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1. Introduction

Let f,g be primitive cusp forms, holomorphic or otherwise, on the upper half
plane H of levels N, M repectively, with (unitarily normalized) L-functions
Qp

Lisif) = 3% = T 10— ap )1~ )]

n>1 p prime
and ;
- —sy1—-1
L(s.g) = Zn—z = I (@ —ap ™)@ —=gp )
n>1 p prime
When p does not divide N (resp. M), the inverse roots ay, B, (resp. ay, [3,) are
non-zero with sum a, (resp. b,). For every p prime to NM, set

Ly(s, f x g) = [(1 = apapp™) (1 — apBp~*) (1 = Bpagp ™) (1 = BpBp~ )] "
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Let L*(s, f x g) denote the (incomplete Euler) product of L,(s, f x g) over all p

not dividing NM. This is closely related to the convolution L-series Y. anbp,n=%,
n>1
whose miraculous properties were first studied by Rankin and Selberg.

A fundamental question, first raised by Langlands, is to know whether this
Rankin-Selberg product is modular, i.e., if there exists an automorphic form f X g
on GL(4)/Q whose standard L-function equals L*(s, f x g) after removing the ram-
ified and archimedean factors. The first main result of this paper is to answer it
in the affirmative, in fact with the base field Q replaced by any number field F'
(see Theorem M, section 3). Our proof uses a mixture of converse theorems, base
change and descent, and it also appeals to the local regularity properties of Eisen-
stein series and the scalar products of their truncations. Briefly, experts have long
suspected that this result should follow from the converse theorem for GL(4) requir-
ing only twists by GL(2) and GL(1), which has recently been published by Cogdell
and Piatetski-Shapiro ([CoPS]). While this is morally true, three difficulties crop
up when one tries to implement this, and new ideas are required to surmount them.
The first difficulty arises because, given cuspidal automorphic representations m, 7/
on GL(2)/F, one needs to have a definition of a candidate for # ¥ 7’ as an admis-
sible representation of GL(4, Ap) (which is needed before we can test its analytic
properties to show modularity). If one admits the local Langlands correspondence,
then the local candidates 7, K 7/, can be defined as the admissible representations
of GL(4, F,) corresponding to o, ® o, where o, (resp. o)) is the 2-dimensional
representation of the Weil-Deligne group W, associated to 7, (resp. ) by Kutzko
([Ku]). (Since the work on this paper was completed, a preprint of M. Harris and
R.L. Taylor has appeared, establishing the local correspondence for GL(n). But
we feel that it will be satisfying not to to have to appeal to it here; global argu-
ments should always be able to circumvent fine local difficulties.) We get around
this problem by appealing to the base change results of Arthur and Clozel ([AC]).
To be precise, we first make use of the fact that every supercuspidal representa-
tion becomes a principal series representation after a finite normal solvable base
change, so that a candidate for 7 X7’ can be defined over suitable (infinite families
of) global, solvable extensions K/F. Then, after proving modularity upstairs, we
perform a simultaneous descent via an inductive argument in cyclic layers. At the
end, we get as a byproduct the definition of 7, X7} at any v (and any F'). Once
one has the admissible IT on GL(4)/K, one needs, for modularity via the converse
theorem, good analytic information on L(s, IIx ), for any cuspidal n on GL(m)/K,
for m < 2. The m = 1 case is easy by the Rankin-Selberg theory as extended to
general K by Jacquet ([J]). But the m = 2 case is subtle and leads to problems.
One of them, which is the second difficulty, is caused by not knowing the equality,
at every place, with each other and with L(s, I1x7), of the three candidates for the
triple product L-function L(s,m x 7’ x n). The first is defined formally as an Euler
product of {L(s,0, ® 0}, ® 7,) }, where 7, is the 2-dimensional of W, associated to
7y; the second candidate is defined by the integral representation of Garrett ([G]),
as generalized by Piatetski-Shapiro and Rallis ([PS-R2]); and the third is given by
the machinery of Langlands-Shahidi ([La2], [Sh1]). Though the unramified local
factors are known to be the same in all cases, something close to an equality is es-
sential as no candidate has all the desired properties, and they have complementary
strengths. (One simply cannot avoid dealing with the bad places!) By a careful
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analysis and synthesis of known results due to Ikeda and others, and by using in ad-
dition some global arguments involving the works of Langlands and Tunnell on the
Artin conjecture, we manage to prove at the end that the first candidate has all the
desired properties under some local restrictions which can be achieved by solvable
base change. So base change is used for yet another reason! (At the archimedean
places, we make use of the work of Ikeda ([Ik2]) on the computation of the triple
product L-factors for unramified representations.) We prove later the equality, at
each place v, of L(s, m, X @, X 1,) (resp. (s, m, X m, X 1)) with the GL(4)x GL(2)-
factor L(s, (7, ®7)) x 1) (resp. (s, (my®7)) x1y)). The third and final difficulty is
the question of boundedness in vertical strips of the triple product L-function. This
is absolutely crucial for applying the converse theorem, and this does not seem to
be elementary as, for example, in the case of the standard L-function of GL(2). Our
method is to use Arthur’s truncation ([A1]) of the non-cuspidal Eisenstein series
E(g, s) on GSp(6)/F which occurs in the integral representation of L(s, 7 x @’ x ),
and reduce the problem, via local regularity of eigenfunctions of the Laplacian, to
the norms of the truncated Eisenstein series, making use of the fact that the inter-
vening constant terms are in our case expressible in terms of abelian L-functions.
The reader is referred to section 3.1 for a fuller discussion of the strategy of proof
of the various parts. The details of proof occupy the sections 3.2- 3.7.

As a consequence of Theorem M, we settle a conjecture of Labesse and Langlands
([LL], [Labl]) asserting that the space of cusp forms on SL(2) has multiplicity one
(see Theorem 4.1.1). To see what this means concretely, consider f, g as above with
trivial characters such that

afo = b;
for almost all p. Then multiplicity one (in this context) implies that there exists a
quadratic Dirichlet character x such that (for almost all p)

ap = pr(p)'
(In fact, if N, M are in addition square-free, x must be trivial.) When we started
on this project in 1994, we were able to settle quickly the case when f and g
are holomorphic, but then learnt that this case had been known to various people
including D. Blasius and J.-P. Serre; here the idea is to make use of the associated
t-adic Galois representations (see [K], pp.90-91, and [Ra2], where there is also a
mod ¢ analog and a density result). But this method does not work for Maass
forms, and the starting point for this paper was our realization in Fall 1994 that
both cases could be tackled simultaneously if one knew of the existence of fXg. We
first managed to prove multiplicity one for SL(2) over Q in Fall 96 by some special
tricks and a weaker form of Theorem M. The proof given here works over arbitrary
F, but is shorter, partly because some the earlier arguments over Q have been
transplanted to the proof of Theorem M. If there is any creativity in this paper, it
is perhaps foremost in the application of Theorem M to this problem, though it is
not the most technically difficult part. It should also be remarked that it has been
expected for some time now that the Labesse-Langlands conjecture should follow
from the adjoint square lifting from SL(2) to PGL(3), more precisely from a careful
comparison of the stable trace formula for SL(2) and the twisted trace formula for
PGL(3) relative to g — fg~!. This approach has been considered by Y. Flicker in
a series of papers culminating in [F]. But we ignore the question of whether this
program has been completed, as our approach is totally different and (hopefully)
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has independent interest. We would also like to note in passing that, as shown by
D. Blasius ([B]), multiplicity one fails for SL(n), for every n > 2.

A corollary of Theorem M is the deduction of the standard analytic properties of
4-fold convolutions L(s, f1 X fa X f3 X f4) for quadruples (f1, f2, f3, f1) of primitive
cusp forms. This is done by appealing, in addition, to the higher Rankin-Selberg
theory for GL(4)xGL(4) due to Jacquet, Piatetski-Shapiro and Shalika ([JPSS1]),
and Shahidi ([Sh 1,3,5]). We show, moreover, that L(s,sym?(f;) x fa X f3) and
L(s,sym3(f1) x f2) have meromorphic continuations and functional equations (see
Theorem 4.2.1) and are non-zero in {R(s) > 1} without any pole there except
possibly at s = 1.

By using the existence of K on GL(2)xGL(2) in conjunction with a global ar-
gument we prove an identity, even at the ramified places v, equating the Rankin-
Selberg L and e-factors of (m1,,X7a 4, 73 K74 o) with those of 01 ,R02 Q03 Q04 4,
where o, denotes, for each j <4, the 2-dimensional representation of W = associ-
ated to m;, (cf. [Ku]). This gives a little bit of information (see Proposition 4.3.3)
on the local Langlands correspondence for GL(4). Moreover, we use the identities
and the method of [PR] to prove that when 7; has trivial central character for every
J, the global root number W ((m1 R ma) X (w3 K my)) is 1 (see Theorem 4.3.4).

We then turn the tables and prove in section 4.4, that as a consequence of
Theorem M, the three candidates for the triple product L-functions on GL(2) all
agree at all places. (Recall that we needed to know that they were very nearly the
same to get Theorem M in the first place.) This may be of independent interest.

The final application of our main result is the proof of the Tate conjecture for
4-fold products V of modular curves, asserting in particular that the order of pole
at s = 2 of the L-function over any solvable (normal) number field K of the Galois
module W, := H, ét(V@, Q¢) equals the rank of the group of K-rational codimension
2 Tate cycles on Vg (see Theorem 4.5.1). Moreover we show, in line with the works
of Ribet ([Ril]) and V.K. Murty ([Mu]) on the Jacobians of modular curves, that the
latter number can also be computed with the Tate cycles replaced by the algebraic
cycles modulo homological equivalence if the level of at least one of the curves is
square-free. We refer to chapter 5 for a precise statement.

We would like to express our gratitude to Ilya Piatetski-Shapiro for his continued
interest in this project, and for kindly writing down, with J. Cogdell, the form of
the converse theorem for GL(4) which we need ([CoPS]). Thanks are also due to
T. Tkeda for writing down his calculations of the archimedean factors of the triple
product L-functions ([Ik2]), to S. Rallis for useful remarks on these L-functions,
to F. Shahidi for explaining his approach to the same via Langlands’s theory of
Eisenstein series and for commenting on an earlier version, to my colleague T.
Wolff for helpful conversations on an analytic lemma we use in section 3.4, and to
many others, including H. Jacquet, R.P. Langlands, J. Rogawski and P. Sarnak, who
have shown encouragement and interest. Special thanks must go to J. Cogdell for
reading the earlier and the revised versions thoroughly and making crucial remarks.
Part of the technical typing of this paper was done by Cherie Galvez, whom we
thank. Finally, we would like to express our appreciation to the following: the
National Science Foundation for support through the grants DMS-9501151 and
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DMS-9801328, Université Paris-sud, Orsay, where we spent a fruitful month during
September 1996, the DePrima Mathematics House in Sea Ranch, CA, for inviting
us to visit and work there during August 1996 and 1998, MATSCIENCE, India,
for hospitality in Feb. 98, and - last, but not the least - the MSRI, Berkeley, for
(twice) providing the right climate to work in; this project was started (in 1994)
and essentially ended there.

2. Notations and Preliminaries

2.1. Let Q denote the algebraic closure of Q in C. For any subfield K of Q,
let Gal(Q/K) denote the Galois group of Q over K, together with the profinite
topology. For any number field F' with ring of integers Op, let X(F') (resp. Yoo (F),
resp. Yo(F')) denote the places (resp. archimedean places, resp. finite places) of
F. At each v, let F, denote the completion of F' relative to v, and if moreover v
is finite, let O,, Py, Fy, |.|» and Nv = ¢, respectively denote the ring of integers
of F,,, the maximal ideal, the residue field, the normalized absolute value and the
norm of v. When F = Q, there is a unique archimedean place oo given by the
canonical imbedding of Q in R, and every finite place v corresponds to a rational
prime number p, in which case we will write Z,, instead of O,. Denote by Ar the
ring of adeles of F', which is the restricted direct product of {F,} relative to {O,},
equipped with its usual locally compact topology. Let I'r denote the group of ideles
of F, and Cr the idele class group Ir/F*.

We will fix a non-trivial unitary character 1) of Ar which is trivial on F', and let
W, the v-component of . Various quantities, such as the e-factors, will depend on
this choice, which we will suppress in our notation.

In this paper we will systematically use the powerful language of automorphic
representations, though at relevant places we will indicate briefly the essence of what
we do in the classical language. Given any primitive cusp form f on the upper
half plane of level N, character w, there exists a (unique) cuspidal automorphic
representation m = w(f) of GL(2, Ag) of conductor N and central character w such
that, at every prime p, the p-Euler factor of L(s, f) agrees with the L-factor L(s, mp)
of the p-component m,. We refer the reader to the expository monograph [Ge] to
understand how to go back and forth between the two approaches.

2.2. For every algebraic group G over F, let G(Ar) denote the restricted
direct product H'L G(F,), endowed with the usual locally compact topology. By
a cuspidal representation of G(Ar) = G(Foo) X G(AF,), we will always mean an
irreducible, unitary, cuspidal automorphic representation. Such a representation is
in particular a restricted tensor product 7 = ®,m, = oo ® T, Where each m, is
an (irreducible) admissible representation of G(F3) for v finite, and an admissible
(LieGy, Ky)—module for v archimedean, with K, denoting a compact modulo center
subgroup of G(F,); 7o (resp. 7o) is the restricted tensor product of 7, over all
finite (resp. archimedan) places v. By definition, 7, must be unramified at almost
all v.

For any irreducible, automorphic representation 7w of GL(n,Ap), let L(s,7) =
L(s,m)L(s,m) denote the associated standard L—function ([J]) of m; it has an
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Euler product expansion
(2.2.1) L(s,m) = [] L(s,m0),
v

convergent in a right-half plane. If v is an archimedean place, then one knows (cf.
[Lal]) how to associate a semisimple n—dimensional C—representation o(m,) of the
Weil group W, , and L(7,, s) identifies with L(o,, s). On the other hand, if v is a
finite place where , is unramified, there is a corresponding semisimple (Langlands)
conjugacy class A, (m) in GL(n, C) such that

(2.2.2) L(s,my,) = det(1 — AT)

We may find a diagonal representative diag(a1,v(), ..., @ o()) for A, (), which is
unique up to permutation of the diagonal entries. Let [o1 (), ..., an,o(7)] denote
the resulting unordered n—tuple. Since W;bv ~ F* A,(r) clearly defines an abelian
n—dimesional representation o(m,) of Wg,. One has

Theorem 2.2.3 ([JS1]) Letn > 1, and m a non-trivial cuspidal representation
of GL(n,Ar). Then L(s,n) is entire. Moreover, for any finite set S of places of F,
the incomplete L—function L°(s,m) = [T.¢s L(s; mv) is holomorphic in R(s) > 0.

When n = 1, such a 7 is simply a unitary idele class character and this result is
due to Hecke. Also, when 7 is trivial, L(s,7) = (p(s).

By the theory of Eisenstein series, one has a sum operation B ([La3]), which
results in the following

Theorem 2.2.4 ([JS2])  Given any m—tuple of cuspidal representations 7y, ..., Tm
of GL(n1,Ap), ..., GL(nm, Ar) respectively, there exists a unitary, irreducible, au-
tomorphic representation w1 B ... B m, of GLn,Ap), n = ny + ... + ny,, which is
unique up to equivalence, such that for any finite set S of places,

Lo (s, B 7)) = H L5 (s, ;).
j=1

Call such a (Langlands) sum 7 ~ B ,7;, with each m; cuspidal, an isobaric
representation. Denote by ram(7) the finite set of finite places where = is ramified,
and let 91(w) be its conductor ([JPSS2]).

For every integer n > 1, set:

(2.2.5) A(n, F) = {r : isobaric representation of GL(n, Ar)}/~,
and
Ao(n, F) = {m € A(n, F)| 7 cuspidal}.
Put A(F) = Up>1.A(n, F) and Ag(F) = Up>1.40(n, F).
Remark. One can also define the analogs of A(n, F') for local fields F', where the

“cuspidal” subset Ag(n, F') consists of essentially square-integrable representations
of GL(n, F'). See [La3] and [Ral] for details.

Let 7, n’ be isobaric automorphic representations in A(n, F'), A(n’, F') respec-
tively. Then there exist an associated Euler product L(s, 7 x «) ([JS2,4], [JPSS],
[COPS2]; [Sh1,3]), which converges in {R(s) > 1}, and admits a meromorphic con-
tinuation to the whole s—plane with a functional equation. When v is archimedean
or a finite place outside ram(7), one has

(2.2.6) Ly(s,m x ') = L(s,0(my) @ o(m)).

v
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When n =1, L(s,7m x n') = L(s,n7n’), and when n = 2 and F' = Q, this function
is the Rankin-Selberg L—function, extended to arbitrary global fields by Jacquet
([72]).
Theorem 2.2.7 (Jacquet-Shalika [JS2]) Let m € Ao(n, F), " € Ao(n/, F), and
S a finite set of places. Then L°(s,m x ') is holomorphic in {R(s) > 0} unless
7~ a'", in which case it has a unique pole (of order 1) at s = 1.

We will also need the general construction of automorphic L-functions attached
to any m € A(n,F'). Let S be any finite set of places containing the archimedean

and ramified places (for 7). If r is any algebraic representation of GL(n, C), which
is the connected component of the L-group of GL(n), we put

LS(S7 7r’ T) = H L(S’ Tr’ T)’
vgSsS
where
L(s,7,7) = det(I — (Nv)*r(A,(r))) "%
Of particular interest is when r is the exterior square A2, or the symmetric kth
power SymP”, for some k > 1, of the standard represenation. When r is simply the
standard representation, L°(s, 7, r) is evidently just L (s, 7).

One knows (cf. [JS1], [BuF], [Sh1]) that L°(s, 7, A?) converges absolutely in
R(s) > 1 and admits a meromorphic continuation with a functional equation of the
usual type relating s and 1 — s. One also knows, by [BuG], [Sh1], the analogous
properties of L (s, m,sym?). For n = 2, one knows more by [GJ], namely that there
is an (isobaric) automorphic representation sym?(r) such that

L%(s,sym?(7w)) = L%(s, m,sym?).

For n = 2, one also knows the meromorphic continuation and functional equation
(cf. [Sh2]) of Lo (s, 7, sym*) for all k < 5.
2.3. Base change and automorphic induction.

We will now review the results of Arthur and Clozel [AC] in a form which is
suitable for the applications found in this article. See also [Lab2].

