois representations, there exist cuspidal
automorphic representations II and IT' of GL(n, Ax) and GL(m, Ax) respectively,
such that we have the global L-function identities L(s,II1 ® x) = L(s,3® x) and
L(s,II' ® x) = L(s, ' ® x), for all idele class characters x of E.

It then follows ([La2]) that, for all quasi-characters v of E*,

e(s, I, ®v) = e(s, u V),
and

e(s, I, @ v) = e(s, ' Q).

Then, by uniqueness, II,, must be isomorphic to A, and II/, to \". Now applying

Theorem 4.1 of [He3|, we get
1—s A x \Y) L1 —s,pu’ ou)
L(s, A x X) Ls,p@ )
Suppose p’ is not of the form u ® v, for a quasi-character v. Then L(s, u ® u') and
L(1 —s,1Y ® i/”) are both 1. In this case, A’ cannot be a character twist of A
either, as u (resp. p') is functorially associated to A (resp. X’). Then one sees by
Jacquet-Shalika ([JS2]) that the corresponding L—factors are also 1. So, to prove

Proposition 4.2, we may assume that p/ ~ p® v and M ~ XA ® v, for some v. Then
we have the factorizations

L(s,ps ') = L(s, Sym?(u) @ v) L(s, )

L
(2 x W)L = (s u o)

and

L(s, A x X') = L(s,Sym*(\) ® v)L(s,wv),
where Sym?()\) is the representation of GL(3, K) associated to \ by the symmetric
square lifting (cf. [GJ]), and w the central character of \. Since p is associated
to A, it follows that Sym?(u) is associated to Sym?()\), and so we get the equality
of L(s,p ® p') = L(s,A\ x X'). Similarly for their contragredients. This proves
Proposition 4.2 in this (n = m = 2) case, and hence also Proposition 4.1.

Next suppose (n, m) = (4,2). Then, since X satisfies (R(E)), p = (3, must be, by
an earlier argument, induced by an irreducible @ of Gal(E/K), for some quadratic
extension K of E. Clearly, K must be subfield of L, and so must correspond, by
construction, to a quadratic extension N of k contained in M} in other words, there
is a place w of N extending u, and lying below u/, such that N,, = K. Then (8 must
be induced by an irreducible § of Gal(k/N), with §,, = 6. Since § is two-dimensional
and has solvable image, we can apply Langlands and Tunnell once again to get a
cuspidal automorphic representation o of GL(2,Ay) functorially associated to 4.
Then we can conclude that «,, is a supercuspidal representation of GL(2, K') whose
induction to F is isomorphic to A\. Then A is the component of IT at u. Since m = 2,
we already knew that there exists cuspidal IT" with I}, = A'. Applying what was
proved above for the (2,2) case, we get

e(syayy X M) = (5,0 @ ply).
The Proposition then follows (in this case) by using the way the epsilon factors
change under induction, since Ind% () = p and Ind% (o) = \).

Finally, when n = m = 4, we get the same identity of epsilon factors over K,
but with p/; four-dimensional. But then we can apply the (4, 2) case (just proved)
and deduce what we want.
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5. PROOF OF THEOREM A

In this section we will prove the following strengthening of Theorem A:

Theorem A’ Let m,n < 4, and 7, 7" unitary, cuspidal automorphic represen-
tations of GL(n,Ap), GL(m,AF) respectively, which are of symplectic type. If n
or m is 4, assume that, for every place v above 2, the local component at v of the
representation in question is allowable. Then

W(r xa') = 1.
Our proof of theorem A’ depends crucially on the following

Theorem 5.1. Let 7 be a cuspidal automorphic representation of GL(4,Ar) of
symplectic type, and at each v, let o, be the W, -module associated to m, by Prop.
4.1. Assume that for every v above 2, m, is allowable. Then o, is symplectic at
every v.

Theorem 5.1 =—> Theorem A’. If 7 and 7’ are as in the Theorem A’, we can,
by Proposition 4.1, functorially associate at every v, representations o, o, of Wr.
to the local components 7, 7, respectively. These are symplectic by Theorem 5.1.
Setting s = 1/2 in the epsilon factor identity of Prop. 4.2, we get (Vv)

(5.1) W(r, x m,) = W(o, ®0),).
Since we have the product formula W(r x ') = [[, W(m, x @), it suffices to
show that W(m, x 7)) = 1 at each v. So we get what we want by appealing

to the reasoning in section 2 (see the proof of Prop. 2.1). Note that, though we
considered only the representations of W, in section 2, the crucial result (2.1) of
Deligne applies to those of Wl/% as well, as seen by the discussion in section 5.4 of
[Del].

