DETERMINATION OF MODULAR FORMS BY TWISTS
OF CRITICAL L-VALUES

Wenzhi Luo and Dinakar Ramakrishnan

Contents
0 Introduction 1
1 Preliminaries 4
2 p-power twists 7
3 Quadratic twists 13
4 Generation of coefficient fields by ratios of L-values 20
5 p-adic L-functions 22
6 Forms of half integral weight 25
Bibliography 28

0 Introduction

Let f be a normalized holomorphic newform (defined on the upper half plane H)

of level N, weight 2k and trivial character. It is given by a Fourier expansion

f(z) = ¥ a,e*™* z € H, with a; = 1. For every primitive Dirichlet character
n>1

y of conductor M,,, we have the associated L-series L(f,x,s) = Y. anx(n)n *, which
n>1

has an Euler product expansion in {s € C| Re(s) > k+ 1}, and admits a meromorphic
continuation to the whole s-plane with a functional equation relating the values at s
and 2k — s. Let X denote the set of primitive Dirichlet characters with (A, N) = 1.
Our first result is that the knowledge of the set of special values {L(f, x, k)|x € X},
up to a constant, is sufficient to determine f. We go further and in fact prove a much
stronger result, namely that this assertion holds if X is replaced by the subset Xquaa
of quadratic characters (Theorem B, Sec. 3), or by the subset X(p™) consisting of



those y whose conductor and order are powers of a fixed odd prime p not dividing N
(Theorem A, Sec. 2).

Our main idea is to analyze (variants of) the following twisted average for each
integer m > 1:
1

XE€Xo
My <T

where X, denotes a relevant subset of X. If we take m to be 1, we get the usual
untwisted average Y (7T'), whose behavior as 1" — oo has been well understood; see
Iwaniec [Iw], Murty [Mu] for Xy = Xquad, and Rohrlich [Rol] for Xy = X. The
subject matter of [Iw| was, to be precise, the average values of L'(f, x, k), leading to
a non-vanishing result, established earlier and independently by Murty-Murty [MM]
and Bump-Friedberg-Hoffstein [BFH|, needed to complement Kolyvagin’s work on
modular elliptic curves. Of relevance to us is also a form of the approximate functional
equation, as in the paper of Luo-Rudnick-Sarnak [LRS]. We begin by describing
the analogous asymptotic behavior of Y,,(7), relying on the method of Iwaniec for
X = Xquad-

In the case of p-power twists, our theorem gives a finer result and works at any real
point s = t. The proof relies on the known properties of Kloosterman sums over z/p™.
The assertion at the points to the left of center is not a consequence of the functional
equation of L(f, x,s) as the value of x at the conductor appears. This necessitates
the use of Y,,,/.(p"), for all integers m,r. But the key new ingredient in the proof of
Theorem A is its reduction to Proposition 2.2, and not the verification of the propo-
sition, the details of which are given for the convenience of the reader. An intriguing
consequence of the result is the recovery of the fundamental periods ¢*(f) from the
limits, as 7 — oo, of averages of algebraic special values {A(f,x,m)|x € X(p’)},
at critical integers m, for an appropriate parity e. (See Corollary 2.5 for a precise
statement.) Our theorem should also extend to Maass waveforms on GL(2), but we
have chosen not to do it in this paper, mainly to avoid lengthening the argument,
and because all the applications we have in mind deal only with holomorphic forms.

The proof of our theorem is quite delicate in the case of quadratic twists, where
the key step is the expression, for almost all m, of the ratio of the dominant terms
of Y,,,(T') and Y(T'), as a well behaved rational function of the normalized coefficient
dm = a,m1=2/2 To be precise, we show that this function H,,(t) € Q[y/m](t)
has no poles in the interval [—2, 2], and has a positive derivative there. Recall that,
for any good prime ¢, a, lies in this interval by Deligne’s proof of the Ramanujan
conjecture. Thus H,,(d¢) determines @, (for almost all £), allowing us to appeal to
the strong multiplicity one theorem. Our method also works for Maass waveforms
which are tempered.

We give three applications of our main result. The first one (Theorem C, Sec. 4)
shows that the field K generated over Q by the coefficients {a, } can also be generated
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by the set of ratios of the form

A(f.xx0) = g(x0)g(x) ' L(f, x: k) /L(f, x0. k),

where yq is a fixed quadratic character such that L(f, xo,k) # 0, and x runs over
quadratic characters of the same parity as yo. (For any character v, we denote by
g(v) the associated Gauss sum.) It was known earlier that these numbers A(f, x, xo)
were in Ky for all x € Xquaa. We establish our assertion by combining our main result
(Theorem B) with Shimura’s reciprocity law ([Sh]) describing the action of AutC on
{A(f,x,x0)}- At the end of Sec. 4, we raise an analogous question for general critical
motives M over Q with End (M) ® Q a field.

Our second application (Theorem D, Sec. 5 ) shows that, for any odd prime p not
dividing the level N of the newform f, and for any finite order p—adic character n of
tame type i, for any i € [0, 2k — 2], the knowledge (up to a non-zero algebraic multiple)
of the associated (one variable) p-adic L-function L,(f,n,s) ([MTT]) determines f
uniquely. (One says that 1 has tame type i if it is of the form w'v, for a wild
character v, with w denoting the Teichmiiller character.) It should be pointed that
the (weaker) fact that the collection {L,(f,n,s)} determines f has been known for
some time, as it has been kindly explained to us by H.Hida (whose method uses the
work of Rohrlich [Rol]). It is useful to note that when p is supersingular for f, the
definition of L,(f,n, s) depends on the choice of a root a of the p—Hecke polynomial
22 — a,r + p?*7!, and our theorem works for either choice (if ord,(a) < 2k — 1).
The proof combines Theorem A with some results on modular symbols ([MTT]) and
p—adic analytic functions with logarithmic growth ([V]). Specializing to the weight
2 case, we deduce that a modular elliptic curve E over Q is determined up to Q-
isogeny by L,(FE, s), for any p not dividing 2/N; this may be thought of as an analog
of the classical isogeny conjecture. In particular, each L,(E,s) is non-zero, but this
is already known by the work of Rohrlich [Ro2]. Our method gives the slightly finer
statement that for all but a finite number of positive integers n not divisible by p, we
have L,(E,n) # 0.