In [AC], chapter 3 (sec. 3 - 6), one finds a construction, for any cyclic extension
K/F with [K : F] a prime ¢, of maps
br/p: A(n, F) — A(n,K), m — mx  (base change)
and
Ig/p: An,K) — A(nt, F), 7 — I(m) (automorphic induction),

such that at every place v of F' which is finite and unramified for the representations
and K/F (or archimedean) and a place w of K above v, we have (respectively)

(3.1) resf&u(a(wv)) ~ o((TK)w),
and
o(I(m)y) =~ indf(”w ().
Given any local field E, if # an unramified representation of GL(r, E) (or if E is

archimedean), we write o((3) to signify the associated r-dimensional representation
of Wi (or Wg).



8 Dinakar Ramakrishnan

There are also local analogs of these maps, customarily called “local base change”
and “local automorphic induction”. The former is constructed and discussed in
great detail in chapter 1 of [AC]. The later is discussed briefly in [Cf1] and the
relevant assertions are consequences of the results of [AC]. An alternate construction
of the local automorphic induction for essentially tempered representations, which
works also in characteristic p, is given in the paper [HH] of Henniart and Herb. The
properties we will need are summarized as follows:

Proposition 2.3.1 Let K/F be a cyclic extension of number fields or local fields
of degree £, a prime. Let 0 be a generator of Gal(K/F), and let x denote the
character of the idele class group (resp. multiplicative group) of F in the global
(resp. local) case associated to K. Then
1. The image of bi ) consists precisely of those 8 € A(n, K) such that (3 ~ (of.
2. The image of I p consists precisely of those m € A(nt, F') such that m =~
T X.
3. For every m € A(m, F) and B € A(n, K), we have the adjointness property:
L(s,m x I(B)) = L(s,mx X ),
and
-1 _
e(s,m x 1(B))e(s, 1 )"™ = e(s,mre x B) [ ] s x?)"™
§=0
4. Suppose [ is cuspidal (resp. supercuspidal) in A(n, K), for K global (resp.
local). Then
I(B)x ~ B {3t
Moreover, 1(() is cuspidal (resp. supercuspidal) iff B is not isomorphic to

Bod.
5. Suppose w is cuspidal (resp. supercuspidal) in A(n, F'), for F global (resp.

local). Then

I(mg) ~ EEﬁ‘-;(lﬂr ®x’.
Moreover, wg is cuspidal (resp. supercuspidal) iff © is not isomorphic to
T X.

For a proof of 1., 2. and the second half of 5., see [AC], [C/1] and [HH]. For the
remaining assertions, see [PR], pages 7,8, where this Proposition is stated as Prop.
3.1, and where A(n, F) is denoted Isob(n, F).

3. Construction of X : A(GL(2)) x A(GL(2)) — A(GL(4))

The object of this chapter is to prove the following
Theorem M Let , 7’ be in A(2, F). Then we have:

Existence: There exists an isobaric automorphic representation ™ X ' of
GL(4, Ap) satisfying (at every finite place v)
(Ly) L(s,(n X 7"),) = L(s, my X 7)),
and

(ev) e(s, (m®7"),) = (s, my X ).
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We also have
(Leo) L(s,(m W7 oo) = L(8, Moo X 7).

Cuspidality Criterion: Suppose w, @' are both cuspidal.

If neither of them is associated to a character of a quadratic extension, then X’
is cuspidal iff we have

(C) 7' is not equivalent to ™ ® x, for any idele class character x of F.

If ©’ = IE(u), for a character p of a quadratic extension K, then mXn’ is cuspidal
iff the base change Tk is cuspidal and not isomorphic to 7x @ (po O)u~t, where 0
denotes the non-trivial automorphism of K/F.

We will call an isobaric representation = X 7 satisfying (L, ) and (&), for all v,
a strong lifting to GL(4)/F, or the automorphic tensor product, of the pair
(m,7"). If it only satisfies (L,) for almost all v, and not necessarily (g,) or (Loo),
we will call it a weak lifting.

We will briefly explain the arithmetic motivation for the cuspidality criterion
above. Suppose 7, 7’ correspond to irreducible, continuous 2-dimensional represen-
tations o, o’ over C of Gal(Q/F'). Then, since the operation X on A(2, F') x A(2, F')
is supposed to correspond to the tensor product on the Galois side, m X 7’ should
be cuspidal iff ¢ ® ¢’ is irreducible. When o, ¢’ are non-dihedral, reducibility hap-
pens iff one is a twist of the other by a character. That the criterion should be
the same for all non-dihedral cuspidal pairs (7, 7’) is motivated by the hope (see
[La3], [C12], and [Ral]) that there is a group £p, whose connected component £%
is pro-reductive with £r/L£% ~Gal(Q/F), and whose irreducible n-dimensional
representations parametrize cuspidal automorphic representations of GL(n, Ap).

3.1. Relevant objects and the strategy. We begin with a simple
Lemma 3.1.1.  Theorem M holds in the following three special cases:

(1) At least one of {m, 7’} is not cuspidal.

(IT) At least one of {m, 7'} is automorphically induced by a character p of (the
idele class group of) a quadratic extension K of F.

(ITI) 7' is a twist of 7, i.e., there exists a character x of Cp such that

7~ TRy

Proof.  Suppose 7’ is not cuspidal. Then as we have seen in section 2, there
exist idele class characters p1, o of F' such that 7’ = uq H . In this case, we set
aX7r = (rRup) B (7 X us),
which is not cuspidal. In this case one knows ([JS2]) that the identities (L), (gv),

and (L) are all satisfied everywhere. Thus we are done in case (I).
Suppose 7’ is of the form 1% (p), for a character p of C, for some K. Then we
set
rln = IE(ng @ p),
where 7, denotes the base change of 7 to K. The identity (L,) at the unramified
places v is a direct consequence of the identities of Proposition 2.3.1. The fact that
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(Ly) holds at every place, and that (L) and (g,) also hold, will be shown as part
of a general assertion in the next section (see Proposition 3.2.1).

It is left to consider (IIT). In this case, we set
TR7’ = (sym®(r) ® x) B wx,

where w is the central character of w. The asserted identities are then consequences
of the work of Gelbart and Jacquet ([GJ]) and the strong multiplicity one theorem
(19S2).

O

We will say that (7, 7’) is of general type if we are not in either of these three
special cases.
Given any pair (II, n) of irreducible, generic, admissible representations of GL(n, Ar),
GL(m, Ar) respectively, which are not necessarily automorphic, we may set
(3.1.2) L(s, 1L x n) = ] L(s, 11, x ny)
v

and
e(s, Il xn) = H e(s, I, X ny).

The following result is a crucial ingredient of our approach.

Theorem 3.1.3 (Cogdell - Piatetski-Shapiro ([CoPS]). Let T be a fized finite
set of finite places of F'. Let Il be an irreducible unitary, admissible, generic repre-
sentation of GL(4, Ar) which satisfies the following:

For every n € Ao(n, F), n < 2, with n, unramified at every v in T, we have:
(MC) L(s,11 x n) and L(s, 11 x n") converge absolutely in large R(s),

and they admit meromorphic continuations to the whole s-plane.

(E) L(s,11 x n) and L(s, 1V x n") areentire.
There is a functional equation

(FE) L(1 — 5,11V x V) = e(s, 11 x n)L(s, 1T x n).

(BYV) L(s,II x n)is bounded in vertical strips.

Then 11 is nearly automorphic, i.e., there exists an automorphic representation Iy
of GL(4, Ar) such that II, ~ II; ,, for almost all v.

Consequently, Theoremm M can be attacked for (m,7’) of general type if we can
solve the following two problems (for a finite set T of finite places):

(P1) Define an irreducible, generic admissible representation I of GL(4, Ar) such
that we have at every place v,

(3.1.4) L(s,1,) = L(s,m, x )
and

e(s,I,) = e(s, my x ).

(P2) Given any n € Ag(m, F), m < 2, with 7, unramified at every v in T, the
hypotheses (MC), (E), (FE) and (BV) hold for L(s,II x n) and L(s,IIV x n¥).
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(P1) cannot be solved as posed without knowing the local Langlands correspon-
dence for GL(4), which in any case we would like to avoid using. We can, however,
define a candidate II,, at almost all places, in particular at the archimedean places
and at finite places v where 7, and 7, are not both supercuspidal. (Even the su-
percuspidal cases can be dealt with in odd residual characteristics.) See section
3.7. Given any 7, we can find,using [Ku], a chain F = Ko C K; C...C K, = K
with each K;/K;_1 cyclic of prime degree, in fact an infinite family X = X(7) of
such chains, such that the base change mx of 7 to K, which exists by [AC], has the
property that at any place w of K, mk , is not supercuspidal. Hence (P1) can be
solved over K, and if we can also solve (P2) over a “sufficiently large” subset Y of
X, we can construct 77’ over each K in Y, and then try to find a common descent
to F satisfying the desired properties (listed in Theorem M). The part dealing with
descent follows an approach taken for GL(2) in our earlier joint work [BR] with
D. Blasius. (There is a mistake in [BR], but it does not affect the relevant section
there discussing the descent criterion; in any case, we give a complete argument
here for GL(n) - see Proposition 3.6.1) The best possible situation will be one in
which almost every finite place v of F' splits completely in some K € Y. There are
complications with finding a common descent if (7x, 7% ) is not of general type for
too many K. For this and other reasons, it will be best for us to use an inductive
argument in cyclic layers of prime degree. We refer to sections 3.6 and 3.7 for
details.

After replacing F' by a suitable larger field, let us suppose that we have solved
(P1), and that (m,n’") is of general type with 7, not supercuspidal. Fix any T, 7 as
above. If m = 1, then all the hypotheses of Theorem 3.1.3 are just known assertions
of the Rankin-Selberg theory. So we may assume that m = 2. (P2) can be solved if
we can find a “triple product L-function” L(s, 7 x 7’ x 1) which satisfies all these
hypotheses and satisfies (at every v)

(3.1.5) L(s,my x 7 xny) = L(s, 1, X ny).

There are in fact three candidates for such an L-function, but unfortunately, none of
them possesses apriori all the desired properties. The first one is in some sense the
most natural one. To define it, let o, (resp. o)) denote, at each v, the 2-dimensional
representation of Wy, associated to m, (resp. m,) by the local Langlands correspon-
dence for GL(2) ([Ku]). (When v is archimedean, W, signifies just usual the Weil
group by W, .) Put

(3.1.6) L(s,mx 7' xn) = H L(s,0, ® 0, @ Ty,),
v
where 7, denotes, at each v, the representation of W, attached to 7,. We do not
know apriori any of the desired properties for this Euler product.
One defines the epsilon factor (7 x ©’ x 1)) as the product over all v of e(s, 0, ®
ol ® 7,); these local factors will also be denoted e(s, m, X 7 X 1,).

The second candidate, which we denote by Lq(s, 7 x @’ x 1), is the one defined
by Piatetski-Shapiro and Rallis in [PSR2], generalizing the construction of Garrett
([G]) over @ when all three representations correspond to holomorphic modular
forms. (see also Ikeda ([Ik1]). This is defined by using an integral representation,
and is known to satisfy (MC) and (FE). It also satisfies (E) by the arguments of
Tkeda (see Theorem 2.7 of [Ik2], and also the discussion following Theorem 3.3.11
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of this paper). But one does not yet have (BV), which is problematic, which we
propose to rectify in this paper. One knows that at the finite unramified places
([PSR1]) and the infinite places ([Ik3]) that

(3.1.9) Ly(s,my X w0, X 1) = L(8,my X Ty X 1y)-
See section 3.3 for a more complete discussion.

The third candidate, which we denote by La(s,m x 7’ x 1), was constructed in
the work of Shahidi (cf. [Shl], page 582), developing the ideas of Langlands in the
monograph ([La2]). (See also section 0 of [PSR2] for an exposition.) To be precise,
let G denote the group Spin(4, 4). It has a parabolic P = MU with Levi component
M which is a quotient (over F') of GL(1)x SL(2)x SL(2)x SL(2) by {1, —1}, where
—1 signifies H1 H3H4(—1), with the H; denoting the standard simple coroots. Take
the representation = w ® m ® 7} ® 71 on M(Ap), with m; (resp. 7}, resp.
71) being any irreducible component of the restriction of 7 (resp. 7', resp. 7) to
SL(2,Ar) and w being the product of the central characters of 7, 7’ and 7. Extend
£ in the usual way to P(Ag) by letting U(Ap) act trivially. Then the Langlands
Eisenstein series on G(Ap) associated to the representation of G(Ar) induced by
B defines, and gives analytic information on, La(s, 7 X 7’ x 17). One knows that this
L-function satisfies (MC) and (FE) (cf. [Sh1]), and also (E) by the very recent work
of H. Kim and F. Shahidi([K-Sh]). If v is archimedean or unramified or tempered,
we have

(3.1.8) La(s, Ty X Ty X 0y) = L(8, 7y X Ty X 1)

There is also a definition of epsilon factors ea(s, m, x @, X 1,). The main use of this
approach for us comes from knowing that La(s, 7 X @’ X 7) is non-zero on the line
s =1.

We take T to be a (finite) set containing all the places v where m, or =« is
in the discrete series, and solve (P2) for the relevant types of (m,7’). In such a
case, one first notes, by an extension of the local results of [Ik1], [Ik2] by global
arguments, that the local gamma factors (called &’-factors by some) of first and the
third candidates agree at all the places, and that their L-factors also agree at all
the places v where at least one of the representations ,, 7, is not supercuspidal It
is not clear that the L-factors agree at all the places v. But luckily, it turns out
not to matter by a base changing trick. We refer to sections 3.3 and 3.4 for details.

Next comes the establishment of (BV). The idea here is to make use of Arthur’s
truncation AT E(f5) of the Eisenstein series E(fs) on GSp(6)/F asociated to the
character det®"2 of the (GL(2) occurring in the Levi of the) Siegel parabolic P.
(Here T is a sufficiently regular parameter.) The integral representation for Lj (s, 71 X
72 X 73) is given by the integral, over GL(2)3, of E(fs) against a function ¢ in the
space of T ® m2 ® 3. By the standard arguments using th functional equation and
boundedness in R(s) >> 0, it suffices to show that this integral is of bounded order
in vertical strips =. Since ¢ decreases rapidly at infinity, it suffices to check that for
sin Z, E(fs)(g) is bounded in absolute value by a function of s of bounded order
times ||g||"Y for a uniform N as N goes to infinity. Now, using the fact that E(fs)
is an eigenfunction, though not square-integrable globally, of the Laplacian A, we
use standard Sobolev estimates and bound |E(fs)(g)| by its L?-norm in a small
neighborhood V' of controlled size. The L?-norm over V of E(fs) — ATE(fs) can
be estimated by use of the constant terms; these are essentially given by abelian
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L-functions, which are known by Hecke to be of bounded order. It then suffices
to estimate the L2 norm of AT E(fs) over the whole locally symmetric manifold,
which can be understood by the works of Langlands and Arthur.

Finally, to be able to honestly apply the converse theorem, we must also check
(3.1.5). The details are all in sections 3.4 and 3.5.

3.2. Weak to strong lifting, and the cuspidality criterion. In this section
we prove the following

Proposition 3.2.1  Let 7w, be in A(2, F). Suppose we have constructed a weak
lifting, i.e., an isobaric automorphic representation © X «' of GL(4, Ar) satisfying
the identity (L,) (of theorem M) at almost all v. Then we have (L,) and (,) at
all the finite places v, and (Lo ) as well. In addition, the cuspidality criterion (of
Theorem M) holds.

Proof. Let S be the (finite) set of places outside which (L,) holds. We may
assume (see (I) of section 3.1) that 7 and #’ are both cuspidal and non-dihedral.
Note also that the central character of m X 7’ is simply (ww')?, where as before,
w,w’ denote the respective central character of 7, w’. This is so because the two
idele class characters agree almost everywhere. (In fact, by a theorem of Hecke, it
suffices to know that they agree at a set of primes of density > 1/2.)

First some notations. If f(s),g¢(s) are two meromorphic functions of s such
that their quotient is invertible, we will write f(s) = g(s). At any place v, given a
character v of F}¥, we can write it as vg|.|?, for a unitary character vy and a complex
number z. The real part of z is uniquely defined; we will call it the ezponent of v,
and denote it e(v).

Choose a finite order character p of C'r such that p, is sufficiently ramified at
every finite place v in S so as to make the Euler u-factors of 7 ¥ #/, # x 7/, and
their contragredients, equal 1. This is possible by using the results of [JPSS]. Then,
comparing the global functional equations of both L-functions, we get
(3.2.2)

H Lis, (n B ")) L(1 — s,7), x wl, ) = H L(1 — s, (m R a")Y)L(s, Ty X 7).

w|oo w|oo

For any place v, archimedean or otherwise, for any n > 1, and for any cuspidal
automorphic representation II of GL(n,Ar) (such as 7 K '), it is known that
L(s,11,) is holomorphic in R(s) > 1 — ¢, for some ¢ = #(Il,v) > 0 (see [BaR],
Prop. 2.1, part B). Consequently, L(s, (7 K 7’),) has no pole in common with
L(1 — s, (n & 7')Y).

Next we claim that, since 7, 7’ are (cuspidal) automorphic representations of
GL(2,AF), L(s,m, x m,) is also holomorphic in R(s) > % — ¢, for some ¢ > 0.
If 7, and 7}, are both in the discrete series, then one has holomorphy even in
R(s) > 0 (see [BaR], Lemma 2.3). If 7, is a principal series representation defined
by (quasi)characters v, v/, then by [GJ], we have e(v) < 1/4 and e(v') < 1/4.
(Strictly speaking, when v is archimedean, one finds in [GJ] only the assertion that
these exponents are < 1/4, but one can eliminate the possibility of exponent 1/4
by using a simple version of the argument of [LRS1].) At the finite places, one can

even replace 1/4 by 1/5 by using [Sh2]; see also [LRS2]. Over Q, one can do still
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better and reduce the bound to 5/28 ([BuDHI]). But we will not need these finer
results. In any case, the claim follows easily.

Consequently, L(s,m, x 7}) has no pole in common with L(1 — s, 7} x 7/")

either. Applying this, along with the earlier remark on the relative primality of
L(s, (mX7'),) and L(1 — s, (r X 7'))), we get (Loo) from (3.2.2).

Next pick any finite ug € S and choose a p which is 1 at ug, but is highly ramified
at all other finite u in S. Again, by comparing the functional equations, we get an
identity such as (3.2.2), with the factors at infinity replaces by the corresponding
ones at ug. Using the relative primality results above, now with v = ug, we get
(Ly,)- Since ug was arbotrary, we get (L,) now at every place v.

