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1 Introduction

Let F' be a number field, and let © be a cuspidal, unitary automorphic representa-
tion of GL(n,Ar). For almost all finite places v, let A,(7) denote the associated
(Langlands) conjugacy class in GL(n, C), which is represented by a diagonal matrix
(a1 4, -y Qo). The trace of this class is denoted a,. The general Ramanujan (or pu-
rity) conjecture predicts that each aj, has absolute value 1. This is clearly true for
n = 1, and a series of deep theorems asserts that it holds for (n = 2, F' totally real)
IF 7 corresponds to a holomorphic eigenform ([D],[DS],[BL],[C],[W], [T1], [BR]). On
the other hand, one knows unconditionally that |a;,| is bounded by (Nv)'/2 for any
n ([JS]; see also [Sh1]), in fact (strictly) by (Nv)Y/® for n = 2 and any F' ([Sh 1,2]).
For GL(2)/Q, one has the still stronger bound |a;,| < (Nv)*/?® ([BDHIJ; see also
[LRS]). It is expected that when the symmetric fourth power L—functions of GL(2)
are well understood, and it seems to be within range to do so, then one would be
able to replace 5/28 by 1/6. Striking and deep though these results are, we are still
far from the conjecture.

In this paper we certainly do not prove the conjecture, but we try to approach the
problem from another direction. Our object is to understand better, for GL(2), the
structure of the set of primes v in F' where the conjecture does hold. For n > 3, we still
get information on the trace a,, but this is weaker than knowing the conjecture. For
any set X of primes, denote by §(X) (resp. §(X)) the lower (resp. upper) Dirichlet
density (see below) of X, so that §(X) < §(X), with equality holding iff X has a
density. Our main result is

THEOREM A  For every cuspidal, unitary automorphic representation m of
GL(n,Ar), let S(m) denote the set of primes where |a,| < n.
If n = 2, we have

6(S(m)) = 9/10.
Ifn >3, then §(S(m)) > 1 —1/n?



One sees easily that, for GL(2), S(m) is precisely the set of primes where the
Ramanujan conjecture holds (cf. Remark 4.10).

Note that our theorem applies in particular to any (cuspidal) Maass form f on
the upper half plane H relative to a congruence subgroup I' C SL(2,Z), which is
an eigenfunction for Hecke operators, and to eigenforms over arbitrary F' which are
conjecturally associated to elliptic curves over F.

Using base change (|[AC]), one can in fact establish the following refinement of our
result: Let E/F be a finite solvable Galois extension with Galois group G, and let X
be the set of primes (in /) which split completely in £. Then §(S(7) N X) is greater
than or equal to 9/10|G| (resp. (n? — 1)/n?|G|) for GL(2) (resp. GL(n), n > 3).

The surprise for us was not that the conjecture is provable for a positive proportion
of primes (for GL(2)), but that it can be shown to hold for such a high proportion.
The proof is given in section 4 after some preliminaries. It uses some known results
on the Rankin-Selberg and symmetric power L—functions, along with the properties
of isobaric sums of automorphic representations, and the key step involves a careful
study of the behavior near s = 1 of suitable incomplete Euler products over infinite
sets of primes. A consequence of the method is that, each time there is progress in
understanding some symmmetric m—th power L—function, then the density of S()
will rise accordingly, approaching 1 for m large.

Our method in fact gives, for any fixed ¢, some information on when the upper
(resp. lower) density of the set S(m,t) = {v||a,| < t} is strictly less than 1 (resp.
greater than 0). This leads to the following

THEOREM B Let m be a unitary, cuspidal automorphic representation of
GL(n,Ar). Assume that for all but a finite number of v, the numbers «a;, lie in a
fixed disk in C. Fix an € > 0.

(a) Ifn =2, there is a set S of primes of positive lower density such that
la,] > V2 —¢, YveSs.

(b) Let n be arbitrary, and 7 self-dual. Then, for every r € Q, there are sets
S; = S;j(r), j = 1,2, of primes of positive lower density such that

a, € (—(r+Vr2+4)/2—¢, (—r+Vr?+4)/2+¢), Vve Sy

and

ay & [—(r+vVr24+4)/2+¢€ (—r+vVr2+4)/2 —¢, Yve 9.