After we communicated our results to H. Stark, he showed by using transcendence
arguments ([St]) that a modular elliptic curve E over Q is in fact determined (up to
Q-isogeny) just by L(F, 1) if it is non-zero. However, his beautiful argument does not
seem to work for forms of higher weight as one does not have analogous transcendence
results for the periods. Also, given some F with L(F, 1) = 0, one can find a quadratic
character x such that L(E,x,1) # 0, but this x will depend on FE. It should be
stressed that in our approach, it suffices to give the (set of) special values up to a
scalar multiple (in C), and so our results are geared more towards giving information
about the algebraic parts, not about the periods.

The third (and final) application (Theorem E, Sec. 6) answers a (stronger form of
the original) question raised by W. Kohnen [K1]. Solving this problem was the original
motivation for this paper. Fix & > 1, and denote, for every odd square free integer
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N > 1, by S 41 (4N) the space of cusp forms of weight k + %, level 4N and trivial
character, and by Ski 1 (4N) the Kohnen subspace. The span of "newforms” in this
2

space is isomorphic, as a Hecke module, to Sox(N)™" by the Shimura correspondence
([W2]). (The orthogonal complement of S, " 1(4N) is well understood.) We show that
2

if g1, go are two newforms in S];'; . with Fourier coefficients b1(n), ba(n) respectively,
2

and
bi(|D]) = b3(|DJ)

for almost all fundamental discriminants with (—1)*D > 0, then g; = +go. In other
words, our result says that given a newform ¢ in S];:l (4N), k > 1 and N odd, square-
2

free, one cannot simply change the signs of some of the coefficients b(|D|) and obtain
a new eigenform. Before this paper, the best known result, due to Kohnen [K1], was
that if by(|D|) = ba(|D|), N = 1, and if g; and go have the same eigenvalues relative
to the Hecke operator Tki%(él), then g; = go. The proof of our result uses Theorem

B in conjunction with Waldspurger’s formula relating the square of b;(|D|) to (a
suitable multiple of) L(f;, xp, k), where f; is the eigenform in Sg;(IV) corresponding
to g;. A crudely stated consequence is that a form in Kohnen’s space is determined
by the square-free coefficients. It may be helpful to note this space does not contain
theta series such as Y, e™%, z € H, which has weight 1/2, and ¥, ny(n)e™’,
x(—1) = —1, which has weight 3/2, but has non-square-free level and non-trivial
character.
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1994-95, and the research there was supported in part by NSEF grant DMS-9022140.
The subsequent work, done during 1995-96, was supported by the NSF grant DMS-
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his perceptive criticisms and suggestions concerning sections 2 and 5 (of an earlier
version), which in fact led to an improved result. Finally, we would like to thank
Jackie Cassidy (Caltech) for a careful typing of the manuscript.

1 Preliminaries

Let N > 1. For any r € %Z, let S, (V) denote the space of holomorphic cusp forms of
weight 7, level N and trivial character. Every f € S, (V) admits a Fourier expansion:

(1.1) f(z) =" ang",

n>1

for z € H, with ¢ = 2™,



Suppose 7 is a (positive) integer. Recall that a newform (of weight r) is a Hecke
eigenform f in S, (), for some N, orthogonal to the “old” forms coming from lower
levels, such that a; = 1 (c¢f. [Li]). For such a form f. one has T,f = a,f, for all
primes p not dividing N, where T}, denotes as usual thee p-th Hecke operator. For
every primitive Dirichlet character x of conductor M = M, with (M, N) = 1, one
has the associated L-function:

(1.2) L(f,x,8) = anx(n

n>1

which converges absolutely in Re(s) > (r+1)/2, and admits an analytic continuation
to the whole s-plane with a functional equation. Note that the triviality of the
character of f forces its weight r to be even. Write . Some times it will
be convenient to use the associated (unitary) cuspidal automorphic representation
T = Too @ Ty of GLa(A) = GLQ( ) X GLa(Ag) ([Ge]), where A = R x A¢ denotes the
adele ring of Q, with A9 ~ Z ® Q being the ring of finite adeles. Viewing Dirichlet
characters x as idele class characters of Q, we have the associated representations
m ® x defined by g — 7(g)x(det(g)), for all g € GL2(A). One has

(1.3) L(m ® X, s) = L(Toe ® Xoo: 8)L(m0 ® X0. ),
with |

L(mo @ X0, 8) = L(f, x. s + k — 5)
and )

L(ﬂ-oo ® Xoo; S) = FC(S + k- 5)7
where I'c(s) = (2m) *I'(s). The functional equation reads
(1.4) L(r ® X. 8) = X(N)W(m)W () *(VM*) s L(z @ X. 1~ s).

where W (7), W (x) are the root numbers of 7, y respectively. Note that 7 is self dual,
hence isomorphic to the complex conjugate representation 7 by unitarity, since f has
trivial character, consequently, W (m) = £1. Moreover, if we define the Gauss sum of
x by the formula

(L.5) g)= Y xla)e*™/s,

a mod M

then W(x) = (—i)‘sg(x)/\/@, where ¢ is 0 (resp. 1) when x is even (resp. odd).

Auxiliary functions

For any function ¢ € C®°(R% ) with [7° ¢(y )dy =1, set:

_ (= s4Y
(16) w(s)= [ ey



and

1 L(mo, 1 —t+s) _.ds
Fy(z) = —/ — 205
2(2) 211 J(2) A(=s) L(Too,t — s) T

Here we follow the (standard) convention that, for any real number a, [ denotes the
(a)
integral over the vertical line (s) = a in C.

By a standard argument, by appropriately shifting the vertical line of integration
(see [LRS], for example), we get

(1.7)
(i) Fi(z) and Fy(z) are both rapidly decreasing as o — oo,
(ii) Fi(z) =14 O(z™), for all n > 1, as x — 0, and

(iii) Fo(z) << 1, for z > 0.
Characters

Throughout this paper, x will denote a primitive Dirichlet character of conductor
M = M,.

For every integer N > 1, we set
(1.8) X = X(N) = {x|(My, N) = 1},

and
Xquad = Xquad(N) = {X S X(N)|X2 = 1}-

If p is a prime not dividing N, we put
(1.9) Xy = X (N) = {x € X(N)|M, =p’, for some j},

and
X{) = {x € X()|x has p — power order}.

The elements of the group X, are called wild characters at p. Note that an
element of X, belongs to X ) iff it is trivial on all the elements of order p — 1. There
is a direct product decomposition

(1.10) Xy = Xt x Hom((z/p)*,C7).

For every j > 1, write X} for the subgroup of wild characters of conductor dividing
p’. We will write 3 to denote the summation over the primitive wild characters
of conductor p’.