For the identity of epsilon factors, we fix a ug in S and note that by [JPSS2],
we can choose a global character u which is 1 at ug and sufficiently ramified at any
other place u in S such that the epsilon factor of 7, X 7, ® p,, depends only on fi,,
and the square of the product of the central characters w,,w!,,, and the dependence
is simple. Similarly, the epsilon factor of (7 X 7’),, has the same dependence on fi,,
and the central character of (7 X 7’),, which we noticed above to be (w,w/,)?. The
analogous statements hold for the contragredients, and this results in the identity

(Vu € S —{uo})
e(s, (m R 7)) L(s, (¥ 7)) _ e(symy X ) L(s, 7y X 7,)
L(1—s,(nXa)Y) L(1 —s,7y x«Y)

Comparing the global functional equations again, we get (,,) as we already know
that the L-factors agree. This finishes the proof of the first part of the Proposition.

It is left to prove the cuspidality criterion. First suppose w X 7/ is cuspidal.
Recall that by (I) of section 3.1, # X 7’ is not cuspidal if 7 or 7’ is not. So 7 and
7' must both be cuspidal. Suppose ©’ ~ 7 ® , for an idele class character y of F.
Then, by [JS2] and (L,) for almost all v, L5 (s, 7 X 7’ ® (yw) ') must have a pole
at s = 1, with S denoting the set of ramified and archimedean places, and w the
central character of 7. (We are using the fact that 7 ® w™! is the contragredient
7V of w.) Then m K7’ cannot be cuspidal, leading to a contradiction.

Conversely, suppose that 7, 7" are cuspidal and (C) holds, but that = K7’ is not
cuspidal. We will show that it leads to a contradiction.

Since w X 7’ is isobaric, we can decompose it uniquely as

o B 175

where each 7); is a cuspidal automorphic representation of GL(n;, Ag), with 2;21 n;
being 4. Suppose some n;, say ni, is 1. Then 7, is an idele class character, and we
have, for any large enough finite set S of places containing the archimedean ones,

LS(s,mx 7’ @) = CR(s) [T L5(smy ©mi ).
j#1
One knows ([JS2]) that, since each L%(s,m; ® ;') is cuspidal, it cannot vanish at
s = 1. Thus the pole (at s = 1) of (2(s) induces one of the function on the left,

which is not allowed by (C). Thus n; must be > 1 for each j. Then we are forced
to have

n1:n2:2.
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Now the key idea is to compute the exterior square L-function of w X 7/ in two
different ways. On the one hand, since it is of the form 7, H 7, with each n; a
cuspidal of GL(2)/F, we get

LS(S,W X 7T/5A2) = LS(Sﬂh X HQ)LS(Sa wl)LS(Sa w2)a

where w; is the central character of n;. This can be seen easily at the unramified
places v. Indeed, if 75, is the 2-dimensional representation of W;,v associated to
14,0, then the above identity is induced by the following:

A2(7'17v R Tow) ~ (11 ® T2) & det(T1,,) O det(r2y),

which is easy to verify.

Consequently, L (s, 7 X7, A?) is divisible by (two) abelian L-functions, namely
L3 (s,w1) and L°(s,wy).

On the other hand, denoting by o, (resp. o/,) the 2-dimensional representation
of Wr associated to m, (resp. 7,), we also have the identity

Aoy @ 07,) = A*(0y) @ sym*(0y,) @ sym®(oy) @ A%(a)).
This implies the following equality of L-functions:
L(s,m® 7', A?) = L(s,sym?(7) @ w) L (s, sym?(7') ® ),

where sym?(m) (resp. sym?(7’)) is the automorphic representation of GL(3, Ap)
associated to 7 (resp. 7’) by Gelbart-Jacquet ([GJ]), and w (resp. ') is the central
character of 7 (resp. 7).

Suppose 7 is not automorphically induced by an idele class character of a qua-
dratic extension. Then the main theorem of [GJ] says that sym?(r) is cuspidal; so
L3 (s,sym?(m) ® w') cannot be divisible by an abelian L-function. Consequently, if
neither 7 nor 7’ is automorphically induced, we get a contradiction, and so = X 7’
must be cuspidal.

It remains to consider the case when 7’ is of the form I (1), for p an idele
class character of a quadratic extension K. Then by (II) of section 3.1, we know
that 7 X 7/ must be isomorphic to IE(3), where 8 = mx ® p. By hypothesis,
7k is cuspidal and not isomorphic to 7x ® (1 0 @)1, where 0 is the non-trivial
automorphism of K/F. Then [ is a cuspidal, not isomorphic to 3 o 6. So by the
properties of automorphic induction (Prop. 2.3.3), # K 7/ is cuspidal.

O

3.3. Triple product L-functions: local factors and holomorphy. Let 7, 7/, 7"
be unitary, irreducible, cuspidal automorphic representations of GL(2, Ar) of cen-
tral characters w, w’, w” respectively. Put w = ww'w”. At each place v, let o, 0, ol
be the 2-dimensional representations of W, associated to m,,m, 7, respectively,
by the local Langlands correspondence for GL(2) ([Ku]).

Recall that L(s, ™ x 7’ x ") is the (correct) triple product L-function defined by
the Euler product [[, L(s, 0, ® 0, ®0.), while Ly (s, 7 x 7’ x ©") is the one given as
the ged of the integral representation of Garrett and Piatetski-Shapiro and Rallis,
and Lo(s,m x ' x 7”") is the one defined by the Langlands-Shahidi method.

The following basic fact, due to Ikeda in the archimedean case ([Ik3], Theorem
1.1.0), and Rallis and Piatetski-Shapiro in the non-archimedean case ([PS-R2]), will
be very important to us.
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Proposition 3.3.1  Let v be any place of F where m,, 7w,, 7l are all unramified.
Then we have
L(s,my x wly X 7)) = Ly(s,my X T, X 0.

By a slight refinement of known results we will also establish the following

Proposition 3.3.2  Let v be any place of F', where at least one of the local
representations m,, 7, wh is in the principal series (possibly complementary). Then

(a) L(s,my x 7, x wl) = Ly(s,m X 7, X ),
and
(b) g(s,my X T, X ) = e1(s,my X W, X 7).

Remark. When v is finite, if two of the local representations are non-supercuspidal,
then such an identity already follows from the works of Tkeda ([Ik2,3]). In the spe-
cial, but important, case when all of 7, w,, 7 are Steinberg, this was established
earlier by Gross and Kudla ([GK]). When v is archimedean, this is treated in [Ik3].
In this case, the Li-factor is defined only up to an invertible holomorphic function,
and so the content of this Proposition is that we can normalize it appropriately so
as to have the stated identities. Note also that one knows by the work of Shahidi
([Sh5]) the identity L(s,m, x 7, X 7l) = La(s, 7, X 7, X wl)) for any archimedean
.

We have stated here only what we need, and a stronger assertion will be proved
later in section 4.4 after establishing Theorem M.

Proof. By hypothesis, there exist quasi-characters p, v of F); such that one
of the local representations, say m,, is the principal series defined by (u,r). The
starting point for us is the following

Lemma 3.3.3  The set of poles of Li(s, my, x wl x @) is contained in the set of
poles of L(s,m, X wl, X 7).

Proof of Lemma 3.3.3. We first recall the following
Proposition 3.3.4  For any quasi-character X of F); one has
L(s, @7, 7)) = L(s, \® o, ® ol))
and
(s, \@m ) = (s, \Qol, ®ol).
For a proof, see the author’s paper with D. Prasad ([PR], Prop. 4.2), where the
identity is established via a global argument.
On the other hand, it is immediate that
(3.3.5) L(s,0,® 0, ®00) = L(s,p® 0, @ a)L(s,v® 0o, @ ol),
and
e(s,0p Qo ®00) = (s, p®ol, @ol))e(s,v @ o, Qo).
One also has the following result of Ikeda:
Proposition 3.3.6([Ik3], Thm. 1.8)  The quotient
Lqi(s,my x 7, x l))
L(s,p ® ), ® 1) L(s, v © 7, ® 1)

is entire.
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Set

L1 = s,y x (m)" x (7))

/ 1 / "
v(s,my X W X W) = e(s, Ty X W, X W
/( s U v v) ( v v ’b) L(S,ﬂ'vXﬂ';Xﬂ'{;)
Define ~; (s, m, x m, x 7y) analogously, for j = 1,2, using the L; and ¢;-factors
instead. (The gamma factor is called the &’-factor by some, eg., in [Ik1,2].)

In view of Propositions 3.3.4, 3.3.6 and identity (3.3.5), Lemma 3.3.3 will follow
once we establish

Proposition 3.3.7 We have:

V(8 Ty X Ty X ) = 71(8, Ty X W, X 7).

Using [Sh4], one can show such an identity with v, replaced by ..
Proof of Proposition 3.3.7. By Theorem 3 of [Ik2], we know that
(3.3.8) (8,7 X T, X m) = (s, @7, X 7o) y1(s, v @, X ).
By applying the identities (3.3.4), we then see that
(3.3.9) (8, m X 7, X 7)) = 11(s, p Q0oL QoN1(s, v R0l @0l).
In view of (3.3.5), the right hand side of (3.3.9) equals (s, m, x 7}, x w/) as claimed.

O
As noted above, this also proves Lemma 3.3.3.

Proof of Proposition 3.8.2:  Define the non-temperednes index (1) of a unitary
irreducible 7 of GL(2, F,) to be t, resp. 0, if 7 is a complelementary series attached
to (pl.|* p|.| %) with ¢ > 0 and g unitary, resp. 7 is tempered, and set (as in [Ik1])
My, 7, m) = A(my) + A(wh) + A(w2). Then it is easy to see that

(3.3.10). L(s,0, ®0l, ®@0l) is holomorphic in R(s) > \(my, ™, 7).

(This is the Galois analog of Lemma 2.1 of [Ik1].) We know by Shahidi ([Sh2]) that
A(7) is always < % for 7 € {my, 7}, w)/}. Consequently, A(m,, 7), 7l is always < 1/2
unless all the three representations are non-tempered. In the former case, i.e., if
Ny, 7, ml)) < 1/2, then L(s, 0, ® 0}, ® 07/) and L(1 — s,0) ® (0},)¥ @ (ol/)¥) have
no common poles. Ditto for the L;-functions by Lemma 3.3.3, and the assertion
follows in this case.

It remains to treat the case when A(7,, 7l, 7)) > 1/2 (which should not happen!).
Suppose 7, is in the principal series associated to the characters p, v. The unitarity
implies that the set {7, 7} equals {1, v}, and so one of the following happens:
(i) =p"t (i) m =v L In case (i), p and v are unitary, so we are in case (ii). So
7, is the complementary series representation associated to the pair of characters
(u, ). We may write p = x|.|*, for some unitary (possibly ramified) character y
and real number t. Then v = (Y 1)[.|7* = x|.| %, and so 7, is 71, ® x with 71,
unramified. Similarly, 7 (resp. =) is 7}, ® X (vesp. 77, ® x”), with 7} ., 77,
unramified and x’, ¥’ unitary. Then the integral representation for triple product
L-functions gives the identity (with & = xx'x”)

Ly(s,my x my, X ) = Li(s,m1,0 X 7, X (7], ® £)).

Consequently, if all three local representations are non-tempered, we may assume,
by replacing (m,, 7, 7)) by (71,0, 77 4, 71 ,®E), that at most one of them is ramified.

If £ is ramified, then both the L- and the L;-functions of (m,,w,, 7)) at s do not
share any pole with the corresponding contragredient functions at 1 — s, and the
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assertion of Proposition 3.3.2 follows. When ¢ is unramified, we can appeal to
Proposition 3.3.1.
O

Theorem 3.3.11  Let wr, 7', 7" be cuspidal automorphic representations of GL(2, Ar)
satisfying the following:

e At least one of {m,n’', 7"} is non-dihedral; and

e At every finite place v, at least one of {my, 7w, 7'} is in the principal series.

Then L(s,m x 7" x @) is entire.

In view of Proposition 3.3.2, it suffices to show that Ly (s, 7 x 7/ x ©”’) is entire,
and this follows from the work of Tkeda. But a remark is in order, however. In [Ik1],
one finds an assertion (see Theorem 2.7 there) that L;i(s,m x 7/ x ©”") is entire as
long as one of the three representations is not dihedral, without any local conditions.
This is as it should be, but a small correction needs to be made in his proof. To be
precise, in the case when w? = 1,w # 1 with associated quadratic extension K/F
(see pp. 231-234 of [Ik1]), he first shows that Li(s, g x 7l X 7%) is entire and
then proceeds to assert that any pole of Ly (s, 7 x 7’ x ") on R(s) = 1 is a pole of
Ly (s, g x 7 X 7). We do not see how to verify this claim; the problem is at the
bad factors. The way he tries to derive this is to assert the following two identities:

(Ik1) Li(s,mx 7' x7") = La(s,m x 7’ x ),
and
(Ik2) La(s,mx X e x 7)) = La(s,m x ' x 7" La(s,m x ' x 7" ® w),

and then appeal to Shahidi’s result ([Sho]):
(3.3.12) Ly(s,mx 7' x 7" @w) # 0 if R(s)=1.

We are unable to verify either of the identities (Ik1), (Ik2), though they both hold
locally almost everywhere.

This can be easily fixed as follows. First note that at any place v, (3.3.8) holds
with L replaced by Ls. Since 3/5 is the maximum possible value of A(w, 7/, ") (by
[Sh1]), the local factors (of either of three L-functions) is invertible on {R(s) = 1}.
So (3.3.12) holds with Ly replaced by the incomplete L-function L5, taken over the
places outside a finite set S. Choose S to be such that [Ik1], [Ik2] both hold with
Ly, Lo replaced by Lf, Lg repectively. (Over K, we remove the factors at places
above S.) It follows that L;(s, 7 x 7/ x ©') has a pole iff L%(s, 7 x 7/ x 7"’) does,
which happens iff LS (s, mx x 7h x 7.) and (hence) L(s, mx X 75 x 7/t) do. The
rest of Ikeda’s argument goes through verbatim.

3.4. Boundedness in vertical strips. A very important prerequisite to the ap-
plication of converse theorems is the knowledge that the relevant L-functions are,
in addition to being entire, bounded in vertical strips. This is what we prove here
for a class of triple product L-functions. After the proof of the main theorem in
Section 3.8, the same will hold for all such L-functions.

Theorem 3.4.1 Let F' be a totally compler number field, and let 71,72, 73 be
unitary, cuspidal automorphic representations of GLa(Ap). Assume that at any
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finite place v, at least one m;,, is in the principal series. Then the entire function
L(s,m1 x w2 X m3) is bounded in vertical strips of finite width.

Proof. In view of Propositions 3.3.1 and 3.3.2, we only need to prove the
assertion of the theorem for L; (s, 71 X ma X 73), which has an integral representation
involving a Siegel Eisenstein series £(s) on GSpg/F. Our key idea is to appeal to
the fact that £(s) is an eigenfunction of the Laplacian and then to make use of
Arthur’s truncation of £(s).

We now need to set up some notations and preliminaries. Let
G =GSp(6)/F ={g € GLg/F | 'gJg = \J, for some \ € G, },

where J = (IO3 7013), with I,, denoting, for any n > 1, the identity n x n-matrix.
The root system relative to the diagonal torus A in G is of rank 3 and is described
by
Cb:{iezi63|lgl,j§3},
where e1, ey, e3 are stadard basis vectors of Lie T{¥. Pick the following set of simple
roots:
A={a=e —ey, =€ —e3, 7=2e3}.

Denote by Py = AUy the corresponding minimal parabolic subgroup of G, whose
elements are matrices of the form (4 B), A, B,D € Ms, with A (resp. D) upper
(resp. lower) triangular. For each subset 6 of A, let Ay denote (Nseqker(8))”
A, My the centralizer of Ay in G, and Py = MyUy the corresponding standard
parabolic subgroup of G, split over F', containing Py. The Weyl group W is a
semidirect product (Z/2)3 x Ss, whose elements are made up of permutations of
{e1, e2, e3} (possibly) composed with flips (sign changes) e; — —e;, for i € {1,2, 3}.

Let P = Py, 3y = MU be the (maximal) Siegel parabolic subgroup with modular
function dp. We have the matrix representation

p_J, _ M| 0 I]X A€ G, A€ GLy
I O I 0T X='x ’
with d,(p) = |det A]S. Let K = [], K, be the standard maximal compact mod
center subgroup of G(Ap).
Let w; be the central character of m;, for each i < 3. Put w = wjwsws and
consider the space J(w, s) of right K-finite functions fs on G(Af) satisfying forall
p € P(Ar) and g € G(Ay)):

(3.4.2) Fo(pg) = wNAP* Fw(det A)| det AP £, (g).

We will henceforth take fs to be a decomposable, entire and K -finite section, which
is good in the sense of [Ik1], [PS-R]. The corresponding local space at v will be
denoted J, (w, s). The relevant Eisenstein series is then given by the formula (Vg €
G(Ar))

(3.4.3) E(f)@) = >,  f9)

YEP(F)\G(F)

(Note that J(w,s) corresponds to I(w,2s — 1) in Proposition 1.6 of [Ik1].)
Let ¢ = @1 ® 2 ® @3 be a cusp form in the space of 71 ® 72 ® w3 on H(Ap),
where

H = {(g1,92,93) € GL3 | det g1 = det g» = det g3)}.
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Denote the corresponding Whittaker function by W = W, ® Wy ® W3. Then one
knows (see [Ik1], [PS-R2]) that in Re(s) > 0 one has the identity (with fs = ®, fu.s):

(s4.4) (B0 = [ B(h. f)p(h)dh) = [] 9 (fo.ss Wo),
C(Ap)H(F)\H(AF) v

where each U(f, s;W,) is a local integral having Lq(s, 71, X T2, X T3,) as its
g.c.d. By [PS-R2] one knows that at every unramified v, ¥(f, s; W) coincides with
Lq(s, M1 X Moy X w3 ,,) for a suitable choice of f, 5. Hence we get

\Il(fv,s; Wv)

Ly(s,m x w2 x m3) [
1(s, 71 X w2 X 73) L1(8,T1,0 X T2 X T30)

veS

= <E(fs)a 90>Ha

where S is a finite set of places containing the ramified and archimedean places.

Recall that L (s, 71 X ma X 73) has an Euler product in R(s) > 1 and a functional
equation. It is clear that it is bounded for R(s) >> 0. So by the Phragman-Lindel6f
theorem, Theorem 3.4.1 will be proved if we establish that this L-function is of
bounded order in vertical strips of finite width.

U(fv,s;Wo)

1,0 XT2, v ><7T3,'u)

Lemma 3.4.5. For each v, the function G is entire and of

bounded order, for a suitable choice of f, s.