O

Proof of Theorem 5.1. First we need the following

Lemma 4. Let E be a non-archimedean local field of odd residual characteristic,
B a self-dual supercuspidal representation of GL(4, E) of trivial central character,
and T the irreducible 4-dimensional representation of Wg associated to 3 by the
local Langlands correspondence (cf. Prop. 4.1). Suppose T is not symplectic. Then
(3 is allowable.

Proof. Since the local correspondence is compatible with taking contragre-
dients, 7 is self-dual. Moreover, since the central character of 3 is trivial, the
determinant of 7 must be trivial. Thus the image of 7 lands in either Sp(4, C)
or SO(4,C). By hypothesis, we are not in the former case. We may view 7 as a
representation of I'p = Gal(E/E).

Cousider M5(C) as a four dimensional quadratic space under the non-degenerate
symmetric bilinear form B(X,Y) = tr(*XY). Then GO(4,C) identifies with the
group of similitudes of B. Let u(g) denote the similitude factor of g in GO(4, C).
Define GSO(4, C) to be the kernel of the map g — u(g) 2det(g). (Some authors
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write SGO(4) instead of GSO(4).) Then there is a well known short exact sequence
of C-algebraic groups

1 - C* — GL(2,C) x GL(2,C) — GSO(4,C) — 1,

where the map on C* sends ¢ to (tI,¢1I), and the one on GL(2, C)xGL(2, C) sends
(g1, g2) to the similitude (X — *g; Xgo). Viewing this as an exact sequence of trivial
I'g-modules, we get the following (part of the) associated long exact sequence in
cohomology:

Hom(I'g, GL(2,C) x GL(2,C)) — Hom(I'g, GSO(4,C)) — H?*(I'g,C*),

where the left arrow identifies with the tensor product map. But H?(I'g,C*) is
trivial by a theorem of Tate (see [Se] for a proof). Note that SO(4, C) is a subgroup
of GSO(4,C); it is the image of the subgroup of GL(2,C)xGL(2,C) consisting
of (g1,92) such that det(g1)2det(g2)? = 1. So we may view 7 as an element of
Hom(I'g, GSO(4, C)). Then, by Tate’s theorem, we can find 2-dimensional repre-
sentations 7;, j = 1,2, of I'g such that 7 ~ 71 ® 7. (The choice of (71, 72) is not
unique, as we can replace it by (11 ® v, 72 ® v7!), for a character v, but this will
not matter to us.) Since 7 is irreducible, 71 and 7 must be irreducible.

Since the residual characteristic is odd, we know that 7 must be induced by a
(linear) character x of I'k, for a quadratic extension K of E. Then the restriction
of 71, and hence 7, to 'k is reducible. This implies that Sk is not supercuspidal.

O

Remark: We may realize SO(4,C) as a quotient of SL(2, C)xSL(2,C) by {£1}.
But H?(I'g, {£1}) = 2Br(E) is not trivial, and so we cannot hope to write 7 as
T1 ® T2 with 71, 72 of determinant 1, unless W(7) = 1.

Now let 7 be as in the theorem, and fix a place v of F. By Lemma 2 of section
3, it is self-dual. We will see later (cf. Remark following Theorem 5.2) that it
has trivial central character as well. By Lemma 4 we may then assume that =, is
allowable at every finite v. The assertion of Theorem 5.3 will be a consequence, for
v finite, of putting together the following three propositions. The archimedean case
will use a different, but simpler argument.

Proposition 5.1. Suppose v is finite. Then the following are equivalent:

1. o, is symplectic.
2. L(s,A%(0y)) has a pole at s = 0.

Proof.  This is clear when o, is a true representation of the Weil group Wg,, as
A?%(0,) admits a trivial summand iff its L-function has a pole at s = 0. Indeed, if 3
is an irreducible non-trivial summand, then L(s, 5) = 1 if 5 has dimension > 1 or is
ramified of dimension 1; otherwise, there is a non-trivial, unramified quasi-character
v of F} such that L(s, ) = (1—v(w,)Nv~%)~!, which is holomorphic at s = 0. The
converse direction is also clear. (Here w, denotes a uniformizer at v, and Nv the
norm.) By linearity, we are then reduced to treating representations of W, of the
following form: ¢, = B® sp(m), where § is an irreducible, unitary representation
of W, pulled back to W, . (See [De2] for the definition and properties of the
indecomposable module sp(m), which corresponds to the symmetric (m — 1)th
power representation of the standard representation of SL(2, C) and, in the local
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Langlands correspondence, to the Steinberg module of GL(rn, F},).) In such a case,
we have

A*(0,) ~ Sym®(B) ® A*(sp(m)) @ A*(B) ® Sym®(sp(m)).