* .
x mod p?



2 p-power twists

Fix an odd prime p, and a Dirichlet character n of conductor R, possibly divisible by
p. The object of this section is to prove the following.

Theorem A Let f, g be newforms in Sop(N), Sow (N') respectively, with (p, NN') =
(RyNN') =1, and let t be a real number. Suppose there exist non-zero constants
B,C € C such that

1 . 1
L(fa 77X:t+ k — 5) - BJOL(Q,T]X,t+ k/ - 5)7

for every x in X3, for all but a finite number of j. Then k =k, N = N"and f = g.

The key point of the proof is to first define an appropriate twisted average de-
pending on p’, and reduce the theorem to a statement about its limit as j — oo
(Proposition 2.2 below). The Proposition is later established by appealing to a well
known method, and the details are given for the convenience of the reader.

Let m,r denote integers > 1, which are not divisible by p. For every new form
f €8Sak(N) and t € (0,1), and for all 7 > 1), we set

(2.1 Ve W i) =p 7 S XOmXIL( otk )

x mod pJ

(See the end of section 1 for a meaning of the % over the summation.) Our aim is
to somehow recover the (m/r)—th Hecke eigenvalue a,,, (of f) from this sum when
rim. We will let a,, /. denote 0 if r does not divide m.

Proposition 2.2 Lett > % Then we have

Jim Yo (0 £31) = 3 (1= =) mm/r)om/ 1)+

Proposition 2.2 = Theorem A Let f, g be as in the theorem with eigenvalues
G, by Tespectively. First consider the case when ¢ > % Applying the Proposition
with m = r = 1, we get, since a; = by = 1, (11)123 B7)C' = 1, which forces B = C = 1.
Next apply the Proposition with m being anjy prime ¢ not dividing pN R, and r = 1,
to obtain the identity a, = by (normalized Hecke eigenvalues). Then by the strong
multiplicity one theorem, we must have f =g, k=7 and N = N'.

It is left to consider when t < % In this case, applying the functional equation
(1.4), the self-duality of f and the evenness of x, we get, for every x € X of
conductor p’,

1 : 1
X(NV)L(fomx. 1 =tk = ) = BIOX(N)L(gnx. 1 =t +K = 5),



where ¢y = Cn(N/N')(N'/N)z~*. Multiplying both sides by x(Nr)x(m), for any
m > 1, and averaging over (wild) x of conductor p’/, we get the identity

Ym/r(pyafa 1 _t) = BjCIYmN’/TN(pjag; - t)a

for all m,r > 1. We will apply the Proposition, permissible since 1 — ¢ > %, to both
sides of this identity (with j — o0), for suitable choices of (m, ). First we claim that
|B| < 1. Suppose not. Then, applying the Proposition with m = N, r = N', we
get ay/n = (jli_)r{.lc BY)(Cy, for a non-zero constant Cy, which is impossible if |B| > 1.

Hence the claim. Next we let m = r = 1. If N does not divide N or if |B| < 1, we
see that the right hand side (of the identity above) goes to zero, while the left hand
side goes to p~'(1 — %), leading to a contradiction. So we must have N’ = NN”| for
some integer N” > 1, |B| = 1. In fact. B must be 1, for otherwise the right hand
side has no limit as j — oco. We also deduce from the identity (with m = r = 1 and
N = N'N") that 1 = C1n(N")bx~. Finally, we take m to be any prime ¢ not dividing
pN = pN'N"” and r = 1 to conclude, since byy» = bybyr, that a, = by. Once again,
the theorem follows by applying the strong multiplicity one theorem.

Remark 2.3  Let f be a newform in Sgx(V), p a prime not dividing 2N, and § > 0
any real number. Denote by w the Teichmiiller character, which is a generator of the
character group of (z/p)*. By using Proposition 2.2 and some ideas from [Ro2], one
can easily establish the following mild variant of a basic theorem of Rohrlich ([Ro2],
[Ro3]). Fix any integer i. Then there exist infinitely many primitive, wild characters
X at p such that L(f,w"yx,3) # 0. Moreover, if 3 is a critical integer, then all but
finitely many of these twisted L—values are non-zero.

We would also like to point out an intriguing consequence of Proposition 2.2
concerning the periods of a newform f of weight 2k and trivial character. Recall that
there exist numbers ¢(f) € C*, well defined up to elements in 9%, which arise by
comparing the integral singular and de Rham structures associated to f. For each

Dirichlet character y, define A(f, x) by the formula

(2.4) L(fx, k) = A(f, ) (f),

where ¢ is the sign of (—1)**! (resp. (—1)*) when Y is even (resp. odd). Then
one knows that the numbers A(f,y) are in Q. To elaborate, if M(f) denotes the
corresponding rank 2 motive over Q with coefficients in K ([Sch],[De]), normalized so
that s = 0 is the critical point in question, then our ¢®(f) is Deligne’s ¢*(M(f)(k)),
which equals, by the self-duality of f, (27i)*c¢T(M(f)).

Corollary 2.5 Let f be a newform of weight 2k, level N and trivial character. Then
for every odd prime p not dividing N, we have

(4) DT = D PP Y A(S W),

w
xEPj



for alli € [0,p—2]. Moreover, for every odd Dirichlet character v of conductor prime
to Np, and for every m with a,, # 0, we have

=|

ct(f) Sepn A(f, vwFx)x(m)

= v(m) lim )

% T epw AL

(i)

><|

Recall that P" is the set of primitive wild characters of conductor p’. The proof
is immediate from Proposition 2.2, with 1 being w’ (resp. w*) for part (i) (resp.
part (ii)), and (2.4). Evidently, we can also deduce such results at the other critical
integers.

Proof of Proposition 2.2. We will first treat the case, i.e., when t € [%, 1]. Since this
is outside the range of absolute convergence, we need to make use of the approximate
functional equation.

Denote by m = 7o, @ the cuspidal automorphic representation of G L2 (A) defined
by f, and let x, Fi, F; be as in (1.6). Let ¢ be a real number in [1,1). Then it is easy
to see that (for any p € X(V))

1

%/,{( )L(mo @ 1,5 + )y _:i& (Z)
@ :

(See the definition of [ right before (1.6).) Moving the line of integration to s = —2,

(a)
we see that the left hand side equals

1 ds
L(mo @ p,t) + 9 / k(s)L(my @ p, s + t)ys?
(=2)

On applying the functional equation (1.4), and changing s to —s, we obtain (in the
usual way) the following approximate functional equation:
(2.6)

L(mo®@pu,t) = i &nﬁf”) Fl(%) +p(N)W (@)W ()*(Np*) 2~ Z L (an\yp)

where M is the conductor of .

