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It is well known that the Tchebotarev density theorem implies 
that an irreducible �-adic representation ρ of the absolute 
Galois group of a number field K is determined (up to 
isomorphism) by the characteristic polynomials of Frobenius 
elements at any set of primes of density 1. In this Note we 
make some progress on the automorphic side for GL(n) by 
showing that, for any cyclic extension K/k of number fields 
of prime degree p, a cuspidal automorphic representation π
of GL(n, AK) is determined up to twist equivalence, even 
up to isomorphism if p = 2, by the knowledge of its local 
components at the (density one) set SK/k of primes of K
of degree 1 over k. The proof uses the Luo–Rudnick–Sarnak 
bound, certain L-functions of positive type, Kummer theory, 
and automorphic descent along suitable nested sequences of 
cyclic p2-extensions.
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0. Introduction

As it is well known, the Tchebotarev density theorem implies that two irreducible 
�-adic representations ρ�, ρ′� of the absolute Galois group of a number field K are 
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isomorphic if the corresponding characteristic polynomials of Frobenius elements agree 
on a set S of primes of density 1. It is then natural to ask, in view of the Langlands con-
jectures, whether an analogous assertion holds for cuspidal automorphic representations 
of GLn(AK). The object of this Note is to establish such an automorphic analogue for a 
simple, but useful, class of S of density 1. To be precise, we prove the following:

Theorem A. Let K/k be a cyclic extension of number fields of degree a prime p, and let 
Σ1

K/k denote the set of primes v of K which are of degree 1 over k. Suppose π, π′ are 
cusp forms on GL(n)/K such that πv � π′

v for all but a finite number of v in Σ1
K/k. 

Then π, π′ are twist equivalent. More precisely, they have isomorphic base changes over 
the cyclotomic extension K(ζ), where ζ is a non-trivial p-th root of unity.

We refer to the book [1] for facts on solvable base change for GL(n) due to Arthur 
and Clozel.

When we say that π, π′ are twist equivalent, we mean π′ � π ⊗ χ for a finite order 
character χ of (the idele classes of) K. In particular, if n is relatively prime to p − 1, or 
if the conductors of π, π′ are prime to p, we may conclude even that π, π′ are isomorphic 
(over K). When p = 2, we thus get the following:

Corollary B. Let K/k be a quadratic extension of number fields. Then any cuspidal 
automorphic representation π of GLn(AK) is determined (up to isomorphism) by its 
components πv for all (but a finite number of) places v of degree 1 over k.

Clearly, Theorem A refines the strong multiplicity one theorem, which gives the desired 
global isomorphism if πv � π′

v for all but a finite number of v [4]. For GL(2), there is 
a stronger result known, requiring the isomorphism πv � π′

v only for a set S′ of v of 
density > 7/8 [8]. For GL(n) with n > 2, we conjectured elsewhere that such a stronger 
result should hold with 7/8 replaced by 1 − 1/2n2, which is a theorem for π attached 
to an �-adic representation ρ� by an elegant result of Rajan [6]. We are far from such 
a precise result for those cusp forms π on GL(n), n ≥ 3, which are not known to be 
associated to such a ρ�.

Given a finite cyclic extension K/k, if G, resp. G̃, is a reductive group over k, resp. K, 
such that G̃ = G ×kK, let us say that a cuspidal automorphic representation π of G(Ak)
admits a soft base change to K if there is an automorphic representation Π of G̃(AK)
such that for all but a finite number of primes v in Σ1

K/k, we have Πv � πu, where 

u is the prime of k below v. When G̃ is GL(n)/K, Theorem A says that a soft base 
change Π is unique up to twisting by a character of K which is trivial when pulled 
back by norm to the p-cyclotomic extension of K; in particular, Π is determined up to 
isomorphism for p = 2 when cuspidal. An initial impetus for it came from a question 
asked independently by J. Getz and D. Whitehouse. Now Theorem A has been used (for 
quadratic extensions) by B. Feigon, K. Martin and D. Whitehouse in their paper [2] on 
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the periods and non-vanishing of L-functions of GL(2n), and in Wei Zhang’s work on 
the Gross–Prasad conjecture [10].