Y (fo,s:Wo)
L1(8,71,0 X720 XT3,v)
tireness of this function follows from the fact that L (s, 71, X 72,4 is the ged of the
local integrals U(f, s; Wy) as (fu,s, Wo) vary. The fact that g(s, 1,4 X T2 X T30)
is of bounded order is obvious at any v-adic place as the local integral is a rational
function of Nv™%. So let v be archimedean. Since we have taken F' to be totally
complex, F), is C. There is a local functional equation

The en-

Proof of Lemma.  Put g(s,m1,4 X T2p X M30) =

g(8, M1y X Ty X W) = €1(8,T1,5 X T2y X W3 4)g(L — 8,10 X Tay X ﬁ}iv),

where the intervening e-factor is, thanks to Proposition 3.3.2 (b), an exponential
function. So it suffices to prove that, for a suitable choice of f, s, the local integral
U(fy,s; Wy) is of bounded order in R(s) > 1/2.

Let A denote A(m1,) + A(m2,) + A(ms ), where, for each j, A(7;,.) denotes, as
in the proof of Proposition 3.3.2 on page 17, the non-temperedness index of 7;,. It
is known ([Ik3]) that the integral ¥(f, s; W,,) is absolutely convergent in R(s) > A,
defining a holomorphic function there. Noting that | f,, s| transforms under the left
action of P(F,) by a character depending only on R(s), we see that ¥(f, s; W,) is
bounded in any vertical strip {a < R(s) < b} if a > A.

Now suppose that at least one 7, ,, is tempered. By Gelbart-Jacquet ([GJ]), one
has A(m;) < 1/4 for any i. (For F' = Q, one even has the archimedean estimate:
Ami0) < 5/28 by [LRS1].) So A < 1/2 in this case, and by the remarks above,
U(fy,s; Wy) is bounded in any vertical strip {1/2 < R(s) < b} of finite width.

It remains to consider when every m; is non-tempered. Arguing as in the proof
of Proposition 3.3.2, we may assume that 71, and 7, are unramified and that
T3, is the twist of an unramified representation by a unitary character & which
is ramified if non-trivial. If £ = 1, i.e., when each 7, is unramified, it is proved
in [Ik3] that there exists a function f, s such that U(f, s; Wy) equals L1 (s, m1 4 X
T2y X T3,). S0 we are done in this case by the standard properties of the Gamma
function. Now suppose ¢ is non-trivial. We can then use the &-twisted form of the
unramified f, s emplyed by Ikeda, in which case ¥( f, s; W) will be essentially given
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by the integral expression preceding Lemma 2.3 in [Ik3], the change being that the
integrand will get multiplied by & (WR712)£ (k), where ¢ is the character of the
maximal compact K, whose restriction to K, N P(F,) is £&. (Here the notations
are as in [Ik3].) Now we appeal to the fact that the Whittaker function W , (resp.
Wy v, resp. Ws,,) satisfies a second order differential equation on diag(z, 1) (resp.
diag(y, 1), resp. diag(z,1)). Using integration by parts, we can then express an
elementary function times ¥(f, s; W,) in terms of a finite sum of integrals, each of
which converges absolutely in $(s) > A — 1/2 and is bounded in {a < R(s) < b} if
a> A —1/2. Since X is < 3/4 by [GJ], we are done.

O

Since an entire function which is the ratio of two entire functions of bounded
order is itself of bounded order, it suffices then to establish that the entire function
(E(fs),¢ym is of bounded order. (Such a reduction was employed in [RS] for an
analogous situation.)

Since ¢ vanishes rapidly at infinity, it will suffice to establish the following

Proposition 3.4.6  Fiz a vertical strip = in C of finite width, and a Siegel set
S in G(Afp). Then there exist N € Z and a function ®(s) of of bounded order,
depending only on the width of Z and S, such that

[E(fs)(@)] < 12(s)] 19/,
for all g in S.

By a function of bounded order we mean a quotient &;(s)/&2(s) such that, for
some tg > 0, C' > 0, and M € Z,, we have for all s =z 4 iy € Z with y > #y, the
bound |¢;(s)| < Celv™ for j =1,2.

Proof of Proposition. Let us choose a sufficiently small compact, open subgroup
K of G(Ar) such that E(fs) is right invariant under K, and such that ¥V :=
G(F)ZI\G(AF)/K is a smooth manifold. Fix an ¢ > 0, and also a chart on Y
defining the differentiable structure. We will work with the Siegel set modulo K,
though we will suppress this in our notation.

For every g in S, choose a neighborhood V' =V, of g with non-empty interior,
which is small enough to lie inside the unit ball of radius € in local coordinates.

Recall that that E(fs) is an eigenfunction of the Laplacian A on all of Y, as it
is defined by the Casimir operator, and it is moreover locally in LP, for any p > 1.
we will exploit this.

Lemma 3.4.7  Let g,V be as above. Then there is a polynomial P(s) independent
of g such that

EU) @I < [P)LIES, 5)l]2,v-

Proof of Lemma Let V' =V be any neighborhood of g with non-empty interior
such that its closure is contained in the interior of V. It suffices to prove the asserted
bound for ||E(f, s)||co,v’. (We write ||.||p, x for the LP-norm over X.) As remarked
above, E(fs) is an eigenfunction, say with eigenvalue Ay, of the second order elliptic
differential operator A. It can be seen that E(f) is in the localized Sobolev space
H¢(V) for any n. And since V/ C V, E(fs) equals a function in H, (V) on V.



22 Dinakar Ramakrishnan

Lemma 3.4.8  There exists a polynomial Q(X) in C[X], depending only on e
and \g such that

E(S, $)lloo,vr < [QAIIE(S, 8)l|2,v-

Since Ag is a polynomial, in fact quadratic, in s, Lemma 3.4.7 follows from this.
When \; is real, which happens in our case iff s lies on the unitary cross, the results
of section 4 of [So], in particular the identity (4.2) and Lemma 4.1 , easily imply
Lemma 3.4.8. The methods of [So] extend to the case of complex eigenvalues as
well, but T. Wolff has pointed out to us how this Lemma can be deduced more
directly from the local regularity properties of elliptic differential operators; see
Lemma 3.4.9 below. (The difficult part of [So] involves precisely bounding the
degree of Q(X), but it is not important for our purposes.) For any r, denote by
|I-[l(2,r);x norm associated to the rth L-derivative on X so that |[ul| (2, x equals
> wi<r 10"ull2,x, with the 9” denoting distribution derivatives.

Lemma 3.4.9 Let Q be a subset of RN contained in the unit ball of radius e,
and ) a subset of Q with non-empty interior such that ' C €. Then we have the
following:
e (1) For any integer r > N/2, there exists a constant C1 > 0 depending only
on € and A such that, for all u in H,(Q),

ulloo,0 < Crllulliz,ry:0-

e (2) For any integer i > 2, there is a constant C; > 0 depending only on € and
A, such that for any u € H;(Q):

[ull 2,000 < Cs ([ull2,0r + [|Aul|2,i—2)0) -

Proof of Lemma 3.4.9.  If we write H°(Q) for the subspace of H({2) obtained by
completing CS°(€2), then the first (resp. second) assertion of this lemma is proved
on pages 148-151 (resp. 262-267) of [GiT] (resp. [Fo]). Moreover, given any u in
H,(§2), for any r, and a subset € of non-empty interior with its closure contained
in the interior of €2, we can find a smooth cut-off function 1 such that v = 9u is in
HY(2) and v = u on Q' (see, for example, pages 275-276 of [Fo]), and we can do this
uniformly for all 7. Since we can bound |[¢)ul|(2,),o, by a universal constant times
||| (2,r),0, we get the first part of the Lemma, and for the second part we only
need to bound ||A(vu)||(2,i—2),0 by a constant times [|A(u)|(2,—2),0+ ||ull(2,i-1).0-
We will suppress © henceforth. Recall that [[A(yu)|](2,i—2),q is (by definition)
Ypj<i—2 [ID7A@u)]]; whichiis 32, <; 5 [|D7((AY)u+ (Vi) (Vu) +1(Au))||o; this
can be bounded by

> Y UIDYAY)D (W)l +..).

|v|<i—2B+vy=v

It is easy to estimate derivatives of 1, and moreover, all but one of the terms
involves at most ¢ — 1 derivatives of u and is hence bounded by a constant times
|lu||2,7 — 1). The remaining term involves i — 2 derivatives of Au, and this is
bounded by a constant times ||Aul||2,i—2). The constants involved are controllable
in terms of e.

O

Proof of Lemma 3.4.8. Fix a g9 and identify an open neighborhood of g
containing V with an open neighborhood of RY, N =dim(Y’), contained in the
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unit ball of radius e. By shrinking V', we may asume that E(f,s) is in H;(V) for
all i. By the first part of Lemma 3.4.9, we are left to estimate ||E(fs)||,r,v for
an r > N/2, which we will take to be of the form 2m. Choose neighborhoods Vj,
0 < j <m—3, of g such that we have the nested inclusions

Vi=VpsC...V1 CVy=V,

such that the closure of each V; is in the interior of V1. Apply the second part of
Lemma 3.4.9 succesively with u = E(f,) and (4,2, Q) = (2(m—3), Vin—j, Vim—j+1),
with j ranging over {0, ..., m — 3}, repeatedly making use of the fact that AE(fs)
is AsE(fs). The assertion of Lemma 3.4.8 follows at go. Now if g is any other
point, we can translate the neighborhood V' to g and see that the Go-invariance
of A gives the corresponding result with the same constant.

O

Let T € Lie Ar be a sufficiently regular parameter, i.e., with (v, T') being suffi-
ciently large for each v in A. Denote by AT E(fs) the Arthur truncation of E(f)
(cf. [A1] or [MW1], p. 35). One knows that AT E(fs) decreases rapidly at infinity,
and is hence is in LP(Y') for all p. Clearly, ||||2,c, is bounded above by [|¢]]2,c
for any square-integrable function % on Y. (By abuse of notation, we are writing
|.|lp,c instead of ||.||pv.) So, in view of Lemma 3.4.8, Proposition 3.4.6 (and the
Theorem) will be proved once we establish the following

Proposition 3.4.10 Fiz =, S as above. Then there exist N € Z and functions
D1(s), Pa(s) of bounded order such that, for all g in S,

(4) AT E(fs)ll2.c < [@1(s)]
and, up to shrinking V =V to a smaller neighborhood of g with non-empty interior,
(i) IE(f,5) = ATE(f,8)l|oo,v < [D2(s)] |]g]|™-

Our first object will be to prove the bound (i) of this Proposition. For the sake
of an inductive argument later, we will in fact need to analyze the L?-norm of
the truncation of a class of relative Eisenstein series ET (h¥) (see (3.4.15) below)
attached to any standard parabolic subgroup P’ = M’U’ and a Weyl element w
representing a double coset in Wy \W/Wps. We set

hﬁ-” = My (fs)a

where M, is the intertwining operator defined by

My (fs)(g) = fs(w71UQ) du.

~/(U0ﬁw00w1)(Ap)
Here Uy denotes the opposite unipotent subgroup of the maximal unipotent sub-
group Up.

Remark 3.4.11.  Since f, is good, it factorizes as [], fo s and at any v where w
is unramified, f, s is the standard function ¢, s and My, (¢, s) = ¢y (s)dy 5, Where

v,89

c(s) =11, ¢¥(s) is a ratio of abelian L-functions — see [Ik1], [PS-R1]. Moreover,

v v

the possible poles are contained (cf. [Ik1]) in the set {2,1,0, —1}.

Recall that every element w in the Weyl group W is determined by what it does
to {e1, ez, e3}, and that each e; gets sent to *e;, for some j. We will adopt the
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following notation: If w sends e; to es, es to —ey and ez to —eq, for example, we
will denote w by [3,2,1]. Put

(3412) Yyv o= {wlaw2aw3;w4;w57w65w75w8}
with wy = id. = [1,2,3], we = [2,3,1], w3 = [1,2,3], wy = [1,2,3], ws = [1,3,2],
wg = [1,3,2], wy = [2,1,3] and wg = [2, 3, 1].

For each (standard) parabolic P' = M'U’ # G, define a subset X7 a7 of X7 by
the following table:

(3.4.13)

Ay | By
{O[,ﬁ} {wl,wz,w4,w5}
{o v} | {wr, wa, ws}

{67} | {wr, wr}

{a} {w1, wa, w3, w4, w5, we}
{/8} {wl;w3aw4;w67w7aw8}
{7} {w1, wa, ws, wr}

4 b)Y

Lemma 3.4.14 Let P’ = U'M’ be a standard parabolic. Then Xpra is a
set of representatives for W \W /Wy, where Wy (resp. Way) denotes the Weyl
group of the roots relative to M’ (resp. M ). Moreover, for any w € Xarar, Qb =
wPw tNM' is a parabolic subgroup of M', P := Q! -U’ (but not wPw *NP’)is a
(standard) parabolic subgroup of G' contained in P', and if we put U, = wPwNU’,
then U' = U, - V., where V) = wUow ™ N Up.

Proof of Lemma. Put
. B wv) >0, Vv € A
WM’M/ a {w ew ‘ wil(l/) >0, Vve Ay [

Then it is well known that W3, . is a set of representatives in W for Wi \W/Way.
Explicitly, one has, when Ay, is empty,

* wy, Wy 1= [372 I]) W3 1= [33 Qa i]’ Wy, Wy,
Wi = 37 :

We, Wy 1= [25 3a 1]7 ws
The only difference between this set and the ¥, defined in the previous page is
that ws, w3, wy are replaced by ws, w3, w7. But it is easy to see that for j = 2,3, 7,
w; = wiw’, with w; € Wy Thus, when Ay is empty, Xar,n0 is also a set of
representatives for W \W/Wjs in W. The other cases of M’ can be checked by
comparing with the table on page 21 for X7 /. The remaining assertions of the

Lemma follow by a straightforward computation.
The relative Eisenstein series of interest to us attached to (P’, w) is given by

(3.4.15) EY () = Y h¥(rg).

YEQL, (F)\M'(F)

Denote by AT-F'EF'(h¥) the truncation of ET'(h*) as defined on page 97 of
[A1]. Let (AT-F'EP (h2), AT-F' EF' (h)) pr 1 denote the scalar product defined on
page 45 of [A2], which specializes to usual scalar product when P’ = G.
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Proposition 3.4.16 (AT-L'EP' (hw), AT-P' BF’ (hY))pr,1 is of bounded order.

Proof of Proposition 3.4.16. To mesh better with the notations of Langlands
and Arthur we will shift the parameter s by 1/2 so that the unitary axis is the line
R(s) = 0 (instead of R(s) = 1/2), but by abuse of notation we will continue to
denote the Eisenstein series by EX (h).

For s, ' in C, set
(3.4.16) Ws,s') = (NPT BT (). AT ET (0 5)) e
which is a meromorphic function in (s, s') whose poles are in a union of vertical lines
s = ¢; and horizontal lines s’ = ¢/, depending on the polar set of EF (h?), which
is in turn governed (cf. [La4]) by the constant term along Py. The intersection of
this polar set of h(s,s’) with {s + s’ = 0} has only a finite number of points in
=. So, for large enough tg, the function s — h(s, —3) is well defined and finite on
{s=z+iyeZ | [yl =to}.

By Langlands we can write EX'(h¥) in terms of residues of cuspidal Eisenstein
series. In the notation of [A2], page 43, it is a finite sum of terms of the form

(3417) RQSAHAS (FB (A)a A+ ﬁs)a

where S is a suitable flag of affine subspaces t = A¢+Lie(Ap: )" in Lie(Ap)™, # in
Lie(Ap; )*, B = MpUp arelevant parabolic subgroup of P, and Fg a meromorphic
function of A on Lie(Ap)* with singularities lying in hyperplanes.

Note that hY is asociated to the representation induced from P) by a one-
dimensional representation, which is residual on M associated to a representation
induced by a character £} of the minimal parabloic £, which is exponential in A
and of bounded order in each coordinate direction. The construction of Langlands
([Lad]) is natural relative to induction in stages, and we see that E¥(h¥) must be
the residue of the cuspidal Eisenstein series defined by £}. Hence the only relevant
B occurring in (3.4.17) is Py. In this case the function Fp(A) is right K-finite in
the space of the representation induced by £'. By the Iwasawa decomposition we
see then that Fg(A) is of exponential type.

By Lemma 3.1 of [A2], we see that h(s,s’) is a finite sum of double residues
(3.4.18) ResaagResa o, whT (A + Bs, N + s, Fg(A), Fp(A')),
where (cf. page 46 of [A2])

SN 0 = S Y

PICP' ¢ /eWP'(B,Py)

(M (), Mt/’,y(él»e(”‘*t’)\)(ﬂ
TP P Lcag; O P00

Here a(P;, P') is a non-zero constant, and W7¥ ' (B, Py) is the set of isomorphisms,
possibly empty, of LieAp onto LieAp, leaving LieAps pointwise fixed which arise
from the restricted Weyl group W (G, Ag). (In our particular case, P, has to be
B = Py.) We refer to [A2] for a definition of Ag.

The c-functions associated to the intertwining operators M;  (of (3.4.18)) act-
ing on functions ¢(\) coming from induced representations from the Borel are,
just like the c¥ associated to M, discussed in Remark 3.4.11, ratios of abelian
L-functions ([La7]), hence bounded of order 1. Combining this with that fact that
Fg(A) is of pure exponential type, we see that the expression w’"* ' (A+Bs, —N +
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Bs, Fg(A), Fg(A')) is of bounded order in A and A’. Its singularities are in hyper-
planes, and evaluating the residues for A — Ag and A’ — Ag/, we see that the
double residue of (3.4.18) must be of bounded order in (s, s’) along any direction.
This then implies the result we want about h(s, —=3) in {s = z+iy € E | |y| > to}.

O

Proof of Proposition 3.4.10.  Part (i) of this Proposition clearly follows by
applying Proposition 3.4.16 in the special case P’ = G. It remains to prove (ii).
First we need to derive a manageable expression for E(fs) — ATE(fs). This takes
some work and we start with some preliminaries.

For each standard parabolic P’ = M'U’, M’ = Centg(4’), put

My = {m € M'(Ar) ’ vy e'xém(M' Gm)} '

Then there exists a map
IOgM, : M/(AF) — Lie(A/)(C

defined so as to satisfy (x,logy,(m)) = log|x(m)|, for all m € M’'(Ap) and x €
Hom(M’',G,,). Then Mj(Ap) is precisely ker(log,;). On the other hand, the
Iwasawa decomposition G(Ar) = U'(Ap)M’'(Ar)K leads to a map

mpr 2 G(Ap) — My(Ap)\M'(AF),

given by sending g to the coset M{(Ar)m, if g = umk, with v € U'(Ar), m €
M'(Af) and k € K. Thus log;, cmps is a map from G(Ar) into Lie(4")c.