Since sp(m) is symplectic (resp. orthogonal) iff m is even (resp. odd), we see that
oy is symplectic iff 3 is orthogonal (resp. symplectic) when m is even (resp. odd).
On the other hand, if § is an irreducible summand of 3 ® 3 =Sym?(3) & A2(3), we
have

L(s,6 ®sp(k)) = L(s, 5@ |.|'T),
for any k. Since 4 is unitary, this L-function has a poleat s = 0iff k =1 and § = 1.
The Proposition now follows as any irreducible summand of the tensor square of

sp(m) is of the form sp(k) for some k.
O

Let Li (s, 7, A?) denote the local factor associated to 7, and the exterior square
representation of G = GL(4, C) by the theory of Eisenstein series relative to the
realization of GL(4) as a Levi subgroup of SO(8) ([Sh1]). To be precise, he asso-
ciates a factor (s, m,, A?) to this situation, which occurs naturally in the functional
equation, and one has

Ll(l — 5 7T1\;/a A2)
Ll(sa Ty, A2)

The e;-factor is invertible, and the Li-factors have the usual shape, in particular
having no zeros. It should also be noted that by definition there are no common
factors between the numerator and the denominator. They need not be the root
number and the L-factor appearing in the definition of (s, A%(c,) as dictated by
the parametrization problem, if 7, is not tempered. If v is archimedean, one knows
([Sh5]) that (s, 7wy, A%) equals (s, A%(0y)).

(52) V(S)ﬂ'vaAZ) = 61(3’ 7TU7A2)

Proposition 5.2. Let v be finite. Then the following are equivalent:

1. Ly(s, 7y, A?) has a pole at s = 0.
2. L(s,A?*(0,)) has a pole at s = 0.

Proof.  First consider the case when m, is supercuspidal. Then, since 7, is al-
lowable by hypothesis, we can find, by Prop. 4.1, a quadratic extension K/F, and
a supercuspidal A of GL(2, K) such that 7, is I(\) (local automorphic induction).
Let 7 be the associated irreducible two dimensional Wx-module. Then o, is the
induction of 7 to Wg,. Arguing as in the proof of Proposition 4.2, we can find
an irreducible two dimensional representation « of the Weil group of a quadratic
extenson N/F with local extension K/F, such that 7 is its restriction to Wi. Let
B be the corresponding automorphically induced cuspidal of GL(4, Ap) with local
component m,, corresponding globally to the induction I(«) of & to Wr. Denote by
L(s,A*(I(c))) the (completed) Artin L-function of the exterior square of I(«), and
let Li(s, 3, A?) be the gobal exterior square L-function of 3 considered by Shahidi
([Sh1]). It is known that both these functions have meromorphic continuations and
admit functional equations of the standard type. If f(s),g(s) are two functions
whose quotient is invertible, we will write f(s) = g(s); this is clearly an equivalence
relation. At the places v where the representations are unramified, one knows that
Shahidi’s local factors coincide with the Langlands factors and hence with those of
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A%(I(v)). Moreover, the factors also agree at the archimedean places ([Sh5]). This
leads to the following equivalence:

TT Luts, A2 @) Li(1 — 5,8, A2) = [] Zu(l — 5. A2(I(0) ) La(s, B, A2).

uesS ues
Suppose that v lies in S, for otherwise there is nothing to prove. By Brauer’s
theorem, L(s, A2(I(c))) is a ratio of abelian L-functions, and this allows us to find
a linear character y of Wy such that (i) p, =1, and (ii) Ly (s, A2(I(a)®puy)) = 1,
at each u € S — {v}; for this, we just have to make pu, sufficiently ramified. (We
will, by abuse of notation, use p to denote also the idele class character defined by
class field theory.) One also has the following automorphic analog;:

Lemma 5. (Shahidi) Letu be any finite place. Then there exists a positive number
C = C(u, 8) such that, for every idele class character p whose local component pi,,
is non-quadratic and has conductor larger than C, L1 (s, By ® iy, A%) = 1.