Now a few words about the proof of Theorem A. A well known, basic theorem of 
Luo, Rudnick and Sarnak [5], which is of importance to us, says that for any cusp 
form π on GL(n)/K, the coefficient av of π at any unramified v satisfies the bound 
|av| < (Nv)1/2−1/(n2+1). (What is essential for us is that av is bounded in absolute value 
by (Nv)1/2−tn for a fixed positive number tn independent of v, not the exact shape 
of tn.) As it has been noted and used already by Rajan [7], feeding this into the known 
analytic framework, it suffices, under our hypotheses, to prove that for all but a finite 
number of v whose degree lies in [2, (n2 + 1)/2], πv and π′

v are isomorphic. We cannot 
achieve this directly, but can show, using some Kummer theory, that it holds for the 
base changes πL, π′

L to a carefully chosen solvable extension L of K ′ = K(ζ), which will 
be a compositum (over K) of a finite number of disjoint pr-extensions L(1), L(2), . . . with 
2pr > n2 + 1; each L(j) will be a nested chain of cyclic p2-extensions (see Section 4). 
From this data we prove by descent that πK′ and π′

K′ are isomorphic. There is an added 
subtlety if πK′ or π′

K′ is not cuspidal, and this forces us to work with isobaric sums of 
unitary cuspidal automorphic representations, which are analogues of semisimple Galois 
representations of pure weight. These steps together form the core of the argument. It 
should be stressed that since the basic analytic method is by now standard, given Rajan’s 
work [7] making use of [5], what is new here is the use of base change to a suitable chain 
of p-power extensions to achieve the requisite isomorphism, followed by careful descent.

In another paper [9], we extend Theorem A non-trivially to the case of an arbitrary 
Galois extension K/k. The main idea there is quite different and replaces explicit Kum-
mer theory with a fuller use of class field theory, in particular the Tate cohomology and 
duality. We hope that it is still of interest to have just the cyclic case published, at least 
because the proof is simpler and more accessible.

1. Basic facts: a review

Let F be a global field with adèle ring AF . Let ΣF denote the set of all places 
of F . If v ∈ ΣF is finite, let qv denote the cardinality of the residue field at v. For 
n ≥ 1, let A0(n, F ) denote the set of isomorphism classes of irreducible unitary, cuspidal 
automorphic representations of GL(n, AF ). Every π representing a class in A0(n, F ) is 
(isomorphic to) a tensor product ⊗vπv, where v runs over ΣF , such that each πv is an 
irreducible generic representation of GL(n, Fv) and such that πv is unramified at almost 
all v. The strong multiplicity one theorem [4] asserts that, for any finite subset S of ΣF , 
π is determined up to isomorphism by the collection {πv | v /∈ S}.

For any irreducible, automorphic representation π of GL(n, AF ), let L(s, π) =
L(s, π∞)L(s, πf ) denote the associated standard L-function of π; it has an Euler product 
expansion

L(s, π) =
∏

L(s, πv),

v
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convergent in a right-half plane. If v is a finite place where πv is unramified, there is 
a corresponding semisimple (Langlands) conjugacy class Av(π) (or A(πv)) in GL(n, C)
such that

L(s, πv) = det
(
1 −Av(π)T

)−1∣∣
T=q−s

v
.

One may find a diagonal representative diag(α1,v(π), . . . , αn,v(π)) for Av(π), which is 
unique up to permutation of the diagonal entries. Let [α1,v(π), . . . , αn,v(π)] denote the 
resulting unordered n-tuple. One knows (by Godement–Jacquet) that for any non-trivial 
cuspidal representation π of GL(n, AF ), L(s, π) is entire.

By Langlands’s theory of Eisenstein series, one has a sum operation �, called the 
isobaric sum [4]: Given any m-tuple of cuspidal representations π1, . . . , πm of GL(n1, AF ),
. . . ,GL(nm, AF ) respectively, there exists an irreducible, automorphic representation 
π1 � · · ·� πm of GL(n, AF ), n = n1 + · · ·+ nm, which is unique up to equivalence, such 
that for any finite set S of places,

LS

(
s,

m

�
j=1

πj

)
=

m∏
j=1

LS(s, πj).