Since we are interested in the limit of Y,/ (p, f;t) as j — oo, we may restrict
our attention to large j. We will take j to be larger than ord,(R), so that nx will be
primitive mod p’ if x is. We may then use (2.6) with u = x7, and write Y,,,,.(p’, f;t)
as a sum Y,/ (07, t) + Yo ) (07, £), with

*

(2.7) Vi@ ) =p7 3 Zann Wm)F1<§>’

x mod pi n=1
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where m/ denotes the inverse of m mod p’. Each wild character mod p’ is a character
of G(p’) := Ker((z/p")* — (z/p)*), and the non-primitive ones are precisely those
characters which are trivial on the subgroup K := ker(G(p’) — G(p’'). Recall that
a character of (Z/p’)* defines a wild character iff it is trivial on the set S; of integers
(mod p’) of order (p — 1). Using the orthogonality of characters, we then see that

(2.8) Z X = |G()|os; — |G ™) 0k,

x mod pJ

where dg denotes for any subset S of G(p’), the characteristic function of S. Note

that |G(p?)| = p’=! (for 7 > 1). So (2.8) allows us to write

. 1 ) .
(29) H,m/r(p]a t) = Z_)[(I)m/r(p]a t) _p_lcbm/r(p]_lv t) )
where

t
bES rn=bm (modpJ) n y
n>1

This sum has a distiguished term corresponding to b = 1, n = m/r when r|m,
signifying the unique solution in positive integers n of the congruences rn = bm mod
p’ for all j. This allows us to decompose ®,,/,(p’,t) as

(2.10)

Dy (1) — <%}:§{T)> ) (%)+ > &nZE”)Fl (g)

rn=bm (mod pJ)
n>1,n#m/r

= [+ 11, say.

Again, @,,/, denotes the normalized coefficient if r|m, and zero otherwise.

Write y = p/7 for a positive v to be chosen below. Then we have by (1.7) (ii),
that for 7 — oo,

(2.11) I = “om TG

10



Forn>1, 5 > 1, put

I {1,if7"n:bm+ap7,a€Z
" 0, otherwise.

Then we have

t

-y 1] (12)n, E(Z)

1<n<y n
apn(n)b, ; n
y<n<oo n )

= ]Il —I—IIQ, say.

Recall that by Deligne’s proof of the Ramanujan conjecture, we have |a,| << n¢,
for any € > 0. Using this and Abel’s lemma, we see that I, is bounded in absolute
value by p~/y'=t*¢. Choose y = p’7 such that

1 1

— < < —
ot i 1—¢

which makes sense as ¢ € [1,1). Then v(1 —¢) < 1, and hence y' 7+ = pi 1=+ ig
o(p’) for a small enough e, so that that Il goes to 0 as j — oo.

Similarly,

F1<§>‘ << piyittte

212) 1L =Y MF1(§> oy o

nt nt—e

nly n<y

By our choice of vy above, I1; also goes to zero as j goes to infinity.

Thus we have, by putting together (2.9) through (2.12),

2.13 lim Y7 ., /r = .
(2.13) Faat /r(P") 2 (m/r)

We next analyze
(2.14)

. . iy a,X(nNrm/
Yomr(P') = W(W)N%ftpfm > Whn)? Y . X(nl Z"m) F2< ”y2>
x mod pJ n21 e Np ’
(n,p)=1

Lemma 2.15 For any integer b with (b,p) = 1, we have

*

Yo X)W (xn)? <<

x mod pJ

11



Proof. We may assume that (b, p) = 1. Let b be the inverse of b mod p’, and denote
exp(2mit) by e(t). Then we have

> sowon? = SExo( X weme(5))
— %al - n(alag)e(al il a2> ;*X(QlaQb)

Appealing to (2.8), we get

(2.16)
S W= EEtws.e) - Tt Sst i)
where o
S(u,v;p’) = Z e(T).

a mod pj
(a,p)=1

By a theorem of Salié (for j > 2) (see [S], [W]), one knows that each of these
Kloosterman sums is bounded by 2p7/2. The lemma follows. O

Applying Lemma 2.11 with b = nNrm/ in (2.10), and the bound |a,| < n°, we get

- L} ot i/9 e 1 n
Mol 0] < NE RS L ()

1t 27
—n Np

_ NéftprjH—j/Q

Y b )l + v,
with

U )] << Py

The partial sum within [ | can easily be seen to be bounded by a constant times

y~t=ep2 (9 So we get:

(2.17)

YQ,m/T(ﬂvt)’ << pj/2+2jey_t_€'

We choose y = p’7, with 2% < 7y < 2. Then, for small enough e,

(2.18) lim Yo,/(p,t) = 0.
J—00

12



For the same reason, U(p’,t) also goes to zero. Putting all this together with

(2.13), we get the Proposition (and Theorem A) for ¢ in [1, 1].

For completeness, we will now consider the remaining (easy) situation when ¢ > 1.
Since the L—series is absolutely convergent in this range, we can directly write

. 1 . _ .
(219) Ym/r(p]a t) - 2_9 \Ilm/r(p]a t) —-p lqjm/r(p] 17 t)}v
where
: Gm/r1) (M) ann(n)
(2.20) Wy 1) = Lt NT) .
/ (m/T)t Tn=b7n(zmod pj) ’]’Lt
n>1,n#m/r

Compare (2.7) through (2.10). The second term on the right (of (2.2)) is easily seen

to go to zero as j goes to 0o. The rest follows.
Q.E.D.

3 Quadratic twists

In Section 2, we considered twisting by arbitrary (primitive) characters of p-power
conductor, while in this section we will consider twists by (primitive) quadratic char-

acters g :<—fl>, with d running over fundamental discriminants. This variant is

subtle and useful for applications to forms of half integral weight (see Sec. 6).

Theorem B Let f,g be normalized newforms in Sop(N), Som(N') respectively.
Suppose there is a constant C such that

L(.f7 Xds k) = CL(ga Xd; m)

for almost all primitive quadratic charcaters x4 of conductor d prime to NN'. Then
k=m, N=N and f = g.