Note that Aa is the center Z of G. We have a decomposition Lie Ay = Lie Zr ®
0§/, where o}, is the subspace generated by the set Ay of simple roots relative
to M’. Denote by 7p the characteristic function of the sum of Lie Zg and the
interior of the cone of ¢, generated by Ay Then one has (see p. 35 of [MW1])

(VG € G(Ap)):
(3.4.17)
(E(fs) — ANTE(f))(9)

= > (-pUmATdmA) N 2 (log s (mp (v9) — T E(fs) P (79),
PCP/CG YEP(F)\G(F)

where T" is the projection of T' in Lie Ag, and E(fs)ps is the constant term of
E(fs) along P’, namely:

(3.4.20) E(fs)pr(9) = E(fs)(ug) du.

/U’(F)\U’(AF)

Proposition 3.4.21 (a) For each P’, the constant term of E(fs) along P’ is
given by

E(for(@) = Y. E”(h")9)

’LUGEM’M/

for all g in G(Ap).
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(b) For T large enough (and reqular), we have

E(fs) — NTE(fs)
= Y (-pmATdimA) N i (logy (mpr (g) — TV ET (M (f:))(9)-

PoCP'CG WES py ap

Remark: For P’ = Py, the expression given in part (a) is well known by the work
of Rallis and Piatetski-Shapiro ([PS-R1]) — see also [Ik1]. For cuspidal Eisenstein
series (which is not what we have here), there is a general formula for any reductive
group G — see Section I1.1.7 of [MW1], for example.

Proof of Proposition 3.4.21 (a) Combining (3.4.3) and Lemma 3.4.14, and re-
membering that U/ denotes wPw N P’, we get

E(fs)P’(g) = Z Z

wWET N, ! YEQ, (F)\M'(F)

/ fs(w uyg) du.
UL (F\U/ (Ar)

Now we use the decomposition U' = U], - V, of Lemma 3.4.14, and recall the
P(F)-invariance of fs together with the fact that the intertwining operator M, is
defined (see (3.4.12) by integration over V,, (Ar). We see that, up to normalizing the
measures so that volume of the compact group (wUw™*NU")(F)\(wUw™'NU’)(AF)
is 1,

E(f)r(9) = > > Moy (f5)(~g) du.

wE pr mr YEQ,, (F)\M'(F)

This proves (a).

(b) By definition, @ \M' = P, \P’. Since mp- is left invariant under elements of
P’(F), the assertion is a consequence, in view of the identity of (a), of the following

Lemma 3.4.22  For g lying in a fized Siegel domain, we have for T sufficiently
large (and regular):

pr(logpy (v9) — TVEL (fs(v9) =0 if € G(F) — P'(F).

Proof of Lemma.  We may restrict ourselves to a Siegel domain of the form
S. = QALK, where Q is a compact subset of P’(Ar), ¢ a positive real number, and
A’ the set of elements ¢ in A’(Ap) such that |v(t)| > ¢ for each v in Appr. As usual,
one chooses ¢ to be small enough and {2 large enough so that G(Ar) = P'(F)&,.

Let v € G(F) — P'(F'). Then by the Bruhat decomposition, v = @w, for some
Weyl element w, v € P'(F) and @ € U/, (F) := wU'(F)w L.

By the Iwasawa decomposition relative to P’, we can write any g in G(Ap)
as a product uxtk, with u € U'(Ap), © € M{(Ar), t € A'(Ar) and k € K.
For any root v (in ® ;) let us write H,(g) for |v(t)|, which is well defined. By the
Iwasawa decomposition relative to Py, we can also write g = ntoky withn € Ug(Ap),
to € Ag(A) and k € K. Then H,(g) identifies with v evaluated at the projection
of tg in A’(Ap). For w € W, we will write v¥(t) = v(t¥) := v(wtw™!).

Claim 3.4.23. Let @ € U/ (F). Then 3v € ®},, such that v = v~! on A’ and
H, (i) <1.
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Suppose the claim holds. Put v = yaw € G(F). Then for any g = uzk € G(Ar),
with z € U'(Ap)M'(Ar), u € U'(AF), k € K, we have

H,(vg) = H,(twuzk) = Hv(au"2") = H,(z")H,((z") * (au")z").

Note that H,(z%) = H,»(z) = H,(g9)"' < ¢™!. On the other hand, since the
conjugate of uu™ by 2 lies in U/ (F), we have by the claim, H,((z*) ™! (au®)z¥) <
1. So H,(vg) < ¢ L. Since v is a positive sum of roots in A/, we can take T to be
large enough so that v(T") > ¢!, Then we must have 7p: (log, (vg)) —T") = 0.
It remains to prove the claim. We can define local “heights” H, , in the obvious
way to get H,(g) = [, Hv,u(gv)- So it suffices to find a v with v = v~ such that
H, ,(u,) < 1 everywhere. It is instructive to begin by looking at the situation for
the basic case G’ = SLy, and the argument for G is simply a jazzed up version.
Recall that at each v, the standard maximal compact subgroup if G’ (F; ( v) is G'(Oy)
of F is p-adic, SO(2) if F,, = R, and SU(2) if F, = C. Let @ = (19), with
x € F*. By the Iwasawa decomposition, we can find a € F; and y € F), such that
ko= (95" 0) (§Y)(L9) = (« '@tz a” ') lies in K,. In the non-archimedean
case, if 2] < 1, we take a = 1 (and y = 0) and if |z| > 1, we are forced to have
la| < |T|’ Suppose F,, = R. Then k'k must be the identity matrix, and this forces

(and y = —z). The complex case is similar and we get |a| = \/1—
lz[2+1

| | = 2+
Now consider the global case and write a for the idele (a,) with a, being (for each
v) the element chosen above (and denoted just by a for brevity of notation). Then
we get

|10
= 1}:[0\/1+| %,,Qte 1_[\/1+||2
by Artin’s product formula, which gives [],,, |z|,* = 1 (since z € F*). Take
v to be the root (&9) +— a/b. Clearly, U = w(§%)w™! and v* = v~1, with
w = (9 '). Moreover, since |a| <1, we have H,(u) < 1.
In our case (G = GSp(6)), we will now give the argument for the most basic
case P’ = Py and U,, = Uy. The other cases can be easily extracted from this. We

write

1 0 0
t7 1 0 0
_ ty ta 1
U1 U2 us 1 7t1 tltg — tg
(%1 (2] V3 0 1 7t2
w; Wy W3 0 0 1

with u;, v, w;, t; in F. Let v be a place. By the Iwasawa decomposition (over F},),
we can find t = diag(a,b,c,a” ;b7 c7t) € Ag(F,) and n € Uy(F,) such that
k:=t"'n"lu lies in K/, the standard maximal compact subgroup of Sp(6, F,). If
we write

1 S1 S3 Z1 z9 z3
0 1 s Vi Y2 Y3
0 0 1 .
n 1= $11 L2 Ox?’O , with s = s3 — s1892,
0 —81 1 0
—s) —s2 1

then we have:
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w26 (k)

where
au aus aus
X = b(—s1u1 + v1) b(—s1ug + va) b(—s1us + v3)
c(—shur — sou1 +w1)  c(—shug — Sav2 + wa)  c(—shuz — s2v3 + ws)
and
a —aty —ath
Y = 7b51 b(Sltl + 1) b(Sltg — tg)

—she  c(shty — s2)  c(shth + sata + 1)

In the non-archimedean case, we are then forced to have: |al, ||, |c| < 1. More-
over, suppose some element, call it d, of the set {u1, us, us, t1,t4} is non-zero. Then
we can take a = 1 if d is integral at v and we are forced to have |a| < |d|~t if d
is non-integral at v. In the archimedean case, just as in the SL(2) case, we have

a = L_ . Again the global a has absolute value bounded above by 1. In this
o

case, we are done by taking v = 2e; and w to be the longest root. Suppose every
element of this set is zero. then t3 is also zero, and we get

1 0 O
01 0 0
o 0 tp 1 L
B 0 0 0 10 0 v
U1 U2 U3 0 1 7t2
w1 W2 W3 0 0 1

with k7 in K/. So we may replace @ by ﬂkfl. Then we get a condition on b
analogous to the one on a above if some element of the set {v1,va,vs, s1,t2} is
non-zero. In this case we take v to be 2es. If every element of this set is also zero,
then since u is non-zero, some w; must be non-zero, which leads to a condition on
|c|. We are done by taking v to be 2es in this case. This finishes the proof of the
Claim, Lemma 3.4.22 and Proposition 3.4.21.

Proof of Proposition 3.4.10 (contd.) In view of part (b) of Proposition 3.4.21,
it suffices to show that, for all P' = M'U" and w in Wy 5, we have the bound

(3.4.25) B (B)l2,v; < 1@(s)] [19ll™,
for some function ®(s) of bounded order and integer N.

Since Y has finite volume, say A, which is bigger than or equal to vol(Uy), we
get the bound

(3.4.26) 1E7 (B)2v; < ANET (h)]loo,v;-

Let us call (P’,w) convenient if P, = P’. This happens in two cases: (i) when
P’ = Py and w arbitrary, and (ii) when P/ = P and w = w; (identity). Suppose
we are in either of these cases. Then EF (k%) = M, (fs). Recall that the effect of
the intertwining operator M, on fs is given by a ratio of abelian L-functions (see
Remark 3.4.11), which are functions of bounded order by Hecke. Moreover, the
definition of fs shows that its value at g is bounded by a constant (independent
of s) times ||g||", for some integer r depending on the width of Z. Making use of
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(3.4.26), and possibly shrinking V, slightly, we can find an N for which (3.4.25)
holds in such a convenient case.

Now suppose (P’,w) is inconvenient. Then EF' (M, (f,)) is left-invariant under
U'(Ap)M'(F). Let A’ denote the center of M’ and put K/ = K N M(Ap ). Since
P’ commutes with A’, we get the requisite behavior of EX’ (My(fs)) along the
root directions along A’. It remains to study the growth along the root directions
which are trivial on A’. By the decomposition G(Ar) = P'(Ap) K~ K, the problem
reduces, in view of (3.4.26), to bounding the growth, for each k € K /(Koo N ML),
of the function on Y’ := M'(F)(Z')F\M'(Ar)/K’ given by g — ET (h¥)(gk).
Let W, denote the corresponding neighborhood (of the image of g), which we may
shrink to be in the open ball of radius € in the local coordinates, and let Wg’ be the
subset defined by U, ; such that Wg’ C W,. Note that the relative Eisenstein series is
an eigenfunction of the Laplacian A’ defined by the Casimir operator on M’(F)
with eigenvalue AJ, which is again a quadratic function of s. Applying the earlier
argument (see Lemmas 3.4.8, 3.4.9), and making use of the K-finitenes of f5, we
get for a polynomial P’(s) independent of g and k:

(3.4.27) NET (W) loows < [P ()NET ()] |2,ws -

We can truncate B’ (hY), and in view of Proposition 3.4.16, it is enough to estimate
||[EF (hv) — AT-F'EP' (h)l2,w; - In view of the obvious analog of Proposition
3.4.21, it will suffice to bound the function ||EP”(H;‘)|\007Wé for any parabolic P”
contained in P’, Weyl element u in Wy \Wyy /Wiy and function HY = M, (hY).
In the convenient case the proof goes ‘as above. In the inconvenient cases, the
parabolic taking the place of P; is necessarily the minimal parabolic Py. So if we
truncate one more time, all the resulting cases will be convenient. Done.

O
This finishes the proof of Propositions 3.4.10, 3.4.6, and hence Theorem 3.4.1.

Remark 3.4.28. There is clearly an inductive argument buried here which should
help understand the nature of integral representations of L-functions for larger
groups.

3.5. Modularity in the good case. Let F' be a totally complex number field.
We will call a pair (7, 7") of cuspidal automorphic representations of GL(2, Ar)
good if at each finite place v, either 7, or 7 is not supercuspidal.

Theorem 3.5.1  For every good pair (m,w’), there exists an isobaric autormorphic
representation 17" of GL(4, Ap) such that the identities (L, ), (£4), (Loo) asserted
in Theorem M hold, where v is an arbitrary finite place.

Proof. In view of Lemma 3.1.1 we may, and we will, assume that neither 7= nor
m’ is dihedral, i.e., automorphically induced from a grossencharacter of a quadratic
extension, and that 7’ is a not a character twist of .

Our first object is to define, for each place v, an irreducible admissible represen-
tation I, of GL(4, F,,) canonically associated to the pair (7, 7). As before, let o,
(resp. o7,) be the 2-dimensional representation of W, attached to 7, (resp. ;) by
[Ku]. First let v be archimedean. Then the local Langlands correspondence exists,
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and we may (and will) take II, to be the representation associated to o, ® o), by
the method of [La 1].

Next consider the non-archimedean case. Here we will, for every n > 1 with d a
divisor of n and a supercuspidal representation 3 of GL(d, F,), denote the associated
(generalizd) special representation of GL(n, F,) by Sty (5). By hypothesis, one of
the local representations, say m,, is not supercuspidal. If 7, is a principal series
representation attached to quasi-characters p, v of F}, then let us set

I, == (p®m,) B (Vo).

It remains to consider when 7, is the special representation Stz(v) defined by a
quasi-character v. If @ is supercuspidal, then let us set

I, := Sty(m, @ v).

If @) is a principal series representation defined by quasi-characters p/, v/, then we
set
II, := (St2(v) ® p) B (Stz2(v) ® V).
Finally, if 7] is also a special representation St(v’), for a quasi-character v/, then
we set
I, := Stz(vv') B v/

If we put II := ®,11,, then II is an irreducible, admisible, generic representation
of GL(4,AFr). We want to apply the converse theorem for GL(4) (cf. [CoPS],
which is recalled in Theorem 3.1.3). Let T be a finite set of finite places containing
those v where both 7, and 7/, are in the discrete series, and let 1 be an arbitrary
cuspidal automorphic representation of GL(m, Ar) with m =1 or 2, such that 7,
is unramified at every v in T. We are interested in the formally defined Rankin-
Selberg L-function L(s,II x 7)), and more precisely in the local integrals which show
up in the proof of the converse theorem in [CoPS]. By [JPSS] we know that, at
each finite place v, the L-factor L(s,IL, X 1,) is the ged of the corresponding local
integrals (s, W,, W/, ®,); when v is archimedean, we know (cf. [JS4]) that the
poles of U(s, W,,, W/, ®,) are contained in the poles of the L-factor. Moreover, we
have a local functional equation involving the correct L- and e-factors. See also
[MW2]. (When v is archimedean, it is not known if the L-factor is realized in terms
of the local integrals, unless one extends the function spaces [JS4], but this will not
play any role for us.) Using this in conjunction with Theorems 3.3.11 and 3.4.1, we
see that we can apply Theorem 3.1.3 and conclude the near-automorphy of II once
we note the following

Lemma 3.5.2 At every place v of F, we have the identities
L(s, 11, X ny) = L(s,my X 7, X 1)

and
e(s, Iy, X 1) = (s, my X 7 X 1y).

Proof.  We have For m = 1, this is simply a rewording of Proposition 3.3.4.
So assume that m = 2, and denote, for each v, the 2-dimensional representation
of W}U associated to 7, by 7,. Suppose v is non-archimedean. If 7, is a principal
series representation defined by quasi-characters p, v, then o, is simply u @ v, and
L(my X7l x1) (resp. e(my X, X 1),)) coincides with L(s, u®o’, @7,)L(s, vQ0., &T,)
(resp. (s, u ® o @ 7,)e(s, v ® o), ® T,)). Again the assertion follows from Prop.
3.3.4, thanks to the definition of II,. It works similarly when 7/ is in the principal
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series. So we may assume that both m, and =) are in the discrete series. Then
by the choice of (T,n), 1, is an unramified principal series. If m, and «! are
both supercuspidal, the assertion follows once again by Prop. 3.3.4. It remains to
consider when (i) 7, is special and 7/, is supercuspidal, and (ii) 7 and 7’ are both
special. The Lemma followsm in both cases, due to our choice of II,, from prop.
81 and Theorem 8.2 of [JPSS]. Finally let v be archimedean. But here, one knows
by [Lal] that L(s,IL, x n,) (resp. &(s,IL, x n,)) equals L(s, 0, ® o), & 7,) (resp.
e(s, 00 ® 0l ® 7). Done.

So now we know that II is nearly automorphic, i.e., that there exists an automor-
phic representation II; of GL(4, Ar) such that II, is isomorphic to II; , for almost
all v.

Lemma 3.5.3.  There is an isobaric automorphic representation Iy of GL(4, Ap)
such that 11, ~ 115, for almost all v.

Proof. Indeed, this is obvious if I1; is cuspidal. So assume not. Then II; is a
Jordan-Hoélder component, thanks to Prop.2 of [La6], of a representation induced
from a cuspidal automorphic representation (3 of (the Levi component) of a stan-
dard parabolic subgroup P of GL(4). There is by definition an isobaric constituent
II; of this same induced representation, whose local components are at the unram-
ified places the same as those of II; (and those of II). Moreover, by the reverse
implication of prop.2 of [La6], I3 is also automorphic.

O

Now Theorem 3.5.1 follows by applying Proposition 3.2.1 by taking 7 X7’ to be
I5.

Remark 3.5.4. It is natural to wonder, since 7 is generic, if it is exactly the
same as IIs. We will show later (in section 4.3) that this is indeed the case. We
will then have a uniqueness statement for 7 X 7',

3.6. A descent criterion. The object of this section is to prove the following
simple extension of the Proposition in section 4.2 of [BR]. (There is a mistake in
[BR], but this does not affect sections 1-4. In any case, the proof given below is
completely self-contained.)

Proposition 3.6.1 Fizn,p € N with p prime. Let F' a number field, {K;|j € N}
a family of cyclic extensions of F with [K; : F| = p, and for each j € N, 7; a
cuspidal automorphic representation of GL(n, Ak;). Suppose that, for all j,r € N,
the base changes of m;, 7, to the compositum K; K, satisfy
(DC) (7)), 5, =~ (Tr) KK, -
Then there ezists a unique cuspidal automorphic representation © of GL(n,Ar)
such that
(mMk; ~ 7,

for all but a finite number of j.

Proof. First we need the following

Lemma 3.6.2 Let 7 be a cuspidal automorphic representation of GL(n, Ap). Then
there exist atmost a finite number of idele class characters x such that

T ~TRX.
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Proof of Lemvma.  Suppose m is isomorphic to its self-twist by an idele class
character y. First we note that, if w is the central character of m, then the central
chacter of m ® x is simply wx™. Thus x must have order dividing n.

Next we claim that y must be unramified at any finite place v where 7 is un-

n
ramified. Indeed, for any such v, L(s, ) is by definition, of the form [] L(s, u;),
j=1
for some unramified characters p; of Fy; this L-factor is not 1. On the other hand,
n
if x, is ramified, L(s, T, ® X,) is none other than [] L(s, u;x), which equals 1.
j=1
Hence the claim.