This is consistent with the general Sato-Tate conjecture ([L2], [Se]) and, for GL(2),
it provides a mild complement to an elegant result of Serre ([Sh2], appendix). To be

2



precise, let n = 2, I' = Q, and 7 cuspidal of trivial central character with 7. in the
discrete series, i.e., defined by a holomorphic newform f (on the upper half plane H)
of weight 2k > 2, level N > 1, and trivial character. If {c,} denotes the system of
Hecke eigenvalues of f, then a, = c,p~**~1/2 and thanks to Deligne ([D]), we may
write a,, for every p not dividing N, as 2cosf, € [—2, 2], for some 6, € [0, 7]. Suppose
f is not monomial, i.e., not defined by a Hecke character of a quadratic extension of
Q. Then the Sato-Tate conjecture asserts that the angles 0, are uniformly distributed
relative to the measure %sm20d0. A consequence of this conjecture is that given any
angular sector there is a set S of primes of positive density such that 6, lies in this
sector for all p in S. Serre’s theorem asserts that, for every ¢ > 0, there exist sets
ST and S~ of primes of positive lower density such that a, is greater (resp. less)
than 2cos(2m/7) — € (resp. —2cos(27w/7) + €), for all p in ST (resp. S7). (Note that
2c08(27/T) = 1.24697961... < /2 = 2cos(n/4) = 1.414...) If the symmetric fifth
power L—function of 7 is invertible at s = 1, then either method will lead to the
same result (see Prop. 5.6), i.e., that there are sets ST and S~ of primes of positive
lower density such that a, is greater (resp. less) than v/2 — ¢ (resp. —v/2 + ¢), for all
pin ST (resp. S7).

Given any unitary, cuspidal automorphic representation m of GL(2, Ar), one can
consider the infinite family of symmetric power L—functions L(s,,sym™), n > 0,
whose Fuler factors at unramified primes v are given by

Ly(s,m,sym") = (1 —sym"(A,(7))(Nv) ).

As it was pointed out by Langlands in 1967 ([L1]), the Ramanujan conjecture for 7 is
equivalent to the absolute convergence of each (and every) L(s, 7, sym”) in R(s) > 1.

THEOREM C Let m be a unitary, cuspidal automorphic representation of
GL(2,Ar). Fix any € > 0, and an integer n > 1. Then there exists a set S = S(¢, m,n)
of primes of density 1 such that the incomplete Euler product Lg(s,m,sym") con-
verges in {R(s) > 1+ €}.

All our results in this paper remain valid over function fields (in one variable)
over a finite field. But one knows quite a bit for function fields due to the works of
Drinfeld, Kazhdan, Flicker, Laumon and Lafforgue (see [Lf]); the general Ramanujan
conjecture is known to be true if n is 2 or odd, for example. It should also be remarked
that for special classes of (essentially) self-dual representations m of GL(n)/Q ([C])
or GL(2)/Q(vD), D < 0 ([T]), with regular infinity type, the Ramanujan bound is
known. But all these representations, just like the holomorphic modular forms over
totally real fields, are understood via arithmetical geometry, directly or by cleverly
using (in addition) functoriality and/or congruences, and they ultimately rely on
Deligne’s proof of the Weil conjectures. The main aim of this paper is to make
(modest) progress on those 7w for which no geometric recourse appears possible.
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I would like to thank Freydoon Shahidi for his interest in this project since its
inception and for helpful conversations, David Roberts for a useful discussion of Sato-
Tate measures, and J.-P. Serre for his comments on an earlier version. Thanks are
also due to the National Science Foundation for supporting this work through the
grant DMS-9501151. One can ask for analogs of these results for natural density and,
more importantly, ask for effective versions, and these questions will be addressed in
a sequel.

2 Two basic lemmas

First let us recall the basic notions of density for sets of primes. We will fix a
number field F' in what follows, and let P denote a prime ideal in the ring of integers
Op with norm N(P).

Definition 1.1. Let S be a set of primes in F. Then the upper (resp. lower)
Dirichlet density of S is given by

_ - N(P)~
5(5) = Tm,_ps — %
(resp.
i _ Zpes N(P)™?
Q(S) - h_nls—&'*‘ log(s _ 1) )

One says that S has a (Dirichlet) density, denoted 6(S), when the upper and lower
densities are equal. For example, when S is the set of all but a finite number of
primes, it has a density with §(S) = 1. For general S, one knows that

0 <4(5) <4(9) < 1.

It is helpful to note that, if X = SUT is a (disjoint) partition of a set of primes, then
one has

(1.2)

Let D* denote the set of all Dirichlet series L(s), absolutely convergesnt in R(s) >
1 with an Euler product
L(s) = [] Lr(s),
P

where
Lp(s) = 1+ z_:la(Pm)N(P)*ms.