Proof. For y = x4, the functional equation (1.4) becomes

F(Qk - S)L(fa Xd; 2k — S):

|d|\/ﬁ>2k5
2T

d[VN\*
31 (Y r6) 207, x0.5) = wxa-=0) (
where w = W (r) = £1. Fix a multiple M of N and set

(3.2) DY :{d € zjwd > 0, d = v*(mod 4M), for some v coprime to 4M}.
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Then we have

(3.3) wxa(—N) =1, Vd € D",

Fix a smooth function F', compactly supported on R, with positive mean value.
Put

(3.4) B={ F@.

Rt

Let ¢ be either 1 or a prime not dividing 4M. We will use the following variant of
the twisted sum partly to be consistent with [Iw].

35 S0) = S3m) = 3 1 DF() )

deDw T

where the prime indicates that the summation is only over square free numbers d. In
[Iw], H. Iwaniec essentially proved an asymptotic formula for S;1(7"). (He actually
established a mean value theorem with a very sharp error term for the derivatives
of the L-function at the center of the critical strip.) The main new idea here is
to consider the sum weighted by xq4(¢). We will apply his method to establish an
asymptotic formula for Sy (7).

Proposition 3.6 We have

Spu(T) = BCoLy (k)T + O(TT5+),

where .
3v(4M) ( 1 >‘
C’0 - H 1 —-— )
M2 AT p?
Y(AM) = #{d (mod 4M), d=1v* (mod 4M), (v,4M) =1}
-1
1
Lio(s) = Le(s) = > an ( 11 (1 + —) ) n-°,
n=kj20 pln,(p, AM)=1 p
and for £ > 1,

Z?io ag2i+1€7(2i+1)s
LS aml B

where Rs >k — L k| (AM)>, (j, 4M) = 1.

1

Lo(s) = Li(s)

The function L;(s) occurs in [Iw] for £ = 2 (as L(s)), but the discussion goes
through for higher weights as well. Moreover, one has L;(k) # 0 (cf. loc. cit.). (Note
that there is a misprint on page 373 of [Iw]; (1 + %) should be (1 + %)’1.) We also
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note that L,(s), which is initially defined as a Dirichlet series convergent in a right
half plane, can be analytically continued to at least {R(s) > k — 1}, since Ly(s) can
be.

The proof of this proposition requires only minor modifications at different places
of the method developed by Iwaniec in [Iw] to analyze the untwisted sum. So we will

assume the truth of the proposition for the moment and indicate how to proceed from
there to the proof of the theorem. First we need the following crucial

Lemma 3.7 Let { be a prime with (¢,2N) = 1. Then 3 a rational function H,(t) €
R(t), which is reqular on [—2,2] with a non-vanising derivative in that interval, such
that

Li(k) = H(ae) L1 (k).

Indeed, by the multiplicativity of the Hecke eigenvalues, we have

ay Z a%m€72mk _ (Ek + ekfl) Z a£2m+167(2m+1)k‘
m=0

m=0

This gives

Zm>0 a/e2m+1 €7(2m+1)k 1 <~ &g )
= y .

3.9 = _
( ) 671 + ZMZO (Zg2m€72mk Z% —+ 6_% “ 1 + g Zmzo (Zg2m€72mk

But
14071

(1402 —az

Z ae2m€—2mk —

m>o
Since the left hand expression in (3.9) gives, by Proposition 3.6, the ratio L,(s)/L1(s)
at s =k, we get Ly(k) = Hy(as)L1(k) with
(3t
(C4+1)(P+C0+1)— 0%

(3.10) H(t) =

Clearly, this rational function has no singularities in [—2,2| (for any prime /).
Moreover, Hy(t) is easily seen to be > 0 in [—2, 2]. Hence the lemma. O

Now let f, g be as in Theorem B, so that L(f, x4, k) = C'L(g, x4, m) for |d| large.
Choose M to be the least common multiple of N and N’. First note that the constant
C' cannot be zero as we know that L(f,xa, k) # 0 for some d. Moreover, we may
assume that the signs of the functional equations, w(f) and w(g) say, must be equal.
Indeed, if it were otherwise, up to replacing f and g if necessary, we would have

S L k-)p(@) —0,

deDw(f) T
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leading to a contradiction. Then by the proposition and lemma, we get
(3.11) Lsq(k)=CLgy1(m)

and

Lya(k)Hy(@g) = C Ly (m)Hq(by),

for every prime ¢ with (/,2NN’) = 1, where a, and by denote the normalized (-th
Hecke eigenvalues of f, g respectively. Then the rational function H, takes the same
values on G, and by. Moreover, by the Ramanujan conjecture proved by Deligne, we
know that @, b, both lie in the interval [—2,2]. Since by the lemma, Hy is well defined
with a positive derivative on [—2,2], it is injective there and we may conclude that
¢ = by. Since this holds for all primes ¢ with ((,2NR) = 1, we get the assertion of
Theorem B by the strong multiplicity one theorem.

It is left to prove the proposition. We will assume familiarity with [Iw] and simply
indicate the necessary changes which must be made to obtain our assertion.
We have the general bounds

(3.12) > ame(am) << MFlog M, > |an|* << M?,
m<M m<M

and -
|am| <m™2 7(m).

In Lemma I of [Iw], we need only replace M by M* in the right hand side to cover
the general case.

Set

(3.13)
1 D(k+s) _yds 1 o 0 LA
V(@—%/@/QW@“ ?—%/m et ldf_(1+””'+m)e ’

and .
A(Xv Xd) = —/ L(f7 Xd; k + 8)
(4/5)

271

F(E(Z)S) (%ﬂ)_ "

S

o 2mn
= Z ann*kxd(n)V <7> )
n=1

Then we have
L(f, Xa, k) = 2A(|d|VN, xa).
and 1
L(f, xa, k) = A(X, xa) + O(|d|X2).
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The same argument (as in section 5 of [Iw]) leads to

> IL(f xa R)P <Y

deD,|d|<Y
We have
! d
(3.14) SUT) = 23" A(VE, xa) F (%) ) =5+ R
deD
where 2|d|
a
S =2 Z wu(a) Z A(a2|d|\/ﬁ, Xa2d)F ( T ) Xaza(l
a<A,(a,AM)=1 deD
2 a2|d|
=2 Z M(a) Z A(CL |d|\/ﬁv Xan)F T Xd
a<A,(a,4¢M)=1 deD
and

R=2 Z (Z wa ZAbz|d|\/_ XdeF<bz|d|> Xp2a (!