Call such a (Langlands) sum π � �m
j=1 πj , with each πj cuspidal, an isobaric represen-

tation.
Denote by A(n, F ) the set, up to equivalence, of isobaric automorphic representations 

of GLn(AF ), and by Au(n, F ) the subset of isobaric sums of unitary cuspidal automorphic 
representations. If π = �m

i=1 πi, resp. π′ = �r
j=1 π

′
j , is in Au(n, F ), resp. Au(n′, F ), with 

πi, π′
j unitary cuspidal, we will need to consider the associated Rankin–Selberg L-function

L
(
s, π × π′) =

∏
i,j

L
(
s, πi × π′

j

)
,

with

L
(
s, πi,v × π′

j,v

)
= det

(
1 −Av(πi) ⊗Av

(
π′
j

)
T
)−1∣∣

T=q−s
v

at all the finite places v where πi,v, π′
j,v are unramified.

If L(s) =
∏

v∈ΣF
Lv(s) is any global L-function and Y a set of places of F , then we 

will denote by LY (s) (resp. LY (s)) the product of Lv(s) over all v outside Y (resp. in 
Y ). We have the following basic result [4]:

Theorem 1.1 (Jacquet–Piatetski-Shapiro–Shalika, Shahidi). Let π = �m
i=1 πi, π′ =

�r
j=1 π

′
j be in Au(n, F ), with πi, π′

j unitary cuspidal. Suppose Y is a finite set of places 
of F containing the archimedean places such that π, π′ are unramified outside Y . Then 
LS(s, π×π′) has a pole at s = 1 iff for some (i, j), πi is isomorphic to π′

j, in which case 
the pole of the factor L(s, πi × π′

j) is simple.
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Here π′ denotes the complex conjugate representation of π′, which, by unitarity, is 
the contragredient of π′.

The general Ramanujan conjecture predicts that for any π ∈ Au(n, F ), πv is tempered 
at all v. In particular, if v is a finite place where π is unramified, the unordered n-tuple 
{α1,v(π), . . . , αn,v(π)} representing Av(π) should satisfy |αi,v| = 1 for every i. This is 
far from being proved, and the best known bound to date (for general n) is given by the 
following:

Theorem 1.2. (See Luo–Rudnick–Sarnak [5].) Let π ∈ Au(n, F ), and let v be a finite 
place where π is unramified, with Av(π) = {α1,v(π), . . . , αn,v(π)}. Then for every j ≤ n, 
one has

|αj,v| < q
1
2− 1

n2+1
v .

To be precise, Luo, Rudnick and Sarnak only address the case of cusp forms. But for 
π ∈ Au(n, F ), any αj(π) must be associated to a cuspidal isobaric constituent πi on 
GL(ni)/F with ni ≤ n, and so the assertion above follows immediately from [5].

We will also need the following (weak) version of the base change theorem for GL(n):

Theorem 1.3. (See Arthur–Clozel [1].) Let M/F be a finite extension of number fields 
obtained as a succession of cyclic extensions. Then for every π ∈ Au(n, F ), there exists 
a corresponding πM ∈ Au(n, M) such that for every finite place v of F where π and M
are unramified, and for all places w of M dividing v, we have

Av(π) = {α1,v, . . . , αn,v} ⇒ Aw(πM ) =
{
αfv

1,v, . . . , α
fv
n,v

}
,

where fv = [Mw : Fv].

A word of explanation may be helpful. In [1], it is proved that for every cuspidal π, 
the base change πM is equivalent to an isobaric sum of unitary cuspidal automorphic 
representations. When M/F is cyclic of prime degree p, for example, πM is either cuspidal 
or else of the form �p−1

j=0(η ◦ τ j), which happens iff n = mp for some integer m, with η
in A0(m, F ), and τ a generator of Gal(M/F ). Since base change is additive relative to 
isobaric sums, it follows that for any π in Au(n, F ), πM lies in Au(n, M).

2. A preliminary step

Proposition 2.1. Let F be a number field and n ≥ 1 an integer. Suppose π, π′ ∈ Au(n, F )
are such that for every positive integer m ≤ (n2 + 1)/2, and for all but a finite number 
of primes v of F of degree m, we have πv � π′

v. Then π and π′ are isomorphic.