Counsequently, if S is the (finite) support of the conductor of 7, then the number
of possible self-twists is bounded by the number of idele class characters x of F'
such that the (finite) support of the conductor of x is in S. Every such character
cuts out, by class field theory, a cyclic extension F(x)/F of degree m < n, which
is ramified only at the places in S. But the number of such extensions is, for each
m < n, known to be finite by a well known variant of a classical theorem of Hermite.
The assertion now follows.

O

Now we continue with the proof of the Proposition. For each j, let 6; be a
generator of Gal(K;/F'), and §; a character of F' cutting out K; (by class field
theory). Note that, for each ¢ > 1, the pull back to K; of 6; by the norm map N;
from K; to F cuts out the compositum K; Kj.

We claim that

(363) YRS Qj ~ 5 (Vj)

For all j,r >, let 6 denote the automorphism of K; K, such that (i) 0; ,|rx; = 0;
and (ii) 6;-|x, = 1 (where 1 denotes the identity automorphism). It is easy to see
that the base change of m; 0 0; to K; K, is simply (7;)x;k, © 0;,. Applying (DC),
we then have

(mj 00K,k =~ (Tr) KK, 0 Ojr = (M) KK, =2 (7)) K K,

since 0;, is trivial on K. Since K; K, is a cyclic extension of K; of prime degree,
we have by Arthur-Clozel (Prop. 2.3.1)

mjob; ~ mj ® (6 0 Nj)™,

for some m, € {0,1,...,p— 1}. For every fixed r > 1, and for all k # r, we then
have the self-twist identity

mj = w5 ® (0y 0 Nj)™ (6 0 Nj) ™.

Note that 6, o N; and 6 o N; must be distinct unless their ratio is a power of §;.
So the Lemma above forces m, to be 0 for all but a finite number of r. Then, since
(3.6.3) is independent of r, the claim follows.

As a result, by applying Prop. 2.3.1 again, we see that, there exists, for each
j > 1, a cuspidal automorphic representation m(j) of GL(n, Ar) such that

™ = (7(5)) K, -

Such a 7(j) is of course unique only up to twisting by a power of §;.
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It is important to note that, for any r # j, we have the following compatibility
for base change in (cyclic) stages:

(3.6.4) () k) k5, = (7()k, )k, K, -
We see this as follows. Let v be a finite place of K; K, which is unramified for the

data. Denote by u (resp. w, resp. w’) the place of F' (resp. Kj, resp. K,) below v.
If o, denotes the representation of Wy, ~associated to 7(j),, then

Ki)w ) K.y 3
rengj_)Kr)v(res{Kj)w(au)) o~ rengj;(T)v(restr);J(au)).

Then (2.3.0) implies the local identity (for all such v)

(7)) (50 (5K = (T()u) (2,)7,) (5 K)o
The global isomorphism (3.6.4) follows by the strong multiplicity one theorem.
We can then rewrite (DC) as saying, for all j,r > 1,

(m() k) x, = (7()k; ) KK, -
Applying Prop. 2.3.1, we get

(), = (7(r)i; ® (8, 0 Nj)™ ),

for some integer m(r, j). We can replace 7(r) by (r) ® 6, ™" and get

()i, =~ (m(r))K;-
Then, by replacing 7(j) by a power of §;, we can arrange for w(j) and 7(r) to be
isomorphic. In sum, we have produced, for every pair (j,r), a common descent, say
w(j,r), of {m;, mr}.
Fix a,b € {1,...,p— 1}, and consider the possible isomorphism
(3.6.5) w(j,r) ~ n(j,r) ® 5;5;b.

We claim that this cannot happen outside a finite set S, j of pairs (j, 7). To see this
fix a pair (4, £) and consider the relationship of 7 (i, £) to 7(j,r). Since m (i, ¢) and
7(j, £) have the same base change to Ky, they must differ by twisting by a power
of d¢. Similarly, (7, ¢) and = (4, r) differ by a character twist as they have the same
base change to K. Put together, this shows that 7(i,¢) and «(j,r) are twists of
each other. Then (3.6.5) would imply that

(i, ) ~ 7(i,f) ® 5;-’5;1’.
The claim now follows since (by Lemma above) (i, £) admits only a finite number
of self-twists and since the characters 670, b are all distinct for distinct pairs (j,r)
(as a, b are fixed).
Now choose a pair (j,r) not belonging to S, for any (a,b) € (Z/p)* x (Z/p)*,
and set
7w = w(j,r).

We assert that, for all but a finite number of indices m,
TK,, 2 Tm.

It suffices to show that, for any large enough m, # = = (j,r) is isomorphic to
either mw(j,m) or w(m,r). Suppose neither is satisfied. Then there exist a,b €
{1,...,p— 1} such that

w(jym) ~n(j,r)®5; and w(m,r)~n(j,r)® 5?.
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We also have = (j, m) ~ w(m,r) ® 6¢,, for some ¢ € {0,1,...,p— 1}. Putting these
together, we get the self-twisting identity
w(j,r) ~ 7(j,r)® 53-154’5;16.

T

By our choice of (j,7), ¢ cannot be 0. For each non-zero ¢, the set of indices m
for which such an identity can hold is finite (again by the Lemma). Hence we get
a contradiction for large enough m, which implies that a or b should be 0. The
Proposition is now proved.

O

3.7. Modularity in the general case. In this section we will complete the proof
of Theorem M without any hypothesis on (7, 7). we begin by noting the following
(well known)

Lemma 3.7.1 Let v be a finite place where m, is supercuspidal. Then there is a
finite solvable, normal extension E of F, such that the base change m, g is in the
principal series.

Proof. Let o, denote as before the two-dimensional representation of W;,U
associated to m,. By [Ku], 0, is an irreducible of Wg,. The structure of the Weil
group implies that o, must in fact be of the form 7, ®, where 7, is an irreducible C-
representation of Wg, factoring through a finite quotient, and v a quasi-character.
So there is a finite (necessarily solvable) normal extension E/F, such that the
restriction of 7, to the Weil group of E(v) is trivial. (Take E to be the fixed field
of F, under the kernel of 7,.) Then by the functoriality of base change, () E(v)
must be in the principal series, in fact of the form (18 1) ® (v o Ng(y)/F)-

It should be noted that by using Krasner’s lemma, we can find a solvable Galois
extension k’/k of number fields with local extension E/F, such that Gal(k'/k) is
isomorphic to Gal(E/F,) (see [PR], sec.4, Lemma 3, for example). But we cannot
hope to be able to take k to be F'! But we can find (see below) a finite chain of
cyclic extensions of F' with good properties, but the field on top need not be normal
over F'.

Proof of Theorem M  We may, by Proposition 3.1.1, assume that we are
not in one of the special situations (I), (II), (III) treated there.

Given any finite solvable group G, define its length {(G) to be the length ¢ of
any chain {1} = Go € G; C ... C G¢ = G, with each G; normal in G;4; of
prime index. Let S = S(m) denote the (possibly empty) finite set of finite places
where either m, is not supercuspidal. At each v € S, let {(m,) denote the length
of a minimal Galois extension L(v)/F, such that the base change (7,)r(y) is in the
principal series. Let £(7) denote the maximum of {{(w,)|v € S}, and let S’ denote
the subset of S where this maximum is attained. Further, for each v in 5’, let p(v)
denote the maximum over all L(v), of the degree, required to be a prime or 1, of
the largest cyclic extension K(v) of F, contained in L(v). Let p = p(n) be the
maximum of p(v) over all v in S’, and let S” denote the subset of S” where p(v) = p
(and ¢(m,) = ¢(m)). Note that p is a prime unless 7 is good over F, i.e., has no
supercuspidal components, in which case p = 1.



36 Dinakar Ramakrishnan

Let us set

(3.7.2) r(m) = ({(x), p(7)).
We will order these pairs as follows: (£,p) < (¢, p) if either £ < ¢ or if £ = ¢ and
p<p.

Suppose r = r(7) is (0,1). Then, for any quadratic extension K’ which is totally
complex, the assertion holds by Theorem 3.5.1. Also, given any finite place u, we
can find a totally complex, quadratic extension K’(u) such that u splits in K'(u).
Applying the descent criterion (Proposition 3.6.1), we can find a common descent
having the requisite properties.

Now let r > (0,1), and assume by induction that the Theorem is proved (over
all number fields K) for pairs (71, 72) of cuspidal automorphic representations of
GL(2, Ax) with r(m, m2) < .

Fix, at every place v in S”, a character x, of Ff cutting out a K(v) (as above)
of degree p.

Enumerate the set of finite places where 7 is unramified, and list them as
{’Ul,’Ug,... ,’Uj,...}.

Fix an index j > 1 (for the moment), and let S(j) be the union of v; with S”.
Let xy, denote the trivial character of I .

Now by the Grunewald-Wang theorem (see [AT], chap. 10, Theorem 5), we can
find a global character x(j) of Cr of order £ whose local restrictions are given by
X at every v in S(j). (Note that the set Sy which occurs in loc. cit. is empty in
our case as each local degree is p or 1 and cannot be divisible by 4, thus allowing
us to find x(j) of order p, not just 2p.) Let K be the p-extension of F' cut out by

x(4)-
By construction we have, for every j > 1,

(3.7.3) r(m) < r.

Thus, by induction, the Theorem holds for mg, for each j. Note that if the
automorphic representation 7k, is not cuspidal for some j, it must be dihedral
(with p = 2), and by the remark earlier, we may assume that we are not in this
case. Put

(3.7.4) I = 7, X 71'}(],.
The non-dihedrality of 7 also gives the following

Lemma 3.7.5 There ezist at most a finite number of indices j such that 11; is
not cuspidal.

Proof. 1t suffices to prove that, outside a finite set of indices, we have

1. 7k; is not dihedral;
2. mg; is not the twist of 7r’KJ_ by an idele class character of Kj.

Suppose 7, is dihedral. Then, by Gelbart-Jacquet ([GJ]), the symmetric square
of 7, is Eisensteinian, while by asumption, sym?(x) is not. This forces p to be
3 and sym?(m) to be automorphically induced by a character y of Kj. In other
words, the symmetric squre of 7 admits a self-twist relative to the character of F'
corresponding to K;. By Lemma 3.6.2, this can only happen for a finite number of
j-

We may then asume that 7 is not dihedral and consider the second assertion.
Suppose 7 is the twist of 7r’Kj by an idele class character. Then, for a character
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pof Cr,, LT,(S, II; ® ) must have a pole at s = 1, where 7" is any finite set of
places of K;. By the inductivity of L-functions, the same holds for the (L-function
of the) automorphic induction I II;]- (IL;). Let us choose T” to be the inverse image
of the set T of places of F' where m or n’ or K; is ramified. Then it is easy to see
that we have the identity:

L7 (s, 15, (I ® ) = L7 (s, x (' B IE, (11)))-

Since T' contains all the ramified places, the right hand side L-function is an in-
complete form of any of the triple product L-functions attached to (mw,#’, I fgj (1))-
By [Ik1], it cannot have a pole unless 7 is dihedral. Done.
O
Consequently, after shrinking the index set by removing an appropriate finite
subset and renumbering it, we may assume that

I1; is cuspidal for every j.

Next we fix a pair (j,r) of indices and consider the descent criterion (DC') of
Proposition 3.6.1. Let w be a finite place where ((Il;)x;x, )w, ((Il;)x; K, )w and
K;K; are all unramified. Then, by construction, both these local representations
correspond to the restriction (to the Weil group of (K, K;).) of 0, ® o), where
v signifies the place of F' below w. (Recall that o,, 0] are associated to m,, 7,
respectively.) This leads to the identity

LY(Sv (Hj)KjKr) = LY(S7 (HT)KjKr)a

for a large enough finite set X of places, which gives (DC) by the strong multiplicity
one theorem.

Applying Proposition 3.6.1, we then get a unique cuspidal descent IT on GL(4)/F
such that, for all but a finite number of indices, we have

HK]. ~ Hj.

Finally, by construction, each (unramified) finite place v; splits completely in
Kj; let w; be a divisor of v; in K. This implies (by the definition of base change)
that, for almost all j, we have

L(S,ij) = L(s, (Hj)wj) = L(s, (ﬂ'Kj)w X (7r'K]_)w) = L(s, 7 X 7).

Similarly for the e-factors. Thus II is a weak (tensor product) lifting of (7, 7’). By
Proposition 3.2.1, it is also the strong lifting.
O

4. Applications

4.1. A multiplicity one theorem for SL(2). Denote by L3(SL(2, F)\SL(2,AF))
the subspace of cusp forms in L?(SL(2, F))\SL(2, Ar)). It is acted upon by SL(2, Ag)
by right translation, and this action is unitary relative to the natural scalar product
on L?(SL(2, F)\SL(2, Ar)). The main result of this section is

Theorem 4.1.1  The representation of SL(2, Ar) on L3(SL(2, F)\SL(2,Ar) has
multiplicity one.
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This was conjectured by Labesse and Langlands (see [LL], [Labl]). The Theorem
says that the commutant of this representation is abelian, and equivalently, since
the space of cusp forms is completely reducible, every irreducible unitary represen-
tation of SL(2, Ar) oocurring in (the decomposition of) this space appears with
multiplicity one.

The stable trace formula for SL(2) was analyzed deeply, and in detail, in [LL].
We refer to this paper for all the background material. The results there show in
particular that multiplicity one for SL(2) is a consequence of the following

Theorem 4.1.2  Let 7, " be unitary, cuspidal automorphic representations of GL(2, Af).
Suppose we have, for almost all v,

(LL(v)) Ad(m,) ~ Ad(x).

Then there exists an idele class character x, which is unique if ™ is not automor-
phically induced by a character of a quadratic extension, such that

T~ TRy
If T and ' have the same central character, then x is quadratic.

Here Ad(n) denotes the automorphic representation sym? (m)®w ! of GL(3,Ap),
where w is the central character of 7.

As noted in the Introduction, in the special case when 7 and 7’ are defined by
holomorphic eigenforms, with F' necessarily totally real, various people have known
the proof of this result by making use of the associated ¢-adic repreentations. But
this does not work in general, and the main point here is to give a unified proof
using the modularity of 7 X 7.

Before beginning the proof of this Theorem, we would like to indicate the fol-
lowing concrete

Corollary 4.1.3  Let w, 7’ be unitary, cuspidal automorphic representations of
GL(2,AF) of trivial character. Suppose we have at every unramified finite place v,

(Sq(v)) ay(m)? = ay(7)?,

where a,(7) =tr(A, (7)) is the v-th Hecke eigenvalue of w. Then there is a unique
quadratic idele class character x such that

ap(7") = Xo(ww)ay ("),

for almost all v, where w, denotes the uniformizer at v. If in addition, the con-
ductors N, N’ of m, 7" are square-free, then x = 1.

Theorem 4.1.2 implies Corollary 4.1.3:

Let 7,7’ be as in the Corollary, and let v be a finite place where both = and
7’ are unramified. Since by hypothesis, the central characters are trivial, we may
write A, (7) = diag(ay, oy ) and A, (7') = diag(a,,,”"). Then the Langlands
class of Ad(m,) (resp. Ad(w))) is given by {a2,1,a,2} (resp. {o/ 1,0/, 7%}).
Consequently, we have (in R(s) > 1)

a%m+1+a;2m

log(L(s, Ad(m))) = 1+ >, =

m>1
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and
—2m

/ 2m
+1+
log(L(s, Ad())) = 1 + Z oy
m>1
We claim that, for every m > 1,
a%m + a;2m _ a;Zm + a/vam
By induction on m, it suffices (by the binomial formula) to verify
. 2 —2
(g + 0, )™ = (" + oy )™,
which follows immediately from the hypothesis (Sq(v)). Hence the claim.

Since (LL(v)) then holds for almost all v, the Corollary follows by applying
Theorem 4.1.2.

Proof of Theorem 4.1.2.
First note that, since (LL(v)) holds for almost all v, the automorphic represen-
tations Ad(w) and Ad(n’) are isomorphic by the strong multiplicity one theorem.

Suppose 7 is dihedral, i.e., of the form IZ (1), for a character p of C, for some
quadratic extension K of F. Its central character then identifies with pgd, where
1o is the restriction of p to Cp and § the quadratic character of Cp associated to
K/F by class field theory. Denote by 6 the non-trivial automorphism of K/F. We
claim that

(ad) Ad(m) = 6 B I (n/(u o 0)).

Since (po)x = p(p o ), this is equivalent to the identification of sym?(7) with
po B IE(1?), which is easy to verify at the unramified places. So the claim follows
by the strong multiplicity one theorem ([JS2]).

A particular consequence of the claim is that L(s, Ad(7) ®6) has a pole at s = 1.
This forces «’ also to be dihedral, for otherwise, L(s, Ad(7’) ® &) will be entire
([GJ]). Then 6 must in fact occur in the isobaric decomposition of Ad(n’ ), which
in turn is a summand of 7' ®«’Y. Then L(s, 7’ K7’ ® ) also has a pole at s = 1.
This implies that

7~ 7' ®6.
In other words, 7’ is of the form IE ('), for a character u’ of Ck.
Now, base changing Ad(w) =Ad(n’) to K, and using (ad), we get the identity

p/ (o @) B (nob)/p = p'/(n' 0 0) B (1 00)/1
Replacing p/ by i/ o 0 if necessary, we can then deduce that
p/p' = (u/p') o 0.
In other words, there exists a character y of Cr such that u’ = pxx. Then we have
"= = Ig(p) 9 x = TeX,

as desired. To verify the middle isomorphism, one first checks it locally almost
everywhere and then apply the strong multiplicity one theorem.

So we may assume henceforth in the main case of interest, namely when neither
7 nor 7’ is dihedral. Put
II=nXr.
We know that it is an isobaric automorphic representation of GL(4, Ar). The main
point here is to prove the following
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Lemma 4.1.4. Il is not cuspidal.

Proof of Lemma. Let S be a finite set of places containing the ramified places
(for 7 and 7’) and the archimedean ones.

Suppose II is cuspidal. Then, by [JS2], we know that the Rankin-Selberg L-
function L (s, II x IIY) must have a simple pole at s = 1.

On the other hand, at any finite place v, if we denote (as usual) by o, (resp. o)
the representation of W, , we get, as 0, ® 0,/ ~ Ad(0,) @1, the following identity:

(0, ®0,) R (0, ®0l)Y ~ 1& Ad(o,) ® Ad(o)) @ Ad(o,) @ Ad(a)).

At the unramified places v, we know that o, ® o), corresponds to IL,. So this
translates to the L-function identity

(Id) L°(s,lI x 1Y) = ¢2(s)L° (s, Ad(m)) L7 (s, Ad(x")) L® (s, Ad(7) x Ad(x")).