Since this is not in print, we indicate how to prove it. Let p be any idele class
character with pu, non-quadratic. Viewing M =GL(4) as a Levi subgroup of G =
SO(8), Shahidi realizes the exterior square L-function of 8 ® u via the Eisenstein
series on G(Ap) defined by inducing § ® u. We need to analyze the poles of
L1 (5, By ® pas A?). These are contained in the set of poles of the corresponding (lo-
cal) intertwining operator, and this set is empty if the local induced representation
is irreducible, for any unramified twist of m,. By inductivity and the factorization
formula ([Sh3, Sh4]) of Shahidi, we may assume that the inducing representations
are supercuspidal. If wg denotes the longest root in the Weyl group of G modulo
that of M, reducibility can happen only if wo (B, ® i) ~ Bu ® p v, for some unram-
ified character v. (This is a folklore assertion, discussed in [Sh1]; see also [Si], whose
main theorem says that the commuting algebra of the induced representation has
dimension 1 otherwise, leading to irreducibility.) Suppose such an identity holds
for B, ® u, and for B, ® ul,, for a second character y/. Then the criterion above
implies that there exists an unramified character A such that the following holds:

—1 _
Bu = Bu ®/’Lu/’t{u wO(Mulﬂé)A-

In other words, 3, admits a self-twist. Note that, since wq is an involution, it cannot
fix any non-quadratic character. Once we fix u’, we see then that, even with variable
X, there are only a finite number of ramified non-quadratic u, for which this can
happen. We are done by choosing C' to be larger than the conductors of all such

exceptional iy,.
O

Now applying this lemma and the earlier remark dealing with the Galois side,
we can easily find a unitary idele class character p such that

Ly (s, Bu®pta, A?) = Li(s, By @i, A%) = L(s, A*(I(@)®p)u) = L(s, A*(I()®p)y) = 1,
for every u in S — {v}.

Implicit at this point, and later on in similar situations, is the assertion that a
relevant identity of L-factors at an unramified place continues to hold after twisting

by a possibly ramified character. This is known to be true for the functions we
consider.
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Consequently, remembering that 8, = 7, and I(«), = 0, by construction, we
deduce the equivalence
(5.3)
Ly (s, 7y ® fio A2)L(1 -5 AQ(UZ ®m,)) = L(s, A2(UU ® pp)) L1 (1 — s, 771\;/ & Iy A2)'

None of these L-factors can have zeros. Moreover, the poles of L(1—s, A%(o) ®7,))
all occur on the line R(s) = 1, since the corresponding inverse roots have absolute
value 1. We do not have such a strong result in general on the automorphic side,
but for supercuspidals we do by Shahidi ([Sh1]). (In fact, all we need is that
Li(1 —s,m/ @@,, A?) has no pole at s = 0, which works in general, see loc. cit.)
The assertion of Proposition 5.2 thus follows for 7, supercuspidal.

Next suppose that m, is not supercuspidal. Then one knows that there is a
maximal parabolic subgroup P’ of M =GL(4) with Levi M’ =GL(a)xGL(b), a >
b>1,a+b =4, and a generic representation 1 = n; @1z of M (F,) such that =, is a
subrepresentation of the representation of M (F,) parabolically induced by n. (m, is
the unique generic constituent of this induced module.) An important factorization
result due to Shahidi (see [Sh4], last formula on p.284) gives the following identity:

(5.4) V(s mo, A%) = (s, m1, A*)v(s,m2, A%)y(s,m1 % 12),

where the first two factors on the right are the ones associated to the exterior
square representations of GL(a,C) and GL(b, C) respectively, and the last one is
the Rankin-Selberg factor on GL(a)xGL(b). (If b = 1, the middle factor is taken
to be 1. It may also be useful to note that there may be cancellations, up to
invertible factors, in this deceptively uniform formula when 7, is not the full induced
representation, for example when it is the Steinberg module.)