This is essentially an immediate consequence of the bound of Luo–Rudnick–Sarnak, 
as it has already been noted (and used) by Rajan for cuspidal representations in [7]. For 
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completeness, we quickly go through the relevant points of [8] to make it evident that 
they carry over, modulo the basic results cited in Section 1 and induction on the number 
of cuspidal isobaric summands, from (n = 2; π, π′ cuspidal) to (n arbitrary; π, π′ isobaric 
sums of unitary cuspidal representations).

Proof of Proposition 2.1. Denote by X the complement in ΣF of the union of the 
archimedean places and the finite places where π or π′ is ramified. Given any subset 
Y of X we set (as in [8]):

ZY (s) = LY (π̄ × π, s)LY

(
π̄′ × π′, s

)
/LY

(
π̄ × π′, s

)
LY

(
π̄′ × π, s

)
. (2.1)

Write

π =
�

�
i=1

miπi, π′ =
r

�
j=1

m′
jπ

′
j ,

with mi, m′
j ∈ N, and πi, π′

j unitary cuspidal, with πi 	� πa if i 	= a and π′
j 	� π′

b if j 	= b.
Suppose πi 	� π′

j for all i, j. Then, using Theorem 1.1, we see that ZX(s) is holomorphic 
at every s 	= 1, with

− ords=1 ZX(s) = μ + μ′, (2.2a)

where

μ =
�∑

i=1
m2

i , μ′ =
r∑

j=1
m′

j
2
. (2.2b)

We note that one knows (see [3]) that ZY (s) is of positive type, i.e., logZY (s) is 
Dirichlet series with non-negative coefficients.

As the subproduct of an absolutely convergent Euler product is absolutely convergent, 
we have the following

Lemma 2.3. Let S denote the subset of X consisting of finite places v of degree > n2+1
2 . 

Then the incomplete Euler products LS(π̄×π, s) and LS(π̄×π′, s)Ls(π̄′ ×π, s) converge 
absolutely in {s ∈ C | 
(s) > 1}.

We may write

log
(
LY (π̄ ⊗ π, s)

)
=

∑
m�1

cm(Y )m−s (2.4)

for all subsets Y of X. Then cm(Y ) = 0 unless m is of the form Nvr for some v ∈ Y and 
r ∈ N, and when m is of this form,
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cm(Y ) =
∑
M

1
r

∑
1�i,j�n

αr
i,vα

r
j,v,

where M is the set of pairs (v, r) ∈ Y × N such that m = Nvr.
When v ∈ S, as Nv > n2+1

2 , the Luo–Rudnick–Sarnak bound (Theorem 1.2) implies 
that 

∑
m�1 cm(S)m−s converges in {
(s) ≥ 1}.

One has a similar statement for log(LS(π̄′⊗π, s)), log(LS(π̄′⊗π, s)), and log(LS(π̄′⊗
π′, s)). So we get the following

Lemma 2.5. Let S be as in Lemma 2.3. As s goes to 1 from the right on the real line, we 
have

logZS(s) = o

(
log 1

s− 1

)
.

Now, since πv � π′
v for all but a finite number of places of X outside S, we get, thanks 

to this lemma, the following:

logZX(s) = 4 logLX(π̄ ⊗ π, s) + o

(
log 1

s− 1

)

= 4 logLX

(
π̄′ ⊗ π′, s

)
+ o

(
log 1

s− 1

)
. (2.6)

Applying (2.2b), we then get

μ = μ′, (2.7)

and

logZX(s) = 4μ log 1
s− 1 + o

(
log 1

s− 1

)
. (2.8)

This contradicts (2.2a) since μ = μ′ ≥ 1.
Thus we must have πi � π′

j for some (i, j). If π or π′ is cuspidal, then both will need 
to be cuspidal with π = πi � π′

j = π′, and so we are done in this case. We may assume 
that π, π′ are non-cuspidal. Consider then the isobaric automorphic representations Π, 
Π ′ such that

π = Π � πi, π′ = Π ′ � π′
j .

The Π, Π ′ satisfy the hypotheses of Proposition 2.1, and we may find as before cuspidal 
isobaric summands πk of Π and π′

m of Π ′ which are isomorphic. Continuing thus, by 
infinite decent, we arrive finally at the situation when one of the isobaric forms is cuspidal, 
which we have already taken care of. This proves Proposition 2.1. �
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3. Central character and unitarity

Suppose π, π′ are cuspidal automorphic representations of GLn(AF ) of respective 
central characters ω, ω′, such that πv � π′

v for all but a finite number of primes v of F
of degree 1. Then ω and ω′ agree at all (but a finite number of) the degree one places v, 
which forces the global identity

ω = ω′. (3.1)

In fact, by Hecke, this conclusion will result as soon as ω and ω′ agree at a set of primes 
of density > 1/2.