(b,AM)=1 alb,a>A deD
bQ
2 T (S ) SACVE e }')xd
(b,4¢M)=1 alb,a>A deD

Just as in section 6 of [Iw], we have

(3.15) R< (AT + APT9)T*

It remains to evaluate S. For (a, 4M) =1 and d € D we have

2mn
24V, v, . V(7>
ACHIVN, Xata) = 3 aan™xal)V\ 007

Here we write every n uniquely as the product n = rj?m, where r has prime factors
in 4M, jm is coprime to 4M and m is squarefree. Hence

S=2 > pa) > an Y ul)

a<A,(a,4¢0M)=1 n=rj2m,(n,a)=1 qlj

a?|d|q 21n
< 3 xa (me)F< V(o)
P T ) \eldlgVN

Now we split the sum S, according to whether ¢ divides m or not,as

S =84 52,
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where

St=2 Y ) 3 ann "y p(q)

a<A,(a,40M)=1 n=rj2mt,(n,a)=1,(m,l)=1 qlj¢

a’|d|q 2mn
X Xdq(m)F < %4 ,
dgp ! T a2|d|q\/ﬁ

SP=2 3 ula) > ann Y p(q)

a<A,(a,40M)=1 n=rjZm,(n,a)=1,(m,f)=1 qlj

a®|d|q 2mn
<3 va (mé)F( V=)
D W A Ve

We note that the expression for S above is derived by first going back to the initial
coprimality condition (j,d) = 1, and then by using the Mobius function to detect the
new condition (j¢,d) = 1.

We then write

alm) = 5m 2 S yan(m)e (W)

2|b|l<m m

where €, equals 1 if m = 1 (mod 4), and equals i if m = —1 (mod 4) and 4M4M = 1
(mod m). Thus

St=2 Y pa) > ann ™ Em ™2 3" u(q)

a<A,(a,4¢M)=1 n=rj2mt,(n,a)=1,(m,l)=1 ql3¢

. a2|d|q 2mn . Wbd
XD Xatwg( )d%DF< T >V<a2|d|q\/ﬁ> < m )ﬁ

2lbl<m
and
$=2 Y wa) Y e femml) V23 ()
a<A,(a,40M)=1 n=rj2m,(n,a)=1,(m,¢)=1 alj
a?|d|q 21n 4Mbd
i 2 F ( T ) ' <a2|d|qm> ’ <W> |
Set A = min (% a’qT<™'), and then split the sum S¢ i = 1,2, as
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S' =S5+ S; + S5,
defined by the respective conditions (1) b =0, (2) 0 < |bl*~| < Am, and (3) Am <

601" < m/2. Note that S3 = 0. We will show that S} gives the main term. Arguing
exactly as in [Iw], we infer that

S| + |SY] + |S3] < APTEte,

It remains to evaluate Sj. We have b = 0, so xap(m) = 0 unless m = 1. Thus

$=2 ) ¥ et Tax 3P (v ()

a<A,(a,40M)=1 n=rj24,(n,a)=1 qlje dg€D

By Euler-Maclaurin formula, the inner sum is

%%gg/F@WK%%%Jdt+CK«E+%>%>

for all e > 1. Thus we have (with ¢(n) denoting the Euler ¢—function)

ngb(]@ M(a) 2mn L
St=q(MT S 22 S F(t)V dt + O(AT**)
’ 2Men® p aairjn=1 @ / Tv Nt

n=rj24

=CT / (n_zg % I1 (1 + 3) h 1% (t\Q/%‘T)) F(t)dt + O(AT=* + A1),

plej p

But the inner sum, by the definition of V' (x) and by shifting the line of integration
to (Z4), can be evaluated as

Lyo(k) + O(T%).

Therefore, we conclude that
S(T) = BCLy (k)T + O((T5 + AT? + A™'T + A’T% + A3T% + AT3(T)).

Choosing A =T 13_4, we obtain Proposition 3.6. Q.E.D.

Remark 3.16 In our statement of Theorem B, we required that L(f, x4 k) =
CL(g, x4, m) for all x4 with (d, NR) = 1, with at most a finite number of exceptions.
But in fact, our proof together with the convexity bound shows that for all d with
|d| << T, if the exceptional d’s are at most O(T'27¢), then the theorem still holds.
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4 Generation of coefficient fields by ratios of L-
values

Let f be a normalized newform in Sox(V), for some k, N > 1. Put
(4.1) Ky = Q({an|(n, N) = 1})

where a,, = a,(f) is the n-th Hecke eigenvalue of f.

Fix a quadratic Dirichlet character xo such that

Set, for every y € Xqua,dv

g(xX)'L(f, x. k)
9(xo) *L(f, x0. k)

Then one knows ([Sh]) that these numbers lie in K if x and x, have the same parity.

(4.3) A(f.x:x0) =

Theorem C. K; = Q({A(f, x, Xo)|xXo even, quadratic}).

Proof. Let M; denote the field on the right hand side of the theorem. Since we
know that Mjy is contained in Ky, we are left to prove the reverse inclusion. For this
it suffices to prove the following.

Claim 4.4 Every o € Aut (C/My) acts as the identity on K;..
Fix any such automorphism o of C fixing M;. By Shimura ([Sh|) we have

(45) A(fv X XO)U = A(fg'/ XU'/ Xg)
Since y, xo are quadratic,

(4.6) x? = x, and x§ = Xxo-

Since o fixes My, we get

(47) A(f X XO) :A(f07X7X0)‘
which yields
(4.8) L(f.x,k) = CL(f?,x. k),
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with

L(f, x0, k)

L(f7, xo. k)

The key point is that C' is independent of y. So we may apply Theorem B with
g = f? and get

C=C(f 0,x) =

f=1r.
Since the coefficients of f7 are the o-conjugates of those of f, we get a,, = a7, Vn. In
other words, o fixes K. This proves the claim and the theorem. O

Now fix an odd prime p not dividing N, and consider the field Qy, = Q(up)
generated by (all the) p-power roots of unity. Fix a Dirichlet character xo, wild at p,
of conductor p™° such that

(49) L(fa Xoak) 7& 07

which is possible to do by our Theorem A. For all wild characters x of conductor
p™, we may define A(f,x, xo, k) as before (cf. (4.3)). These numbers lie in the
compositum K. = K;Qn. By using the Shimura reciprocity law ([Sh]|) and arguing
as in the quadratic case, we then get the following variant of Theorem C.

Theorem C’

Koo = Quo({A(f, X X0)|x wild of conductor p™}).