Here P runs over all the (finite) primes in F'. Observe that D* is a group. Indeed,
the group operaion is just multiplication of Euler products (as above), and the unit
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element is simply 1 (with a(P™) = 0 for all P and m > 0). More importantly, the
inverse of any L(s) is none other than [[, Lp(s)™!, which is in D* since each of the
local factors Lp(s) has 1 as the constant term and is hence invertible, and the global
product analytic and non-zero in {R(s) > 1}.

Let L(s) be in D*. Then for every set S of primes (in /), we associate an incomplete

Euler product by
Ls(S) = H LP(S).
Pes
We will denote by L(s) the Euler product [[pgs Lp(s). Clearly, we may view Lg(s)
and L%(s) as elements of D*.

Let log denote the single valued branch of the logarithm in R(s) > 0, normalized
to be real valued on the positive real line.

We will now introduce the following two hypotheses, the first of which will (turn
out to) be satisfied by all the L—functions we will study (in the ensuing sections),
and the second by most.

(H1)  The function
logL(s)
log(s — 1)’
which is well defined in ®(s) > 1, has finite upper and lower limits, denoted \(L) and
A(L) respectively, as s approaches 1 from the right on the real line.

(H2)

AML,s) :=s —

= Sea(P)N(P)
A(L) = lim,_; log(s—1)

and similarly for A(L), with lim replaced by lim.

These two hypotheses are satisfied, for example, by the incomplete Dedekind Zeta
function relative to a set S of primes, namely

Crs(s) = [JTA=N(P) )" = JL(3 N(P) ™).

Pes PeS m>0

In this case, loglps(s) = Ypes Zms1 N(P)™™ (in R(s) > 1), and A(Crs) (resp.
M(Crs)) equals §(S) (resp. §(9)).

Note also that the set of L(s) in D* satisfying either of the hypotheses is a sub-
group.

Lemma 1.3.  Let L(s) € D* satisfy the hypotheses (Hy) and (H;). Assume
further that the coefficients {a(P)} all lie inside a fixed disk in C. Fix an € > 0. Then
there exists sets S,'T" of primes such that

a(P) < NL)+e¢, VYPeES,
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and
a(P) > ML) —¢, VPeT.

We can do much better (in one direction) when L(s) satisfies the following posi-
tivity hypothesis:

(P) logL(s) defines (in R(s) > 1) a Dirichlet series with non-negative coeficients.

Lemma 1.5. Let L(s) € D* satisfy the hypotheses (H1) and (P). Fix a positive
real number t. Then we have

S({Pla(p) 2 1)) < 22

In particular, if t > (L), then the set
S(t) := {Pla(P) <t}

has positive lower density.

It is important to note that in this lemma, we are not assuming that the coefficients
all lie inside a fixed disk, and the hypothesis (H3) is not needed.

Proof of Lemmas 1.3 and 1.5.  Let L(s) € D* satisfy (H1) and (Hs). Let ¢ be
a real number, and suppose that a(P) > t, for all P in a set X of primes of upper
density 1. Then we obtain (using (H;) and (Hs)) the following:

—>ap a(P)N(P)™* > Tm —t Y pex N(P)™*

5— = t.
log(s — 1) - v log(s — 1)

X(L) > limg g+

Note that the middle step is justified as X has (upper) density 1. Indeed, since all
the a(P) are all in a fixed disk of radius R, we have the following, with S denoting
the complement of X:

— Ypesa(P)N(P)™
log(s — 1)

RY pes N(P)™* _

lim,_,
img_q+ |R( “log(s — 1)

) | < ms—>1+

Similarly, the contribution from the imaginary part of the sum over S also vanishes.
Thus if ¢t > A(L), the set X' must have lower density < 1; hence S has upper
density > 0. Taking t = A + ¢, we get the first assertion of Lemma 1.3.

Suppose a(P) < t, for some ¢, for all P in aset Y of lower density 1. Then, arguing
as above, taking lim instead of lim, we see that A(L) < t. Soif t = A\(L) —¢, Y cannot
have lower density 1; hence its complement, say T', has positive upper density. This
finishes the proof of Lemma 1.3.