It is a standard fact that, given a cuspidal π, there is a unique real number t(π) such 
that π⊗| ·|−t(π) is unitary; here | ·| denotes the 1-dimensional representation g �→ |det(g)|, 
the composite of determinant with the adelic absolute value. Taking central characters, 
we see then that ω| · |−nt(π) is a unitary character. Thanks to (3.1), we will then get

t(π) = t
(
π′). (3.2)

This allows us, in the proof of Theorem A, to assume that π, π′ are unitary cuspidal 
automorphic representations.

4. Nested chains of cyclic p2-extensions

Let p be a prime. We will call an extension L/F of number fields of degree pr, for 
some r ≥ 2, a nested chain of cyclic p2-extensions if there is an increasing filtration of 
fields

F = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lr−2 ⊂ Lr−1 ⊂ Lr = L, (4.1)

with

[Lj : Lj−1] = p, ∀j ∈ {1, 2, . . . , r}, (4.2)

and

Lj/Lj−2: cyclic, ∀j ∈ {2, . . . , r}. (4.3)

An easy example is given by a cyclic pr extension, while a better example is the 
following. Let F contain μp2 . (As usual, we write μn for the group of n-th roots of unity 
in the algebraic closure of F .) Let α be an element of F which is not a p-th power. Put 
α0 = α and define αj , for j = 1, . . . , r, recursively by taking it to be a p-th root of αj−1, 
and set Lj = Lj−1(αj) and L0 = F . Note that for j ≥ 2, Lj/Lj−2 is cyclic of order p2

by Kummer theory, because αp2

j = αj−2, and μp2 ⊂ Lj−2, making all the conjugates 
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of αj over Lj−2 to lie in Lj . (For this example, it is in fact sufficient to have μp ⊂ F and 
μp2 ⊂ L1, as seen by the case L1 = F (μp2).)

Lemma 4.4. Let L/F be a nested chain of cyclic p2-extensions (of number fields), with 
[L : F ] = pr and filtration {Lj} as above. Suppose v0 is a finite place of F , unramified 
in L, which is inert in L1. Then there exists, for each j ≥ 1, a unique place vj of Fj

lying over vj−1, so that Nvj = (Nvj−1)p. In particular, Nvr = (Nv0)p
r .

Proof. Let us first treat the case when r = 2, i.e., when L/F is cyclic of degree p2. 
Since v0 is inert in the intermediate field L1, we need to check that v0 does not split 
into p places in L. Suppose, to the contrary, that it does split that way. Let u be one 
of the p places of L above v0. It must then be fixed by a subgroup H of Gal(L/F ) of 
order p, with H giving the local Galois group Gal(Lu/Fv0). Since v0 is inert in L1 with 
divisor v1, u necessarily has degree 1 over v1, and so H = Gal(L1,v1/Fv0). If σ is a 
non-trivial element of H, then it acts non-trivially on L1,v1 , and hence on L1. On the 
other hand, since L/F is cyclic, it has a unique subgroup of order p, which forces H to 
be Gal(L/L1), implying that σ acts trivially on L1, yielding a contradiction. Put another 
way, if v0 has degree p in L, then the corresponding Frobenius class Frv0 is given by an 
element σ of Gal(L/F ) of order p, which has trivial image in the quotient by H = 〈σ〉, 
making v0 split in the fixed field LH of H. Clearly, LH must be L1 by the cyclicity 
of L/F . Either way, the case r = 2 is now settled.

Now let r > 2, and assume by induction that the lemma holds for r − 1. So for every 
j ≤ r − 1, there is a unique place vj of Lj above vj−1 (of Lj−1). Now all we have to 
show is that vr−1 is inert in L = Lr. Since Lr/Lr−2 is cyclic of order p2, and since 
(by induction) the place vr−2 of Lr−2 is inert in Lr−1, we conclude what we want by 
appealing again to the r = 2 scenario.