Let 71 (resp. 72) be the representation of W, of dimension a (resp. b) associated
to m1 (resp. m2) by the local Langlands correspondence, which we can apply as
a,b < 3. Then it is easy to see that there is a similar factorization on the Galois
side, with m, replaced by o, and n; by 75, j = 1, 2. Note that we have (s, m1 xn2) =
(s, 71 ® T2) because the epsilon and L-factors of these pairs agree. (For this we
use [Hel] and Prop. 4.2, which we can apply as a + b = 4.) On the other hand,
the exterior square representation of GL(3) identifies with the map g — g(detg)*.
Consequently, if a = 3, then we have

7(85 s A2) = ’Y(S’ 1 ® wfl) = 7(85 1 ® wfl) = 7(8’ A2(T1)),
where w; denotes the central character of n;, identified with the determinant of 7;.
When a = b = 2, L(s, n;, A?) is none other than L(s,w;), agreeing with L(s, A%(;)).
One also knows by the Rankin-Selberg theory that L(s,n1 x n2) = L(s, 71 ® T2).
So in either case we get the equality of (s, 7y, A?) and ~(s, A?(¢,)). This once
again leads to the equivalence (5.3), and the remainder of the argument is as in the

supercuspidal case.
O

The next step is to make use of the following

Theorem 5.2. (Jacquet, Piatetski-Shapiro and Shalika) Let 3 be a cuspidal au-
tomorphic representation such that, for some unitary idele class character v and
a finite set S of places, L°(s,,A*> @ v™') has a pole at s = 1. Then there exists
a globally generic, cuspidal automorphic representation I1 of GSp(4, Ar) of central
character v. Moreover, one has the following properties:
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1. At every unramified place v, the Langlands classes A,(I1) and A,(w) agree
under the natural embedding r4 : L GSp(4) = GSp(4,C) — GL(4,C).

2. At every archimedean place v, the representation of Wg, with values in GSp(4, C)
associated to I, by Langlands agrees with o, under ry.

This beautiful result is unfortunately unpublished still, though a key step is
achieved in [JS1] and the strategy is sketched in [So]. Efforts are under way to
remedy this situation, and we ask the reader’s indulgence on this part. (It should
perhaps be mentioned that some people, including one of the authors, have gone
through the details of proof.)

We will apply this theorem to 7 and its twists. One immediate consequence of
this result is that o, is symplectic if v is archimedean. Indeed, o, lands in GSp(4, C)
by the above, and moreover, its polarization identifies, under the archimedean Lang-
lands correspondence, with the central character of II,,, which is trivial as v = 1 for
[ = mw. Thus we may, and we will, assume henceforth that v is finite.

Remark: Let v be a finite place where 7 is unramified. Since 7 is of symplectic
type, the central character of II is trivial. Thus we see that the Langlands class
of 7, is, thanks to the Theorem 5.2, represented by a diagonal matrix of the form
[ay, by, ay t, b, 1], which has determinant 1; so 7, has trivial central character. Now,
if w is the central character of m, it is an idele class character which is trivial at
almost all places, hence must be trivial by the “strong multiplicity one” for GL(1)
due to Hecke. (In fact, Hecke’s theorem says that w is trivial if w, = 1 for all v in

a set of primes of density > %)

Now let r5 denote the natural five dimensional representation of GSp(4, C).
Then, as is well known, we have the identity

(5.5) Aory = r5D N,

where ) is the polarization (symplectic similitude) character. Denote by L1 (s, IT, r5)
the global L-function associated to (II, 5) by Shahidi’s theory, by using the embed-
ding of GSp(4) in GSp(6). Again, it has meromorphic continuation and functional
equation, with the archimedean and unramified factors agreeing with the recipe of
Langlands. (This L-function, some times called the standard L-function of GSp(4),
can also be approached via the integral representations of Rallis and Piatetski-
Shapiro [PS-R], but we do not seem to have good information at the ramified
places.)

Let u be a unitary idele class character. Apply Theorem 5.2 with f = 7 ® p,
and write the corresponding representation of GSp(4)/F as II(u), which has central
character 2. Appealing to (5.5), we then get the following identity at every finite
place u (with norm Nu) where © ® p is unramified:

(5.6) Ly (s, Tu ® ptu; A?) = La (s, T(pt)u, 7s) L(s, pig,)-

Such an identity also holds at archimedean places. Thus, in view of Propositions
5.1 and 5.2, Theorem 5.1 (and hence Theorem A’) will follow once we prove the
following

Proposition 5.3. Write Il = I1(1). Then L1(s, 7wy, A?) has a pole at s = 0.
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Proof. For any pu, associate the following global L-function:

L (s, 11(n)) = La(s, 1(u), 5)L(s, u*).

Then it has a functional equation, with almost all the factors agreeing with those
of L(s, 7 ® p, A%), which has its own functional equation. Noting that 7 and II are
self-dual, this leads to the equivalence

(5.7)
HLﬁ(SaH(N)u)Ll(l *Saﬂu®ﬂuaA2) = H L6(1 787H(ﬂ))L1(8:ﬂ'u®p‘uaA2)a
ues ucS

where S is the set of finite places where 7 ® p is ramified.