But we know that Ad(w) is isomorphic to Ad(s’). Moreover, since Ad(m) =
sym?(7) ® w™1, we have

Ad(r)Y ~ sym?(rY) ® w ~ Ad(n),

as sym?(7") is sym?(7w) ® w2,

Consequently, L (s, Ad(n) x Ad(n’)) has a pole at s = 1. Also, since 7 and
7’ are non-dihedral, L®(s, Ad(r) and L(s, Ad(r’) are entire (cf. [GJ]). Then the
identity (Id) implies that L (s, II x ITV) has at least a double pole at s = 1, leading
to the desired contradiction.

O

Thus 7, 7’ are non-dihedral cusp forms on GL(2)/F with 7 ® 7/ not cuspidal.
Then by the cuspidality criterion of Theorem M (see page 9), which was proved in
section 3.2 (on pp. 14-15), we see that 7’ must be isomorphic to 7 ® x for an idele
class character x. Done.

O

4.2. Some new functional equations. Let 7y, mo, 13, 14 be cuspidal automor-
phic representations of GL(2, Ar), and let S be a finite set of places containing the
archimedean and ramified places. Let us set

L5 (s, M1 X Ty XT3 X Ty) = H det(I—(Nv) %A, (11)RA, (12) @ Ay (13) @ Ay (m4)) 1,

vgsS
L (s, sym?(my) x 7y X 73) H det (I—(Nv) " *sym? (A, (11))R A, (12) @ Ay (13)) 71,
vgS
and
L5 (s, sym® (1) x 72) H det(I — (Nv) ®sym®(A, (7)) ® Ay(m2)) *.
vegS

These functions of s converge absolutely in some right half plane.

Theorem 4.2.1. FEach of the three (incomplete) Fuler products above admit
meromorphic continuations to the whole s-plane. In addition, each of them can be
completed to a convergent Euler product over all places in R(s) > 1, admitting
meromorphic continuation and a functional equation of the usual form (as con-
jectured by Langlands). They are non-zero on the line s = 1 with no pole except
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possibly at the point s = 1. The first two L-functions are in fact analytic everywhere
except for possible poles at s =0, 1.

Remark: The meromorphic continuation and functional equation of the third of
the L-functions above is already known by the work of Shahidi using the theory
of Eisenstein series ([Sh2]). But his approach does not seem to be able to give
invertibility in $(s) > 1 except for a possible pole at s = 1.

Proof.  Since by Theorem M, there exist m3 K w3 and w3 K w4 in A(4, F'), we

may set
L(s,m1 X w2 X w3 X m4) = L(s, (m1 K ma) X (w3 M my)).

By the definition of X, the unramified local factors of the L-function on the right
agree with those of L (s, 71 X ma X 73 x 74). This way we get a complete Euler
product in R(s) > 1, and the remaining assertions follow immediately for the first L-
function from the corresponding ones, due to Jacquet, Piatetski-Shapiro and Shalika
([JPSS]), Moeglin-Waldspurger ([MW2]) Shahidi [Sh6], for the Rankin-Selberg L-
functions on GL(4)xGL(4).

We complete the second and third L-functions by respectively setting
L(s,sym?(m) x mo x w3) = L(s,sym?(my) x (mo X 73))

and
L(s,sym?(m1) x (my ¥ 772)).

L(s, (m1 K ma) ® wy

L(s,sym®(my) x ) =

where wj is the central character of 7.

The verification of the fact that the unramified factors of these L-functions are
the right ones is an easy exercise, which is left to the reader. Since the Rankin-
Selberg L-functions on GL(n)xGL(m) are non-zero in {{R(s) > 1} and are analytic
everywhere except for possible poles at s = 0, 1, all the assertions of Theorem 4.2.1
follow except for knowing that the third L-function is non-zero at s = 1. So we will
be done if we prove

Lemma 4.2.2.
—ords—1L(s, 11 K7y ®wy) < —ords—1L(s, sym2(7r1) x (m W 7g)).

Suppose L(s,m1 K w3 ® wy) has a pole at s = 1. Since 71, 72 are cuspidal, the
pole has to be a simple pole, and besides, this can happen iff 75 is isomorphic to
the contragredient of 71 ® wy. It then follows, since m M7y = Ad(m1) B 1, that

(Fac) L(s,sym?(m1) x (71 M my)) = L(s, Ad(m1) x Ad(my))L(s, Ad(71)).

We have seen earlier that Ad(my) is self-dual. Hence L(s, Ad(m1) x Ad(m)) has a
pole at s = 1. We claim that L(s, Ad(ny)) is holomorphic at s = 1, which is clear
if m is non-dihedral, as Ad(nw;) is then cuspidal by [GJ]. So suppose 7 is of the
form I () for a character of (the idele classes of) a quadratic extension K of F,
with non-trivial automorphism 6 over F. Then, by the identity (ad) appearing in
the proof of Theorem 4.1.2, L(s, Ad(n1)) can have a pole at s = 1 iff u/(puo 6) is
the pull back by norm to K of either the trivial character of Cr or the quadratic
character § (attached to K). In either case, we will have u = u o 6, contradicting
the cuspidality of 1.
Consequently, the right (and hence the left) hand side of (Fac) has a pole at
s = 1. This proves the Lemma and completes the proof of the theorem.
O



42 Dinakar Ramakrishnan

Remark 4.2.3. It is now clear how we can also define, in an analogous way, the
epsilon factors, both locally and globally, for the L-functions under consideration.

4.3. Root numbers and representations of orthogonal type. Let k£ be a
non-archimedean local field of characteristic zero. Our first aim is to prove the
following, which is not clear even if one knew the local Langlands conjecture for

GL(4).

Proposition 4.3.1.  Let n < 4, {n;|j < n} supercuspidals of GL(2,k), with
corresponding 2-dimensional irreducibles {7;|j < n}. Then we have

L(s,mu X ... Xny) = L(s,1 ®...Q 1)

and
e(s,m X ... X)) =e(8,11 Q... 7).

Proof of Proposition. For n = 1, this is contained in [Ku]. It is also well known
for n = 2; see Prop. 4.2 of [PR], for example. So assume n > 3. If either of
the n; is the local automorphic induction of a (quasi)character pu of E*, for some
quadratic extension E/k, then the Proposition is the same as Prop. 4.2 of loc. cit.
Even otherwise, we can modify the argument there and appeal to the global Rankin-
Selberg product to get what we want. We give the details for completeness. We start
by appealing to Lemma 3, sec. 4 of [PR], and find a number field F' with k£ = F, for
some place u, and irreducible 2-dimensional representations o; of Gal(Q/F) with
solvable image such that their respective restrictions to the decomposition group at
u identify with 7;. Solvability allows us to apply the theorem of Langlands ([La5])
and Tunnell ([Tu]), and find corresponding cuspidal automorphic representations
m; with 7, ~n;. Then we choose a finite order character u of C'r which is highly
ramified at all the ramified places except v and which is 1 at u. Comparing the
functional equations of L(s,m X ... X m,) and L(s,01 ®...® 0, ), we proceed as in
Proposition 3.2.1 and deduce the assertions above.

O

Remark 4.3.2. In chapter 3 we asociated, to each pair (w,7’) of cupidal
automorphic representations of GL(2,Ar) an irreducible admissible representa-
tion IT of GL(4, Ar) and an isobaric automorphic representation 7 K n’ such that
I, ~ (r ®7’), for almost all v. Using Proposition 4.3.3 we can conclude that such
an identity holds at every v.

To clarify this remark, we will digress a bit about the local Langlands conjecture
for GL(4), which predicts a canonical bijection, preserving local factors, between
the set A°(4, k) of irreducible, supercuspidal representations 1 of GL(4, k) and the
set R%(4,k) of irreducible, continuous, 4-dimensional C-representations 7 of Wj.
There is a numerical bijection between the sets ([Hed], compatible with twisting
by unramified characters. A theorem of M. Harris ([Ha]) gives a (geometrically
defined) bijection 7 — 7, which gives moreover an equality of epsilon factors of
pairs

(s, 7) = (s, x 1),
for all irreducibles 7/, with corresponding 7/, of dimension m, for all m < 4, pro-
vided the residual characteristic is prime to 2m. On the other hand, a recent
result of Jeff Chen ([Ch]) asserts that any 7 in A%(4, k) is uniquely determined by
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the collection of epsilon factors (s, x '), as i’ ranges over A°(m, k) for m = 1
and m = 2. Consequently, as noted in [PR], sec. 4, the local Langlands conjecture
follows for GL(4) in the odd residual characteristic case by combining these results
of [Ha] and [Ch]. In the case of even residual characteristic, one known by [He2],
one knows the bijection for representations of “cyclic type”, i.e., those which admit
a quartic self-twist. Moreover, Prop. 4.1 of [PR] shows how to extend this and
treat also the case of representations admitting just a quadratic self-twist.

Now let GO(4, C) denote the subgroup of GL(4, C) cousisting of orthogonal simil-
itudes with similitude factor p. Let GSO(4, C) denote the kernel of the homomor-
phism GO(4,C) — {£1}, g — u(g) 2det(g). In this section we will be concerned
with the subset R (4, k) of 7 in R°(4, k) whose image lie in GSO(4, C). Tt is well
known that there is a short exact sequence

1—C* — GL(2,C) x GL(2,C) — GSO(4,C) — 1,
inducing a surjection
Hom(Wj, GL(2,C) x GL(2,C)) — Hom(Wj, GSO(4, C)).

See, for example, the proof of Lemma 4 in sec. 5 of [PR]. Consequently, every 7
in R'(4, k) is a tensor product 73 ® 79, with each 7; an irreducible of dimension 2.
The pair (71, 72) is not unique, as it can be replaced by (71 ® v, 72 ® v~ 1), but this
is the only ambiguity.

Motivated by this, we define A'(4, k) to be the irreducible supercuspidal repre-
sentations n of GL(4, k) which are of the form 7, K72 (see sec. 3.7 for a definition).
In what follows, we will make use of the local Langlands correspondence for GL(2)
and GL(3), established respectively by Kutzko ([Ku]) and Henniart ([Hel]).

Proposition 4.3.3. There is a unique bijection T — 1 between RY(4,k) and
AL(4,k), compatible with twisting by characters and taking duals, such that the
following identity of epsilon factors holds for all 7" € R%(m, k), with corresponding
n' € A%(m, k), form =1 and m = 2:

(s, m7) = els,n x ).

Proof. Let 7 € R'(4,k). Then we know by the remark above that it is of
the form 7 ® 15, with 7, 72 irreducible 2-dimensionals of Wy. Let 11,72 be the
respective supercuspidals of GL(2, k) given by the local Langlands correspondence.
Put

n = n K.
Suppose 17 = 11 K72 is not supercuspidal. Then in its isobaric sum decomposition,
there must occur a supercuspidal, say 3, of GL(m, k), for some m < 4. (Since
7 is a representation of Wy, there will be no summand of Steinberg type.) Then
L(s,3 x 3Y), and hence L(s,n x 3¥) will have a pole at s =0 (see [JPSS], [JS2]).

Now let A denote the irreducible m-dimensional representation of Wj attached
to B by the local Langlands correspondence, which we can do by [Ku] and [Hel]
as . < 3. Then, by the Proposition above, L(s,7 ® AV) equals L(s,n x ), and
hence must have a pole at s = 0 as well. This cannot hapen as 7 is an irreducible
of dimension 4, and X is one of dimension < 4. This proves that 7 is supercuspidal,
and we get a “reciprocity map”

r: RY4, k) — A'(4,k).
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The e-factor identity of Prop. 4.3.1, when used in conjunction with Jeff Chen’s
theorem ([Ch]), shows the injectivity of r. It is also easy to see that r is compatible
with taking duals and twisting by characters.
The surjectivity of r is shown by reversing the construction of 7 — 7. The
ireducibility of 7 is checked by using Prop. 4.3.2.
O

Let 71, o, w3, 4 be cuspidal automorphic representations of GL(2, Ar). Define
its root number to be

W(7T1 X g X T3 X 7T4) = HW(T&'LU X T2y X T3,y X 77'4,1));

v

where the local root numbers are defined by
W(ﬂ'l,v X 2,0 X T30 X 774,1}) = 6(5,7{'17@ X 2,0 X T30 X 774,1))-

Note that the functional equation implies that the root number is 1 in the self-dual
situation.

Theorem 4.3.4. Let m;, j < 4, be as above. Assume that the central character
of each m; is trivial. Then we have

W(W1X7T2X7T3X7T4) = 1.

When all the 7;’s are isomorphic, say to m, the root number is W (Sym?(m) x
Sym? (7)) W (Sym?(7))2W (1), and this theorem follows in that case from Proposi-
tion 6.1 of [PR].

Proof.  This is an immediate consequence of Proposition 4.3.1 in conjunction
with the method of [PR] (see also [Ro]). We give the argument for completeness.

It suffices to show that the local root number at any place v is 1. Clearly, for
each j < 4, the associated representation o , of W;,v is self-dual with determinant
1 as m; has trivial central character. Put

By = 01,0 @024y Q03,4 & 0y -

By Prop. 4.3.1, we are reduced to showing that W(3,) (with the obvious definition)
is 1. Being the tensor product of an even number of symplectic representations, (3,
is orthogonal, and by Deligne ([De]) the root number of 3, := 3, © 4[1] is given by
its second Stieffel- Whitney class wo(f,). But since Sp(2, C) is simply connected,
and since the image of 3, in O(4, C) factors through a 4-fold product of Sp(4, C),
this image is simply connected. It follows that 3, lifts to the Spin group, which is
a 2-fold cover of SO(4,C). Consequently, wg(ﬁv) is trivial, from which it follows
that W (8,) = W (B,)W (1)* is 1.

O

4.4. Triple product L-functions revisited. Let w1, w2, w3 be cuspidal automor-
phic representations of GL(2, Ar) of respective central characters wy, ws, ws. Recall
from section 3.1 the definitions of the three candidates for the triple product L-
functions and e-factors associated to (w1, 72, 73). The object of this section is to
extract the following precise statement from Theorem M.
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Theorem 4.4.1.  Let 7j, j < 3, be as above. Then we have, at every place v,

(a) (b)
Ly(8, 10 X T2 0, T3,0) = L(s, 10 X T2, T34) = La(8, 10 X T2 0, T3.0),

and
(a) ®)
51(55 T10 X T2 v, 77'3,1)) = 5(5; T1,0 X T2 v, 71'37@) = 52(*9’ T1w X T2 0, 71'37@)

Proof.  Since we know this (see section 3.3) at archimedean places, we may
restrict our attention to finite places; fix such a place u. Let p be the residual
characteristic of v. Recall from the discussion in section 3.3 that (a) (resp. (b))
is known (i) when all the representations are unramified, and (ii) when one of
the representations is not supercuspidal (resp. when all the representations are
tempered).

One has the following (at any place v) by the works of Shahidi:

(4.4.2) V(8 M1y X Moy X T3y) = Y2(8, M1 4 X Moy X T3 p).

In view of the remark above, the only case to check is when one of the represen-
tations, say 71 ., is a subquotient of a principal series representation defined by
quasi-characters i, u2 of F;. Then one has by the multiplicativity of local factors
([Sh4]), the identity

Y2 (8, 10 X T20 X T30) = Y28, 1 @ 2,0 X T3.5)72(8; o T2,0 X T3 0).-

The analog for v(s, 71, X 2,4 X 73.,,) holds by the decomposition of 01 ,®02 », Q03 4.
Done.

Our first object is to establish a weak analog of (4.4.2) for the ~;-factor in the
place of the ~»-factor.

Lemma 4.4.3.  Let S(p) be the set of places of F' above p. Then we have

H V(8 T1,0 X Ty X T3,) = H Y1(8, T1,0 X T2,0 X T30).
vES(p) veS(p)

Remark 4.4.4. 1In [Ik1], page 229, corollary to Lemma 2.2, one finds an argument
to prove Thm. 4.4.1 (a) in the special case when each m;, is dihedral, being
associated to a character x;, of a quadratic extension Kj, of F,. But in the
course of the argument, there is an assertion that there is a quadratic extension
K; of F with local extension Kj,/F,, together with an idele class character x
of K, such that (1) x agrees with x;, on K;, (which is fine) and that (2) the
cuspidal automorphic representation 7; of GL(2, Ap) defined by x; has principal
series components at all the places v outside u. We are unable to make sure that
(2) can be chieved. (One cannot in general control the behavior of x; at an infinite
number of places!) However, the argument can be made to work with a slight
refinement as follows. We can find Kj, x; satisfying (1) and also (2’): x; is trivial
at every place in S(p) — {u}; this is possible by the Grunewald-Wang theorem
([AT]). By applying Lemma 4.4.3 above, and using Lemma 2.1 of [Ik1], the desired
equality then follows.

Proof of Lemma 4.4.3. Let T be the set of finite places where at least one of the
representations {71, 72, 73} is ramified. Then, comparing the functional equations
of L(s,m1 X mg X w3) and Li(s, 1 X w2 X m3), we get the equality

H ’Y(S,Wl,v X M4 X 7T3,v) = H 71(8;7T1,u X M2 X 7T3,v)-
veT veT
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When v is not in S(p), its norm is a power of a prime ¢ distinct from p, and the
corresponding local factors are inverses of polynomials in £~°. Since the identity
above holds for all s, it is easy to separate the contribution from the primes in S(p)

and those outside.
O

Proof of Theorem 4.4.1 (contd.). Now we need the following

Proposition 4.4.5.  Let v be a finite place, and let L, denote L, Ly or Ly. Then,
for any quasi-character v of which is sufficiently ramified, we have

L*(S,TFLD X M2 4 X 7T37v®1/) = 1.

Proof of Proposition 4.4.5. First we consider when L, = L. Since by definition
L(s, T, X T2y X T3, @ 1) is the same as L(s, 01,4 ® 02, ® 03, @ 1), it suffices,
by the additivity of the L-factor, to show that, for any irreducible summand 7 of
01,0 ® 02, R 03, viewed as a representation of Wg, x SL(2, C), we have L(s, 7 ®v)
is 1 for v of large enough conductor. Any irreducible 7 is of the form 3® S*, where
(3 is an irreducible of Wg, and S/ denotes the symmetric j-th power representation
of SL(2,C). When § is one-dimensional, L(s,T ® v) equals L(s, Bv|.]"/?), which
is trivial (by Tate’s thesis) if v is sufficiently ramified. If S is higher dimensional,
then L(s,7 ® v) is a product, for suitable half-integers ¢, of factors of the form
L(s, 3 ® v|.|!), which are 1 for any v (because 3 is irreducible of dimension > 1).