Don Blasius has pointed out the following consequence of this theorem. Choose
any pair of primes (p, q), and pick wild characters xg, po of p—power and g—power
conductors respectively such that L(f, xo, k) # 0 # L(f, o, k). Denote by L® (resp.
L) th field generated over Q(jp=) (resp. Q(ug~)) by the numbers A(f, x, xo) (resp.
A(f, 1, o)) as x (resp. w) runs over even characters of conductor a power of p (resp.
q). Then we have

(4.10) K = L9NLY,

We conclude this section with a question about motives M/Q of pure weight with
a critical point s = m for L(M, s). Suppose that End(M)®Q is a field, and moreover,
when M is self-dual and m central, assume that for some quadratic twist M ® x1, the
sign W(M ® x1) is +1. We will assume, as expected under the assumption on the
sign, that there exists a quadratic character xo such that L(M ® xo, m) # 0. One can
then define the numbers A(M, x, xo) appropriately, and these numbers are expected
by Deligne’s conjectures to belong to the field K of coefficients.

Question 4.11 Is K generated by {A(M, x, xo)|xxo even quadratic}?

Of course Theorem C gives an affirmative answer for motives M attached to even
weight modular forms at the critical center. It may also be useful to note that the
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answer is in the affirmative for motives M = [v] attached to Dirichlet characters v at
any critical point s = m, the reason being that the A([v], x, xo) supply a full set of
character values at this point.

5 p-adic L-functions

Let f be a normalized newform in Soi(N). It is well known that f is determined
by its complex L-function L(f,s). One way to deduce this is to invert the Mellin
transform expression

(5.1) n)TL ) = [ rinw?.

+

determining f(z) on the half line {z € H| Re(z) = 0}, and hence everywhere since f
is holomorphic. A natural question which arises is whether f is also determined by
(any of the) p—adic cousins L,(f, s).

Let Ly denote the Z-module in C generated by the periods of the differential
of degree 2k — 1 defined by f over the integral (relative) homology classes defined
by modular symbols (see [MTT], Chap. I, Sec. 2). For any (odd) prime p, fix
an embedding of Q in C,, the completion of an algebraic closure of Q,. Then one
has a p-adic L-function L,(f,s) € C, ®g QLy, for s € 7,, attached to f by Mazur,
Swinnerton-Dyer, Manin, Amice, Vélu, Vishik and Haran (see [MTT], Chap. I, for
details). The definition depends on the choice of a root a of the Hecke polynomial
2% — apz + p**7! with ord,(a) < 2k — 1. Our result below works for either choice.
If 7 denotes a p—adic character, i.e., a continuous homomorphism z; — C;, we may
consider also the twisted L—function L,(f,n,s). There is a Mazur-Mellin transform

expression

Ly(f.ns) = [ nlx) <z > dpy.

Zp

for a measure py = pys o on Zy.

We will fix algebraic closures @, and Q of @, and Q respectively, and also an
embedding of Q in @,. As usual, we will denote by C, the completion of Q, relative to
(an extension of) the p—adic absolute value on Q,. We will again denote by |.|, the
extension of the absolute value to C,.

When a p—adic character 7 has finite order, it can be identified with a primitive
Dirichlet character of p—power conductor, and can morover be written uniquely as
a product w'y, 0 < i < p — 2, where y is a wild character and w the Teichmiiller
character; in this case, we say that 7 is of tame type i. The main aim of this section
is to establish the following.
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Theorem D. Let f be a normalized newform in Sop(N), p an odd prime with
(p, N) =1, and n a finite order p—adic character of tame type i (mod (p — 1)), with
0 <i<2k—2. Then f is determined by L,(f,n,s). More explicitly, let g be a new
form in So(N') with (p, N') = 1 such that, for an infinite number of positive integers
n prime to p, we have

Lp(f7 m, n) = CLp(ga m, n) € (Cp ®@ Wa

for a Q-subspace W of C containing Ly, Ly, with C'€ Q. Then N = N’ and f = g.

An immediate consequence of the Theorem is the following, which is known for
the p—adic L—functions attached to abelian characters x of Q with Q(x) real.

Corollary 5.2. Let f be a newform of weight 2k and trivial character. Then, for
any finite order p—adic character n of tame type i, 0 < i < 2k — 2, we have

Lp(fﬂ%n) 7é 07

for all but a finite number of positive integers n prime to p.

The fact that L,(f,s) is not identically zero has been known for some time by the
elegant work of Rohrlich ([Ro2], [Ro3]). To prove this corollary, pick any newform
g # f of weight 2k and trivial character. Suppose L,(f,n,n) = 0 for an infinite
number of n prime to p. Then the hypothesis of Theorem D holds with C' = 0,
leading to the absurd conclusion f = g. Done. Note that, for any quadratic character
x cutting out a real quadratic field of Q, the associated abelian p—adic L—function
L,(x, s)has only a finite number of zeros, because it is represented by a (non-zero)
Iwasawa power series. The situation is the same for f in the ordinary case (using only
that the L—function is not identicaly zero). But L,(f,n, s) could have infinitely many
zeros in the supersingular case, where one has to use unbounded measures, though
they are not too bad as shown by Vishik.

Proof of Theorem D. Recall that every z € Z; can be uniquely decomposed as
(x)w(x), with w(z) a (p — 1)—th root of unity and (x) € 1+ pzZ,. For any new form
[ of weight 2k, one fixes a root a = a(f) of X? — a,X + p** 1 with minimal p-adic
valuation. (« is the unique unit root when p is ordinary for f). By Deligne, a has
archimedean absolute value p®*=1/2 and is non-zero (since p does not divide N).

In view of Theorem A, the assertion of Theorem D is a consequence of the follow-
ing.

Proposition 5.3. Let f (resp. g) be a newform in Sox(N) such that L,(f,n,n) =
CL,(g,n,n) for an infinite number of positive integers n prime to p, where C' is in Q.
Then the following identity of complex L-values holds for every primitive character x
mod p™, for all m large enough:

(*) alf) ™"L(f,xn, k) = C'alg) ™ L(g, xn, k),
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for some non-zero constant C' € C.

In order to prove this Proposition, we need the following
Lemma 5.4. Let f,g be as in Proposition 5.3. Then we have, for every finite order
wild p—adic character x, the following identity:

Lp(f7 X777 S) - CLp(ga X777 8)7

for all s € 7,.