We may suppose that = is ramified at v, as otherwise the assertion is clear.
Arguing as in Lemma 5, we can find a unitary idele class character pu, trivial at
v, such that, at each u in S — {v}, u, is sufficiently ramified that the factors
Ll(sa Ty @ fhu, A2)a Ll(sa Ty & Ty, A2)a Ll(s: H(,u)ua T5)a Ll(s: H(E)’ T5)a L(Sa ,LL%),
and L(s,i2) are all 1. Since y, = 1, this leads to the equivalence
(5.8)

Ll(sa Hva T5)L(55 lv)Ll(l 5, My, A2) = Ll(l -5 Ha T5)L(1 -5 lv)Ll(Sa Ty AZ)

Since L(s,1,) = (1 — (Nv)~*)71, it has a unique pole at s = 0. So the right
hand side (of (5.8)) also has a pole at s = 0, which could not be accounted for by
L(1—s,1,). Furthermore, it is known that at any place u, L; (s, I1,, r5) has no pole
at s = 1. (This is because its poles must come from those of the corresponding
intertwining operator, which by [Shl], Theorem 5.2, is holomorphic in R(s) > 1.)
So the pole at s = 0 of the expression on the right of (5.8) must come from that of
Ll (55 Ty, A2)

O

6. PROOF OF THEOREM B

Let 7 be a cuspidal automorphic representation of GL(2,Ar) of trivial central
character. Then 7 is self-dual and of symplectic type. Let L(s,m,Sym?) be the
L-function associated ([GJ]) to the symmetric square lift Sym?(r), which is an
automorphic representation of GL(3, Ar). Then one knows that there is a factor-
ization

(6.1) L(s,m x ) = L(s,m,Sym?)L(s, 1),

where L(s, 1) denotes the Dedekind Zeta function of F' with the archimedean factors

added. It should be noted that from the published proofs, one gets this factorization

at almost all places. But then we can use the fact that both sides have functional

equations, and that (by using [JS3]), given any place u, we can twist by a highly

ramified character to trivialize the L and e-factors at u. The exact identity (6.1)

then follows by checking it at the ramified places, one by one, as in sections 4, 5.
Thus we get,

W (r,Sym?) = W(x x 7)/W(1).

It is well known that W (1) = 1, and moreover, W(m x ) = 1 by Theorem A. This
proves the triviality of W (r, Sym?).
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Now consider the symmetric fourth power root number of 7. One defines the
symmetric fourth power L-function as follows:

L(s,m,Sym*) = L(s, Sym?(n) x Sym?(n))/L(s, Sym?(w))L(s,1).

We have just seen that W (Sym?(r)) = W(1) = 1. So the desired triviality of
W (m, Sym®*) will result from the following

Proposition 6.1. W (Sym?(r) x Sym?(r)) = 1.

Note that this cannot be proved by appealing to Theorem A as Sym?(7) is not
of symplectic type.

Proof. At any place v, let o, denote the representation of W ~associated to
7, by the local Langlands correspondence. It has determinant 1 as « has trivial
central character. Under the local correspondence for GL(3), Sym?(o,) is associated
to Sym?(m,). We claim that, at any place v, we have

(6.2) L(s, Sym?(m,) x Sym?(7,)) = L(s,Sym?(o,) ® Sym?* (o))

and
€(s, Sym2(ﬂ-v) X Sym2(ﬂ-v)) = e(s, Sme(av) ® SyIDQ(Uv))'
Indeed, applying Theorem 4.1 of [He], we get the equality of the associated gamma
factors. Then, twisting by a highly ramified character, and arguing as in section
4.2 of loc. cit., we get the assertion of the claim.
Consequently, it suffices to prove that for each v,

(6.3) W (Sym®(o,) ® Sym?*(0,)) = 1.
Write 7, for Sym?(o,) ® Sym?(o,)). Then 7, is the composite
Wg — SL(2,C) x SL(2,C) — GL(9,C),

where the first arrow is (o, 0y), and the second arrow, r say, is the composition
of taking the symmetric square of each factor, landing in GL(3,C)x GL(3,C), and
then taking the tensor product. Since Sym?(o,) is orthogonal, so is its tensor
square. Thus r takes values in O(9,C). Since SL(2,C)x SL(2,C) is simply con-
nected, we may apply the discussion following Lemma 1 of section 2 and obtain
(6.3).

O
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