Now assume that L(s) satisfies H; and (P), but without the hypothesis that the
coefficients are all in a fixed disk. (We also do not assume that 7 satisfies (H2).)
For any real number ¢, let X = X(¢) denote (as above) the set of primes P where
a(P) > t. Then we have (by positivity)

- — Y ap a(P)N(P)~*

S —t N(P)
XL) > Tim,_+ Zrex N(P)

> Tim,_, = t6(X).
log(s — 1) = ot log(s — 1) (X)

Here the middle step is justified as the coefficients a(P) are non-negative. Thus we

get 6(X) < @, as asserted. Done.

3 Proof of Theorem C

First we will establish a general result for GL(n), and then specialize to GL(2) to
get what we want. Recall that given cuspidal automorphic representations mq, ..., 7,
of GL(ny, AFr), ..., GL(n,, Ar), for some positive integers ny, ..., n,, one can form their
isobaric sum ([L], [JS], [HR]) 7 := 7 @8...87,, which is an automorphic representation
of GL(n, AF), with n = n; + ... + n,, such that at every unramified place v, one has

ay(m) = ay(m) + ... + ay(m,).

Lemma 3.1. Let m be a unitary, isobaric automorphic representation of
GL(n, Ar) with coefficients a(P) = ap(m). Fix t > 0. Then the set of primes P
such that |a(P)| > N(P)" has density zero.

Proof.  Put
L(s) = L(s,m x7),
where the function on the right is the Rankin-Selberg L—function attached to the
pair (7, 7) ([JPSS], [Sh1]). One knows (see [HR]) that logL(s) is of positive type, i.e.,
it has non-negative coefficients as a Dirichlet series. One gets the following inequality
for any set S of primes (for all real s > 1)

(3.2) logl(s) 2 3 a(PIPN(P)™

Now suppose S has upper density a > 0, and that, for some ¢t > 0, a(P) > N(P)" for
all P in S. Then we obtain, from (3.2),

(3.3) logL(s) > Y N(P)*.
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Since L(s) has an Euler product and is hence invertible in {{(s) > 1}, the left hand
side of (3.3) remains finite as one takes the lim sup as s goes to 1+ 2¢. But the right

hand side approaches a log(ﬁ), a contradiction (as a > 0).
QED.

Now we show how this lemma implies Theorem C. Indeed, let  be a unitary, cus-
pidal automorphic representation of GL(2, Ar) of central character w and unramified
conjugacy classes A,(m) = [aw, By, so that a,(7) = a, + G, and wy(wy,) = Py,
where w, is a uniformizer at v. For any n > 1, we have

2j—n

Ay(m,sym") = [a; wv(wv)”*j}"

j=0-

Consequently, if X denotes the set of places which are archimedean or ramified (for
7), we have (in R(s) > 1)

(3.4) logLX (s, m,sym™) = > Y aym(m, sym™)m (Nv) ™,

m>1ogX

where, for every v ¢ X and m > 1,

n

aym (T, 85ym") = Zavm@j_”)wv(wv)m("_j).

J=0

Since w is unitary, the assertion (of Theorem C) will then follow if we show that,
for any ¢ > 0, we can find a set S of density 1 such that

(3.5) (Nv)™™ < ay| < (Nv)'/™

This bound on a,, is implied by the bound |a,(7)| < 2(Nv)¥/". But the set T of finite
places v where |a,(m)| > 2(Nv)"/™ has density zero. So we are done by choosing S to

be the complement of 7.
QED.

4 Proof of Theorem A

Let n be an arbitrary unitary, isobaric automorphic representation of GL(n, Ap).
Set

(1) L(s) = L(s,n X 7).
We have seen that L(s) satisfies (H1) and (P). Suppose
(42) n = EE‘;:lm]'ﬂ-jv
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where each 7; is cuspidal. Then one knows (cf. [JS |) that
(4.3) ML) = ML) = Y_m?.
j=1

Put
T(n,t) = {vllau(n)] = t}.
Then, since a,(n x 7) = |a,(n)|?, we have (by Lemma 1.5)

(1.4) 5(T(,1)) < }zm

First let n be cuspidal, and take ¢ = n. Then we get 6(T(n,n)) < 1/n%. Thus the
complement of T'(n, n) has lower density greater than or equal to 1—1/n?. This proves
the assertion of Theorem A for n > 3.

Now let  be a (unitary) cuspidal automorphic representation of GL(2, Ar) with
coefficients a, and central character w. By a theorem of Gelbart and Jacquet ([GJ]),
there exists an isobaric automorphic representation Ad(7) of GL(3, Ar) such that

Ay(Ad* (7)) = sym*(Ay (7)) @ w ()
at every unramified place v. Write A,(7) = [ay, By]. Then

(4.5) ao(Ad(7)) = aw/Bo + fo/aw + 1.