The assertion about the norm of vr follows. �
Lemma 4.5. Let L(i)/F , 1 ≤ i ≤ k, be disjoint pr-extensions. Suppose moreover that 
every L(i) is a nested chain of cyclic p2-extensions with respective filtrations

F = L
(i)
0 ⊂ L

(i)
1 ⊂ · · · ⊂ L(i)

r = L(i).

Let v(i)
0 , 1 ≤ i ≤ k, be distinct primes of F , unramified in the compositum M :=

L(1)L(2) . . . L(k), such that each v(i)
0 is inert in L(i)

1 . Then, if ṽ(i) is a prime of M lying 
above v(i)

0 , we have

Nṽ(i) ≥
(
Nv

(i)
0
)pr

, ∀i ≤ k.

Proof. Fix any i ≤ k. By Lemma 4.4, for each j ≥ 2, there is a unique prime v(i)
j , of L(i)

j

lying above v(i)
j−1. Then ṽ(i) must lie above v(i)

r in the extension M/L(i). So

Nṽ(i) ≥ Nv(i)
r . (4.6)
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On the other hand, by Lemma 4.4, we have

Nv(i)
r =

(
Nv

(i)
0
)pr

. (4.7)

The assertion of Lemma 4.5 now follows by combining (4.6) and (4.7). �
5. Isomorphism over suitable solvable extensions L/K, L ⊃ E

Let K/k be a cyclic p-extension. For j ≥ 1, denote by Σj
K/k the set of finite places v

of K which are unramified over k and of degree j over k; of course this set is non-empty 
only for j ∈ {1, p}. Let π, π′ be cuspidal automorphic representations of GLn(AK) such 
that, as in the setup of Theorem A,

πv � π′
v, ∀v ∈ Σ1

K/k. (5.1)

As noted in Section 3, the central characters of π and π′ must be the same, and 
moreover, we may assume that π, π′ are unitary.

If p > (n2 + 1)/2, then Theorem A follows immediately from Proposition 2.1. In 
general, fix a positive integer r such that

pr >
(
n2 + 1

)
/2. (5.2)

The object of this section is to prove the following:

Proposition 5.3. Let K/k, π, π′ be as in Theorem A. Then there is a finite solvable 
extension L/K containing E := K(μp2), with nilpotent Galois closure over K(μp), such 
that the base changes πL, π′

L satisfy

πL � π′
L.

In fact the number field L we construct below will be much nicer than just being 
solvable over K. The extension L/E will turn out to be the compositum of a finite number 
L(i) of pr-extensions of K(μp), with each L(i) a nested chain of cyclic p2-extensions. The 
Galois closure of L over K(μp) will again be a p-power extension, hence nilpotent. Since 
L is then obtained from K by a successive sequence of cyclic extensions, the base changes 
πL, π′

L exist (by [1]). We will moreover have some freedom in the choice of the L(i), and 
their filtrations, which will become relevant in the next section when we descend to E.

Put K ′ = K(μp) and k′ = k(μp). Then K ′/k′ is still a cyclic p-extension. The following 
lemma is clear since K ′/K and k′/k are of degree dividing p − 1.

Lemma 5.4. Let v ∈ Σj
K/k, for j ∈ {1, p}. Then, for every prime v′ of K ′ above v, we 

have v ∈ Σj
′ ′ .
K /k
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Consequently, the hypotheses of Theorem A are preserved for K ′/k′, and we may 
assume from here on, after replacing k (resp. K) by k′ (resp. K ′), that

μp ⊂ k. (5.5)

Proof of Proposition 5.3 when K = E. Since μp ⊂ k, we may realize the cyclic 
p-extension K as k(α1/p), for an element α in k which is not a p-th power (in k). 
Now fix a positive integer r for which (5.2) holds. Choose a sequence of elements 
α−1 = α, α0, . . . , αr in the algebraic closure of K, and the corresponding chain of fields 
k = L−1, K = L0, . . . , Lr such that for each j ≥ 0,

Lj = Lj−1(αj), with αp
j = αj−1. (5.6)

Clearly, every Lj/Lj−1 is cyclic of order p, and so [Lr : K] = pr. Moreover, since 
μp2 ⊂ E = K, each Lj/Lj−2 is also cyclic by Kummer theory. In other words, Lr/K is 
a nested chain of cyclic p2-extensions. In fact, Lr/k is also such a nested chain, but of 
degree pr+1.