Next consider the case L, = L;, with i = 1,2. We may asume that at least one
of the m; ., say 73, is tempered. Suppose 7, is not supercuspidal. Then by using
Proposition 3.3.6 for L1, and (4.4.2) for L, together with the temperedness of 73 ,,
we deduce that (for any v)

Ly(s, 10 X Mo X T3, QV) .
1s entire.

L(s, M1 X Moy X T34 Q V)

The assertions (a) and (b) of the Theorem about L-factors follows in this case by
the triviality of the denominator for sufficiently ramified v. The identities for the
e-factors also follows because the respective v-factors are the same.

So we may take all the 7;, to be supercuspidal. We will now use a slight variant
of the inductive argument utilized in the proof of section 3.7. Let 4(m1 ), £(m1),
p(),p = p(m), r = r(m) = (U(m1),p(m1)) be as in section 3.7, together with
the (lexicographic) ordering < introduced there. We will use induction on r. If
r = (0,1), we are done, and so take that (0,1) < r and assume by induction
that the Proposition holds for L; at all places for any triple (7, 7/, #”") of cuspidal
automorphic representations o GL(2) over a number field if r(7) < r. Fix at every
place v in S”, a character y, cutting out a K(v) of degree p such that the base
change of m, to K(v) has ¢ equal to ¢(m1)/p. Choose, using the Grunewald-
Wang theorem, a global character x of order p, cutting out a cyclic extension
K/F with local extensions K (v)/F,. Then r(m x is less than r and we may use
induction in conjunction with the functional equations of L;(s, 71 X w3 X 73 ® v/)
and L;(s, m1,x X T2,k X T3 x ® V) to conclude that, for any idele class character v
of F which is sufficiently ramified at each of the places in S”, we have (for i = 1, 2)

H Yi(8, M1 p X Moy X T3, Q@) = 1.
veS”
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As remarked earlier, we may assume that, for every 7 < 3 and every v € S”,
the local representation ;. is supercuspidal. We may then apply Lemma 2.1 of
[Ik1] to conclude that L;(s, 71, X T2, X T3, & ) has no pole in common with
Li(1 —s,my, x w5, x my,, ®v~"). The proposition follows for L;.
O
Remark 4.4.6. One can also prove Proposition 4.4.5 for Ly by arguing as in
the proof of Lemma 5 of [PR]. Moreover, Shahidi has informed us that he can now
prove a very general statement of this sort for L.

Proof of Theorem 4.4.1 (contd.). Fix any finite place u of residual characteristic
p, and let S(p) be as in Lemma 4.4.3. Choose an idele class character v of F' such
that (i) v, is trivial, and (ii) v, is highly ramified at each v in S(p). Then, comparing
the functional equations of Lj(s,m1 X 3 X 3 @ v) and L(s, 71 X w3 X 73 @ v) and
using (4.4.2), Lemma 4.4.3 and Proposition 4.4, we get

(4.4.7) Y1(8, M1y X Moy X Maq @ V) = Y(8, M1, X T2y X T34 Q V).

Again, we can reduce to the case when each =, is supercuspidal and so, applying
Lemma 2.1 of [Ik1] and the obvious analog for Lo, we deduce the assertions (a) and
(b) of the theorem for the L-factors. The identities for the e-factors also follow by
(4.4.7).

O

4.5. The Tate conjecture for 4-fold products of modular curves. Let Y de-
notes the moduli scheme over QQ parametrizing elliptic curves FE with level infinity
structure, i.e., equipped with an isomorphism of the Tate module Ty (E) =lim, E[n|
with Z2. It comes with a natural right action of GL(2,A’), and a smooth com-
pactification X ([KM]). For every compact, open subgroup K of GL(2, Af), let Y
(resp. Xg =Yg UY) denote Y/K (resp. X/K). Then Xg is a smooth projective
curve over Q, and one has the identifications

Yk (C) = GL(2,Q\H"/K,
where H* denotes C — R, and
Yy = PY(Z)/K.
A cofinal system of compact open subgroups is provided by {K;(N)|N > 1}, where
Ki(N) = {k = (kij) € GL(2,2) | ka1, kan — 1 € NZ}.
For every N > 1, we will also be interested in
Ko(N) = {k = (kij) € GL(2,Z) | ka1 € N7Z}.
We will write X;(N), Xo(N) instead of Xg, (), Xx, () respectively.

Let V be a smooth projective variety over a number field k. For every j > 0,
denote by C7(V/k) the Q-vector space spanned by codimension j algebraic cycles
on V over k modulo homological equivalence. Then, for every prime ¢, one has an
f-adic cycle class map

CIV/k) — HI (Vr, Qo)(),
which is injective and lands in the group of codimension j Tate cycles over k, namely

Tay(V/k) = Hel (Vi Qo) (5) /).
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Let S be a finite set of places containing the ramified places for the Gal(Q/k)-
module Heztj(VE, Qy), the archimedean places, and also the places above ¢. The
associated L-function is
L (s, v/k) = [ L3 (s V/k),
v: finite
where
L3D(s,V/k) = det(I — Fr,T|HZ (Vi Q)™) e vy -
Here Fr, denotes the geometric Frobenius at v and I, the inertia group at v. In
computing Lq(,zj)(s, V/k), one takes £ to be prime to v. For each ¢, let S = S(¢) be
the finite set of places consisting of the ramified places for the Gal(Q/k)-module
HthJ (V5,Qy), together with the places above £. One knows by Deligne’s proof of
the Weil conjectures that the incomplete L-function L(7)-%(s, V/k), obtained from
L9 (s, V/E) by deleting the factors over S, converges absolutely in R(s) > j + 1.
One also has a definition of L{* )(s, V/k) for any archimedean place v (see [Ra3],
sec.5.5, for example). Write ng)(s, V/k) for the product [] ij)(s, V/k), and
put

v|oo

LC (s, V/k) : = L&D (s, V/k)LE) (s, V/k).

One also has epsilon factors sq(JQj )(s, V/k) for each v, and the global one

=@)(5,V/k) = H e (s, V/k),
allv

which is an invertible holomorphic function.
Theorem 4.5.1.  Fiz positive integers Nj, 1 < j < 4, and put
V = Xl(Nl) X XQ(NQ) X X3(N3) X X4(N4)

Let k be a finite solvable, normal extension of Q, and let £ be a prime. Then the
following hold:

(a) LW (s,V/k) admits a meromorphic continuation to the whole s-plane, has a
convergent Euler product in { Re(s) > 3}, and satisfies the exact functional equation:

LW (s, V/k) = eW(s,V/E)YL® (5 — 5, V/k).

(b) L™ (s,V/k) has no pole anywhere except possibly at the “edge” point s = 3.
(¢) If we let —ords—3 stand for the order of pole at s = 3,

—ords—3 LW (s, V/k) = dimg,TaZ(V/k).
(d) Suppose some Nj is square-free. Then
—ord,_s LS (s, V/k) = dimgC?(V/k).
In this case, for any number field k, dimg, TaZ(V/k) and dimgC?(V/k) are equal.

Parts (a) and (b) are as predicted by the Hasse-Weil hypothesis, while parts (c)
and (d) verify certain conjectures of Tate (see [Ta2]; [Ra3], chap.5).

Proof.  First we recall some well known basic facts about the cohomology of
the modular curves X;(N). For 5 € {0, 1, 2}, put (for any prime /)

Wi(N) 1= HL(X1(N)g, Qo).

For any field extension £ of Q, denote by Hg(N) the E-algebra of Hecke correspon-
dences at level N. This algebra is semisimple and acts on W} (V) ®g E, commuting
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with the Galois action. If 7 = 7o ® 7y is an irreducible automorphic representation
of GL(2, Ag), with 7y rational over Q, then the K7 (NN )-invariants in the space of m¢
over Q is naturally an Hz(N)-module. Conversely, any irreducible Hg(N)-module

occurring in W} (V) is a summand of some ™) Denote by Coh/(N) the set of
irreducible automorphic representations 7 contributing to the cohomology in degree
7 with ﬂ';(l(N) non-zero. Then one knows that 7 is one-dimensional for j = 0, 2,
and that for j = 1 it is cuspidal with 7o, in the lowest discrete series, correspond-
ing, in the classical language, to a holomorphic newform of weight 2 and level N.

Decomposing according to the Hecke algebra, one gets
(4.5.2) WeJ(N) ®Qe @z =~ DreCohi (N) Wej (W)m(ﬂf’N):

where WZ () is an irreducible Q,-representation of Gal(Q/Q) of dimension 2 (resp.
1) when j = 1 (resp. j =0, 2), and m(my¢, N) the dimension of the K7 (IV)-invariants
in the space of my. When a 7 occurs in degree 1, then any of its Galois conju-
gate 17 1= Moo ® T} also occurs. One knows the following at any place v by the
Eichler-Shimura theory and its refinement due to Igusa, Deligne, Langlands and
Carayol([Cal):

(453) L, (S, Wgo(ﬂ')) = L(S, ﬂ'v) = Ly (5 +1, W£2(7T))

and

Ly(s, Wi (m)) = L(s —1/2,m,).
In fact this also holds for one-dimensional twists. The analogous identities hold for
the e-factors as well, implying in particular the identification of the conductors.

Now let us turn our attention to the variety V at hand. In the following i
will denote a any 4-tuple (i1,142,13,%4) of integers in {0, 1,2} with Zj.:l i; = 4,
and for each such i, 7 will denote (71, 7o, w3, m4) with 7; €Coh’ (Nj) for each j.
Let m(i, 7) signify H?:l m(m;, 5, N;).Applying the Kiinneth formula in conjunction
with the decomposition (4.5.2), we get

(4.5.4) H*(Vg, Q) ~ @ @ Hi(m)™"™,
where
Hy(m) ~ Wzl(m) ® WZQ (m2) ® WZ3 (m3) ® WZ4(7r4).
Applying Proposition 4.3.1 in conjunction with (4.5.3), we get moreover,
(4.5.5) L(s, H}(W)) = L(s—2,m X Ty X T3 X T4).
Similarly for the e-factors.

Since the cycle class maps are functorial for the action of correspondences, we
can split the problem and prove the assertions of the theorem for the image of the
codimension 2 cycles in H{(r), for every i and 7. Let Tal(m);, denote the space of
Tate classes over k in Hi(r).

Suppose two of the indices, say i3, is, are zero. Then Hi(m) is W7 (m ) @W2(m2)®
WP (m3) ® W (m4), which is one-dimensional, in fact of the form p® Q,(—2) with u
of finite order. Then for any number field k, we have L(s, Hj(m)) = L(s—2, u). The
assertions (a), (b) follow by Hecke. The order of pole at s = 3 is 1 or 0 depending
n whether or not p is trivial when restricted to Gal(Q/k). When p is trivial, the
corresponding algebraic cycle is given by the intersection of the the m-components
of the threefolds {P} X XQ(N)Q) X Xg(Ng) X X4(N4) and X1 (Nl) X {Q} X Xg(Ng) X
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X4(Ny), for points P, Q on X1 (N1), X2(N2) respectively. So (d) also follows in this
case.

So we may assume from now on that i = (1,1, 1, 1) and consequently that each
m; is cuspidal. In view of (4.5.5), parts (a) and (b) hold by Theorem 4.2.1. Note
that the determinant of each W}(;) is necessarily of the form w; ® Q,(—1), where
wj is of finite order corresponding to the central character of m; by class field theory.

Suppose all the 7; are dihedral, defined by a Hecke character x; of a (necessarily
imaginary) quadratic field K;. Then H{(r) is the Q-realization of a CM motive
(in the category of pure motives for absolute Hodge cycles), and the assertion (c)
is well known (see [DMOS]). The conductor M;, say, of each w; is the conductor
of an abelian variety factor A(m;) over Q, up to isogeny, of the Jacobian of the
corresponding modular curve. One knows by a theorem of Fontaine ([Fon]) that
there is no abelian variety over Q of good reduction everywhere. On the other
hand, since 7; is automorphically induced by x;, it has no local component which
is special. Then by the description of th conductor of 7; in [Ge], for example, we see
that M;, and hence N; which it divides, cannot be square-free. So the hypothesis
of part (d) precludes the case when all the 7; are dihedral.

Thus we may, and we will, assume that some 7, say 71, is non-dihedral.

Lemma 4.5.6. Let i =(1,1,1,1) and m = (71, w2, T3, Ta), with each m; cuspidal
automorphic of weight 2 at infinity and w1 non-dihedral. Fiz any number field k.
Then the dimension of Tay(m)k is at most 2. It is non-zero iff we can find, after
possibly renumbering {ma, w3, 74}, a character p of Gal(Q/k) such that

(i) as Gal(Q/k)-modules,

Wi (m2) = Wi (m1) @

and

(ii) (pw1)™t occurs in W}(ms) @ W}(my) over k.

Moreover, when this happens, the dimension of Tay(r) is 1 unless we are in one
of the following situations:

(a) Owver k, W}(ms3)) is irreducible and non-dihedral, with its symmetric square
being isomorphic to S*(W} (1)) ® waw; '

(b) W}(r3) and W} (my) are both reducible over k, and dim Hom(uw, *, W} (73)®
Wh(my) is 2.

Proof.  Since 7 is non-dihedral, we know by a result of Ribet ([Ril]) that
W}(m) is irreducible upon restriction to any open subgroup of Gal(Q/Q). It fol-
lows easily that there are no Tate classes over k unless (i) holds after a possible
renumbering. There will be a Tate cycle iff (ii) also holds. Now suppose there is a
Tate class.

If 73 is irreducible, (ii) will hold iff 74 is also irreducible and

(i) Wi (ma) = Wi (73) ® (pwrws) ™

We claim that, since 71 is non-dihedral, $?(W} (1)) must irreducible under restric-
tion to any open subgroup. Indeed, if the claim is false, then over a number field the
symmetric square would admit a one-dimensional and would force W} (1) would
have to be dihedral (over the extension field), contradicting the openness of the
image of Gal(Q/Q) in GL(W}(71)). Hence the only way there could be more than
1 Tate class over k is to have (a), and this is not possible if 73 is dihedral. Suppose
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73 is non-dihedral. Then each n; is non-dihedral and S?(W} (7;)) is irreducible (by
the above argument) for any j. Then the number of (independent) such classes can
evidently not be more than 2.

Finally, consider the case when (i), (ii), hold, and w3, w4 are both reducible.
Looking at the Hodge-Tate types we see that the dimension of Ta%(w) can never
exceed 2. Tt is then also clear that to have dimension 2, we need (b).

Remark 4.5.7. The reason for requiring in Theorem 4.5.1 that some V; is square-
free is just to rule out the case when all the 7; are dihedral, in which case the
number of Tate classes can at the extreme be 6, and only four of those can be
shown to be algebraic by the argument below. When one of them is non-dihedral,
the numbers of tate and algebraic cycles in H}(r) coincide over every number field,
not necessarily solvable. The reason for restricting to solvable extensions is to be
able to appeal to base change in conjunction with Theorem 4.2.1 and deduce the
standard properties of the L-function.

Proof of Theorem 4.5.1 (contd.). Let k be a number field. We need to match
the number of Tate classes with the order of pole. By using the standard results on
Hecke L-functions, we may assume that one of the =;, say m, is non-dihedral. In
view of (4.5.5), part (c¢) of the Theorem will follow once we establish the following
analog of Lemma 4.5.6:

Lemma 4.5.8 Let i = (1,1,1,1) and m = (71, w2, T3, Ta), with each 7; cuspidal
automorphic of weight 2 at infinity and w1 non-dihedral. Fiz any number field k,
and denote (Vj) by ;i the base change of m to k Then the order of pole, m(my)
say, of L(s,m) := L(s,m1 X 3 X 3 X m4) at s =1 is at most 2. It is non-zero iff
we can find, after possibly renumbering {ma, w3, w4}, an idele class character p of k
such that

(i) oL ® W,
and

(ii) (uxwik) * occurs in the isobaric sum decomposition of ms ) W 7y .

Moreover, when this happens, m(ny) is 1 unless we are in one of the following
sttuations:

(a) ms is cuspidal and non-dihedral, with its symmetric square being isomor-
phic to S?((m1)) ® wgykwi}c;

(b) w3, and w4y are both Eisensteinian over k, and the multiplicity of (,uku);,lc
in w3, Xy ke 15 2. 7

1

Proof of Lemma.  The conditions (i) and (ii) are easy to verify if every =;
is twist equivalent to m;. So suppose not. Then, after a renumbering, we may
assume that mq , X 73 5 is cuspidal. Using Theorem M we can write L(s, 7x) as
L(s, (m W 7g) x (m2 W m4)). So by [JS2], it has a pole at s = 1 iff we have

Top My ~ (mpRasp) ~ 7 Kms g @ (w1 pws k)
Up to a renumbering, this can happen iff (i) and (ii) hold.
If 73 1, is cuspidal, then (ii) will hold iff 74, is also cuspidal and
(43") Tag = T3 g ® (Lewi pwsk)

We claim that S%(my ) is cuspidal. Suppose not. Then by [GJ], 71, will be
dihedral. This would imply, by (4.5.3) and the functoriality of base change, that
W}(m1) is dihedral when restricted to Gal(Q/k), contradicting the openness of the
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image of Galois ([Ril]). Hence the claim. Applying [JS2], we then see that m(my)
could be more than 1 iff we have (a), and this is evidently not possible is 73 is
dihedral. Then each 7; is non-dihedral and m(my) cannot possibly be more than 2.
when 73, 4 are both reducible, we see by looking at the infinity type that m(my)
can never exceed 2, and that it can be 2 iff (b) holds.
O
It remains to show (d). In view of (c), it suffices to show, over any number
field k, that Ta’(m) consists of algebraic classes. Suppose there is a non-zero Tate
class. Then (i) holds and this is represented by a twisting correspondence R, on
X1 (N1)kx X1 (N2)g (see [Ri2], [Mu]). If 73 1, is also cuspidal, then (ii’) holds and this
is represented by another twisting correspondence R, on Xi(N3) x X;(Ny), with
v = (uwiwsz)~t. We get a codimension 2 algebraic cycle on Vj, whose mg-component
has cycle class in Taj(7) by taking the intersection v of R, x X1(N3) x X1 (Ng) and
X1(N1) x X1(N2) X R,. Now suppose there are two independent Tate classes. If
w3, is cuspidal, then we would have the symmetric square twisting equivalence of
(a), and this will give us a twisting correspondence R) directly on the 4-fold V', with
A = waw L. This cycle is evidently not multiple of 7. So we are done in this case. If
we are in the situation of (b), the abelian varieties A(73) and A(m4) corresponding
to w3 and my will necessarily be of CM type, and we will have two independent
Tate classes in Hom(A(m3), A(m4)) over k which are algebraic by Faltings; they
correspond to divisors d1, 92 on X7 (N3) x X (Vy) rational over k. If we take &;, for
j=1,2to be R, x J;, they define the needed cycles on V.
O
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