Claim 4.6. Let v be a finite place where 7, is unramified. Suppose |a,| > 2.
Then «, /3, is a positive real number and, moreover,

apy(Ad(m)) = a2w(w,)™" — 1.

Indeed, since m, is unitary, we have the equality {a,, 3,} = {a,*, 3,1} (as sets).

So, either @, = a; !, in which case |a,| < 2, or @, = 3;!, in which case a, /@, equals
w(w,) and thus has absolute value 1. If |a,| = 2, then it is easy to see that (in either
case) a, = [, = =1, and the claim evidently holds. So we may assume that |a,| > 2,
and that we are in the latter case. If we write oy, = re?, » > 0, then we must have

w(w,) = €2 and (B, = r~te?. The claim follows.

If 7 is asssociated to an idele class character of a quadratic extension of F, then
one knows that 7 satisfies the Ramanujan conjecture. Hence we may, and we will,
assume that we are not in this case, so that, by [GJ], Ad(n) is cuspidal.

Put

(4.7) n = m[l] 8 kAd(n),
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where m, k are non-negative integers to be (suitably) chosen below, and [1] is the
trivial representation of GL(1, Ar). Note that a,(n) = m + ka, ().

Lemma 4.8. Let v be a prime in T'(7, 2). Then v lies in T'(n, m + 3k).

Proof. Let v belong to T'(m,2). Using the unitarity of w, we get |a?w(w@,)™| =
la,|? > 4. Thus, by claim 4.6,

lau(Ad()) + 1] > 4.

Since by that same claim, a,(Ad(7)) is a positive real number, it must be > 3. The

Lemma now follows by using (4.7).
QED.

Combining this lemma with (4.4), we get

_ m2 —|—l€2
(4.9) 3(T(r,2)) < g

This holds for every choice of (non-negative) pairs (m, k). To obtain the best possible
bound, we need to minimize the right hand side. It may be verified that the minimum
occurs when k = 3m, yielding

T (m,2)) < 1/10.
This completes the proof of Theorem A.

Remark 4.10.  When n = 2, S(m) is precisely the set of primes v where the
Ramanujan conjecture holds. To see this, write A, as [a,, 3], and note that the
unitarity of the central character allows us to write a, = te?, 3, = t='e?’, for some
t e R%, 0,0 € R. Setting ¢ = 0 — 6, we get |a,|* = t*4+t72+2cos(¢). So, if |a,| < 2,
we obtain ¢? 4+ ¢~2 < 2, which forces ¢ (and |a,| and |3,]) to be 1.

5 Proof of Theorem B

Let 7 be a unitary, cuspidal, self-dual automorphic representation of GL(n, Ag),
n > 2, such that the inverse roots o, lie in a fixed disk in C, for all v outside a finite
set X of places containing the archimedean and ramified places (for 7). Let £* denote
the subgroup of D* generated by the following L—series: (i) L (s, 7), (ii) LX (s, 7 x ),
and (when n = 2) (iii) LX (s, ,sym*), k < 5. Then, by the results of Jacquet, Shalika
and Piatetski-Shapiro ([JPSS], [JS]) for (i), (ii), and Shahidi ([Sh1,2]]) for (ii), (iii), it
is immediate that every element L(s) of £* satisfies (H1), in fact with A(L) = A(L);
call it A(L). It also satisfies (H3) by our assumption on the |a;,|.
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Let m, k € Z, with k # 0. Put
(5.1) L(s) = LX(s,m)"LX(s,m x m)* € L*.

Then ML) = k, and a,(L) = ma,(n) + ka,(7)% Putting r = m/k and applying

Lemma 1.3, we get the existence of sets S;, j = 1,2, of primes with §(51), 6(S2)
positive, such that
a(m)? +ra,(r) < 1+¢, VYPES,

and
(5.2) ap(m)? +ra,(r) > 1 —¢, VP ES,.

Part (b) of the Theorem B follows easily.

It remains to prove part (a). From now on, let n = 2. We may, and we will,
assume that 7 is not associated to an idele class character of a quadratic extension
of F. Recall that we may write

a,(m) = e?(t+171), t,p € R, with w(w,) = e*?,

where w is the central character of w. Let us now apply the assertion of part (b) to
Ad(r), which is a self-dual, cuspidal automorphic representation of GL(3, Ar). We
get, for all € > 0, and for every r € Q, a set S (= S2) of primes of positive upper
density such that

(5.3) t+t™) ¢ l—(r+Vr2+4)/2+€, 1+ (—r+Vr2+4)/2—-¢€], YweS.