Now put L = Lr. Applying Lemma 4.4, we then see that for every prime ṽ in L lying 
over some v in Σp

K/k, the degree of ṽ is pr over k, hence has degree at least pr over Q. On 
the other hand, every other prime ũ of L unramified over k lies above some u in Σ1

K/k. 
So the hypotheses of Theorem A imply (by base change [1]) that πL,ũ � π′

L,ũ. (Such a 
ũ could have small degree, like p, over K, but nevertheless it must lie over a prime u of 
degree 1 over k, which is all that matters to us.) Putting these together, and applying 
Proposition 2.1 over L, we get Proposition 5.3 when K = E. �
Proof of Proposition 5.3 when K �= E. Here we want to base change and consider the 
cyclic p-extension

E/F, with F = k(μp2), E = KF. (5.7)

Clearly, the (p, p)-extension E/k contains p + 1 subfields F (i), 0 ≤ i ≤ p, of degree p
over k, with one of them being K; say K = F (0). We need the following

Lemma 5.8. Let v ∈ Σp
K/k be unramified in E. Then v splits into p places v1, . . . , vp in E, 

and there is a (unique) cyclic p-extension F (i) of k (depending on v), 1 ≤ i ≤ p, such 
that each vj lies in Σp

E/F (i) . In other words, if z is the unique place of k below v, then z

splits into p places in F (i), each of which is inert in E.

Proof. Since G := Gal(E/k) is Z/p × Z/p, the decomposition groups are either trivial 
or of order p. So, if z is the place of k lying below v, its Frobenius class Frz in G is 
given by an element σ of order p (since z is inert in K). So v must split in K. If we put 
H = 〈σ〉, then KH is F (i) for a unique i ∈ {1, . . . , p}. Then z splits in F (i) and then 
becomes inert in E, as claimed. �
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Fix an index i ∈ {1, . . . , p}. As μp ⊂ k ⊂ F (i), we may find an element α(i) in F (i)

which is not a p-th power such that

E = F (i)((α(i))1/p). (5.9)

Choose a sequence of elements α(i)
−1 = α(i), α(i)

0 , . . . , α(i)
r in the algebraic closure of E, 

and the corresponding chain of fields F (i) = L
(i)
−1, E = L

(i)
0 , . . . , L(i)

r such that for each 
j ≥ 0,

L
(i)
j = L

(i)
j−1

(
α

(i)
j

)
, with

(
α

(i)
j

)p = α
(i)
j−1. (5.10)

By construction, every L(i)
j /L

(i)
j−1 is cyclic of order p, and so [L(i)

r : E] = pr. Moreover, 
since μp2 ⊂ E, each L(i)

j /L
(i)
j−2 is also cyclic by Kummer theory. In other words, L(i)

r /E

is a nested chain of cyclic p2-extensions. In fact, L(i)
r /F (i) is also such a nested chain (of 

degree pr+1).
This way we get p nested chains L(i)/E, disjoint over K from each other. Let L be 

the compositum of the L(i), as i runs over {1, . . . , p}. Pick any place v in Σp
K/k. Then 

we know (by Lemma 5.8) that there is a unique i ≤ p such that each the divisors vk of v
in E, 1 ≤ k ≤ p, lies in Σp

E/L(i) . Then by the r = 2 case of Lemma 4.4, vk is inert in L(1). 
Applying Lemma 4.5, we then see that every prime ṽ of L lying over some vk (and hence 
over v) is of degree ≥ pr > (n2 + 1)/2. Every other place u, say, not ramifying in L, sits 
above a prime u0 of K having degree 1 over k, and by the hypothesis of Theorem A, 
πL,u � π′

L,u (for all u outside a finite set). So one may apply Proposition 2.1 and conclude 
that πL and π′

L are isomorphic. �
6. Descent to E = K(μp2)

Let us preserve the notations of the previous section. Thanks to Proposition 5.3, we 
know that for the p-power extension L/E we constructed there, one has

πL � π′
L. (6.1)

In order to prove Theorem A, we need to descend this isomorphism down to E. For this 
we will make use of the fact that there is quite a bit of freedom in choosing L.