Proof of Lemma. By a result of Vishik ([V], Theorem 3.3), we know that the
function

)\ - Lp(f7 77)‘)

is analytic with logarithmic growth on the group X of continuous homomorphisms of
(zp)* into C;. To be precise, one fixes an integer h such that ord,(a) < h < 2k — 1.
Then for an anlytic function F' to have logarithmic growth (in Vishik’s sense) is to
obey the condtion

Sup|u—1|p<r||F(u)|| = O(Sup|u—1|p<r|log2(u)| asr — 1.

To elucidate, let us review the topology on X. It is firstly a product of the finite group
X((z/p)* with the group Xy of wild p—adic characters. Secondly, there is a natural
identification of Xy with the p—adic disk T":= {u € C}|ju — 1| < 1} (cf. [V], sec. 2.1),
given by sending v to (1 + p). One transports the topology of the disk to Xj.

Now write

F(V) = Lp(fv 77”) - CLp(Qﬂ?V);
for every v € Xj. Then by our hypothesis, there exists an infinite set Y of positive
integers n prime to p such that I’ vanishes on the subset X; := {a,|n € Y}. The
lemma is equivalent to saying that the analytic function F' (with logarithmic growth)
is identically zero on X,. Put

Ti={1+p"neY}CT.

We will view F' as an analytic function of 7' vanishing on 73. Let |.|, denote the
absolute value on C, extending the one on Q,. Now, by the discussion in section 2.5
of [V], we see that for any r, the number of zeros p of a non-zero analytic function
(with logarithmic growth) such that |p — 1| = r is finite. To be precise, Vishik shows
that this number is the difference between the successive slopes of a piecewise linear
function. (The zeros occur precisely at the break points of this function.) So our
lemma will be proved if we show for our F, that for some r, the set of zeros p of F
such that |p — 1| = r is infinite. But for all n in Y, p, := (1 4+ p)™ belongs to 77 and
is hence a zero of F. On the other hand, |(1+p)" — 1|, equals | 37, (%) P'|p, which
is 1/p as n is not divisible by p. Since Y is an infinite set, we get what we want by
setting r = 1/p. Done.
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Proof of Proposition 5.3. Write
n = v,

i € [0,2k — 2] for a wild character v of finite order. Then, for any wild character x of
conductor p™, m > 1, we may consider the character

v — xn(r) <z > = x(z)v(r)w(z) <z >,

which is a special character in the sense of [MTT], sec. 13. Then, by applying the
Proposition of sec. 14 of [MTT], we get the following identity:

(pUtm !
o g () (~2mi)y

where g(p) denotes, for any p, the Gauss sum attached to pu. The Proposition now
follows by applying Lemma 5.4.

Ly(fimx,J) = L(f.x7,j+1),

Remark 5.5. As mentioned in the introduction, H. Hida has remarked to us
that the fact that f is determined by the collection of twisted p—adic L—functions
{L,(f,x,s)|x of finite order } has been known to him for some time as a conse-
quence of Rohrlich’s work giving the non-vanishing of L(f, x, k) for some finite order
character y.

6 Forms of half integral weight

Let k, N be integers > 1, with N odd and square-free. Let Sz+l(4N) denote the
‘T3
subspace of Sk+%(4N) consisting of cusp forms g(z) = ¥ b(n)e*™"*, z € H, with b(n)
n>1
being zero unless (—1)*n = 0,1 (mod 4). Then it is known (cf. [W1], [K1] that the
subspace SL 1 (N)"Y spanned by "newforms” (in the sense of Kohnen) in SL (V)
2 2

is isomorphic to S (V)™ (as Hecke modules) under the Shimura correspondence.

The object of this section is to establish the following.

Theorem E. Let g1, g2 be Hecke eigenforms in SL; (AN)"Y with coefficients by (n), ba(n)
2

respectively. Suppose by (|D]) = £bo(|D|), for all (but a finite number of ) fundamental

discriminants D with (—1)¥D > 0. Then g, = %gs.

This gives an affirmative answer to (a stronger form of) a question of Kohnen.
He asked (in ([K2]) if gy = g2 under the assumption b,(|D]) = bo(|D|), for all D as
above. He himself settled his question in the special case N = 1 under the additional
hypothesis that g, and g, have the same eigenvalue under the Hecke operator T} .
Our approach is totally different and uses Theorem B.
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Proof of Theorem. Fori = 1,2, let f; € Sox (V) denote the newform associated to g;
by the Shimura correspondence. A well known formula of Waldspurger (|[W2]) express
bi(|D])? in terms of L(fi,xp, k). We state it below in the explicit form derived by
Kohnen [K1] (see Corollary 1 on p. 242), generalizing earlier work of Kohnen-Zagier
for N = 1:
Let D be a discriminant such that

(C1) (=1)*D >0, and

(€2) (2) = wdlfi), VeI,
where wy(f;) denotes the eigenvalue under the Atkin-Lehner involution. Then

Uk el P4 S — A

(9i+ 9i) T (fis fi)
where v(N) denotes the number of prime divisors of N, and (, ) denotes the Petersson
inner product.

(6.1)

Let us now fix a Dy prime to NN satisfying (C1), (C2-i) above (for both i). Such
a Dy certainly exists. We know from the proof of Proposition 3.6 that there are
infinitely many D of this type for which L(fi, xp, k) # 0, hence by(|D|) # 0. For any
such D, by(|D]) is also non-zero, as by (|D|)? = be(|D])? by hypothesis. This implies,
by the Remark on p.243 of [K1], that

(6.2) we(f1) = we(f2) :<%>7

for all such D.
Put (fori=1,2)

(6.3) @i = }i ® XDy
Then ¢; is an eigenform in Sox(ND3), in fact a newform as (N, Dy) = 1.
We also set

D :{d > 0|u(d) # 0, d = v*(mod 4N Dy), for some v coprime to 4ND0}.

Note that for every D € D, DD, satisfies conditions (C1) and (C2-i) above (for each
The hypothesis of Theorem E implies, thanks to (6.1) and (6.2), the identity
(64) L(SplvxDak) = OL(@QvXka)v

with
o= Y /1) (92, 92)
<f27f2> <gl;g1>
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€ C*,




for all D belonging to the set
Applying Theorem B we conclude that ¢; = ¢y, which implies f; = fy after
untwisting by xp,.

Appealing to the bijection of the Shimura correspondence, we see that g; must be
a scalar multiple of go. We may write g1 = ags, for some a € R. But then, from (6.1)
we deduce that (g1, g1) = (g2, g2). This forces a? to be 1, and so g; = +ga. QED
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