Here we have used the fact that a,(Ad(7)) = w,(@,)  a,(7)? — 1. If we choose r to
be greater than 3¢’, then 1 — (7 + /72 + 4)/2+ €’ is negative, and thus (5.3) simplifies
as

(5.4) lay(m)|? > 1+ (=r+vVr2+4)/2—-¢€, Yoves.

Now for any € > 0, we can choose ¢ and rational number r > 3¢’ such that (—r +
V1?2 +4)/2 —€ > 1 —e¢. Thus part (a) of Theorem B follows.
QED.

Remark 5.5 Note that the assertion concerning cusp forms 7 on GL(2)/F (in
Theorem B) is proved in effect by consideration of the L—series

LX (s, 7, sym*)*L* (s, 7, sym?)°Ca (s)°,

for suitable integers a, b, c. Instead of exploiting the automorphy of sym?(7) ([GJ]), we
can also directly use the results of Shahidi ([Sh 1,2]) and arrive at the same conclusion.
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We end this section clarifying certain points at the suggestion of Shahidi, but there
will be no new results from here on. Using the method above, one can also recover
some results of Serre in the appendix of [Sh2]. For example, if we let r = —8/3
and take Sy as in (5.2) applied to Ad(rw), we will get

2
lay(m)| > \/;—e, Vo e Sy,

which gives, as Serre remarks, the best possible lower bound with current knowledge.
Moreover, we can prove (in the same vein) the following result, which is immediate
from the discussion in [Sh2], appendix:

Proposition 5.6.  Let m be a non-monomial, self-dual, cuspidal automorphic
representation of GL(2, Ar) with coefficients {a,} such that, for a large enough finite
set X of primes in F, the L—series LX (s, 7,sym’) is invertible at s = 1. Fiz ¢ > 0.
Then there are sets ST and S~ of primes of positive lower (Dirichlet) density such
that

a, > V2—¢ YveSt,

and

ay < —V2+¢ Yves.

Let us note that Shahidi has proved the meromorphic continuation of L* (s, 7, sym®)
and has shown that, at s = 1, it is either invertible or has a simple pole or zero.

We will now show how to prove the first part of Prop. 5.6. The second part follows
by an obvious variant of the argument, and is left to the reader. The basic idea is to
find an L(s) in the group G* < D* generated by {L*(s,7,sym’) |1 < j < 5} such
that the coefficients b, of L(s) are given by the values at a, of an integral quintic
polynomial f(z) with positive leading term, having a unique real root b arbitrarily
close to /2. Then by the assumption on LX (s, m,sym®) and the known results on the
lower symmetric power L—functions (c¢f. [Sh 1,2]), L(s) is well defined and invertible
at s = 1, and the assertion follows by applying Lemma 1.3.

It suffices to find a monic polynomial f(z) with rational coefficients satisfying
the conditions above. For each j > 1, let T} denote the polynomial (in z) giving
a,(m,sym?), so that Ty = =, Ty = 2> — 1, Ty = 2% — 22, Ty = z* — 32? + 1, and
Ts = 2° — 42% + 3z. Put

f(l’) = T5 + (Z + U2 + 4)T3 + (2(2 + u2) —5H— UQZ)Tl + y(T4 + (u2 + 1)T2),

where y, z, u are non-zero rational numbers to be chosen. (It is clear that an integral
multiple of f(z) gives the coefficients of some L(s) € G*, for any choice of (y, z,u).)
Then we have

fla) = (& +u*)(2® + za + y(2* - 2)).
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Choose non-zero rational numbers a,t and set

y=2a—>b, and z=1t*>+a®—2ab,
where b = 4a/(2 + a® + t?). Then we get

fl@) = (@ +u’)((z +a)* +¢*)(z - b).

We claim that the unique real root b can be made to lie in (v/2 — ¢,1/2), for any
¢, by a suitable choice of a,t. Indeed, the (unallowable) limiting case (a,t) (v/2,0)
corresponds to b = v/2 (and f(z) = (22 +u?)(x +v2)*(z — /2)). This shows that by
choosing (a,t) to be close, but not equal, to (v/2,0), we can make b arbitrarily close
to /2 (from below). For example, put a = 1.414 and ¢ = 0.01. Then

b = 1.414178186451492888103901091.....

QED.
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