Proof of descent when K = E. After realizing E as k(α1/p) for some α (= α−1) in k
which is not a p-th power, we chose a sequence of elements αj , 0 ≤ j ≤ r, with αj = α

1/p
j−1, 

and set Lj = Lj−1(αj). We may replace α by αβp for any β in k − kp, which will have 
the effect of leaving E = L0 intact, but changing L1 from E(α1) to E(α1β1) for a p-th 
root β1 of β. Using this we can ensure, for a suitable choice of β, that the discriminant 
of L1/E is divisible by a prime P1 not dividing the conductor of either πE or π′

E . Next 
we may choose a γ ∈ k − kp and put α0 = α0β

pγp2 , which will not change L0 and L1, 
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but will change L2, and we may arrange for the discriminant of the new L2/L1 to be 
divisible by a prime P2 of L1 whose norm down to E is relatively prime to c(πE)c(π′

E)P1. 
This way we may continue and modify all the Lj so that at each stage Lj/Lj−1, the 
relative discriminant is divisible by a new prime Pj of Lj−1 whose norm down to E is 
relatively prime to c(πE)c(π′

E)P1NL1/E(P2) . . . NLj−2/E(Pj−1).
Now look at the top stage Lr/Lr−1. Thanks to (6.1), we know by the properties of 

base change [1] that every cuspidal isobaric component η, say, of πLr−1 will be twist 
equivalent to a cuspidal isobaric component η′ of π′

Lr−1
. More precisely, we will need to 

have, for some integer j mod p,

η′ � η ⊗ δjr , (6.2)

where δr is the character of order p of (the idele classes of) Lr−1 attached to Lr. But the 
conductor of δr is divisible by the prime Pr, whose norm down to E is, by construction, 
relatively prime to the conductors of πE and π′

E and to the discriminant of Lr−1/E. 
This forces j = 0, i.e., η � η′. Peeling off this way isomorphic cuspidal components 
of πLr−1 and π′

Lr−1
one at a time, we conclude that πLr−1 is isomorphic to π′

Lr−1
. Next, 

by induction on r − j, we deduce similarly that, for every j ∈ {0, . . . , r − 1},

πLj
� π′

Lj
, (6.3)

which proves the assertion of Theorem A. �
Proof of descent when K �= E. For each i = {1, . . . , p}, we may modify the elements 
α

(i)
j and thus the fields L(i)

j as above, with a new prime divisor P (i)
j of the discriminant 

of Lj/Lj−1 popping up at stage j, which is prime to the conductors of πE , π′
E , and the 

discriminant of Lj−1/E. Now we may, and we will, also choose these primes in such a 
way that the sets {P (i)

1 , . . . , P (i)
r } and {P (m)

1 , . . . , P (m)
r } are disjoint whenever i 	= m. 

Now we may realize L as a sequence of cyclic p-extensions, such that at each stage there 
is a new prime divisor of the relative discriminant. We may then descend each step as 
above and finally conclude that

πE � π′
E , (6.4)

as asserted. �
7. Descent to K(μp)

As before, we may assume that μp ⊂ k ⊂ K. If μp2 ⊂ K, i.e., if E = K, then we have 
already seen above that we have an isomorphism π � π′ over K.

So we may, and we will, assume below that K 	= E. Then

E = KF, k = K ∩ F, where F = k(μp2), (7.1)
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with

[E : F ] = [K : k] = [E : K] = [F : k] = p,

and by Section 6,

πE � π′
E . (7.2)

This implies that if v is any prime of K which splits into p primes w1, . . . , wp in E, then 
by [1], we have (∀j ≤ p)

πv � πwj
� π′

wj
� π′

v. (7.3)

On the other hand, since E/k is a (p, p)-extension, in particular not cyclic of order p2, 
any prime u of k which is inert in K must split in E (assuming u is unramified in E). 
This implies, thanks to (7.3), the following:

πv � π′
v, ∀v ∈ Σp

K/k − T, (7.4)

for a finite set T .
When we combine (7.4) with the hypothesis of Theorem A that

πv � π′
v, ∀v ∈ Σ1

K/k − U, (7.5)

for a finite set U , we immediately get the desired isomorphism

π � π′ (over K).

We are now done with the proof of Theorem A. The assertion of Corollary B is obvious 
given Theorem A (since μ2 ⊂ Q ⊂ K). �
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