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This will appear as an appendix to the paper Functoriality for the exterior
square of GL4 and the symmetric fourth of GL2 ([K]) by Henry Kim.
The object here is to prove the following extension (from cuspidal) to isobaric

automorphic representations of Proposition 3.6.1 of [Ra], which was itself an
extension to GL(n) of the Proposition 4.2 (for GL(2)) in [BR]. The argument is
essentially the same as in [Ra], but requires some delicate bookkeeping.

Proposition. Fix n, p ∈ N with p prime. Let F a number field, {Kj | j ∈ N} an
infinite family of cyclic extensions of F with [Kj : F ] = p, and for each j ∈ N,
πj an isobaric automorphic representation of GL(n,AKj ). Suppose that, for all
j, r ∈ N, the base changes of πj , πr to the compositum KjKr satisfy

(DC) (πj)Kj Kr � (πr)KjKr .

Then there exists a unique isobaric automorphic representation π of GL(n,AF )
such that

(π)Kj � πj ,

for all but a finite number of j.

Proof. Recall that the set Isob of isobaric automorphic representations of GL(n,AF )
for all n ≥ 1 admits a sum operation �, called the isobaric sum, such that

L(s, π � π′) = L(s, π)L(s, π′), ∀π, π′ ∈ Isob.

Moreover, given any isobaric automorphic representation π of GL(n,AF ) there
exist cuspidal automorphic representations π1, . . . , πd of GL(n1,AF ), . . . , GL(nd,AF ),
with n = n1 + . . .+ nd, such that

(1) π � π1 � . . .� πd.

Here the cuspidal datum (π1, . . . , πd) is unique up to (isomorphism and) per-
mutation. We will say that π is of width d. For the basic properties of isobaric
representations see [La] and [JS].
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Given any isobaric automorphic representation π of width d in the form (1),
and any d-tuple χ := (χ1, . . . , χd) of idele clas characters of F , we define the
χ-twist of π to be

(2) π[χ] : = (π1 ⊗ χ1)� . . .� (πd ⊗ χd).

If an isobaric automorphic representation π′ is isomorphic to π[χ] for some χ,
we will say that π′ is a twist of π. And if µ is an idele class character of F and
m = (m(1), . . . ,m(d)) a d-tuple of integers, we will set

µm : = (µm(1), . . . , µm(d)).

Now we need the following

Lemma. Let π = π1 � . . . � πd be an isobaric automorphic representation
of GL(n,AF ), with π1, . . . , πd being cuspidal automorphic representations of
GL(n1,AF ), . . . , GL(nd,AF ), n = n1 + . . . + nd. Then there exist at most a
finite number of d-tuples χ = (χ1, . . . , χd) of idele class characters such that

π � π[χ].

Proof of Lemma. By the uniqueness of the isobaric sum decompostition of π into
cuspidals, there must be a permutation σ in Sd such that we have, for each i ≤ d,
an isomorphism

πi � πσ(i) ⊗ χσ(i).

We must necessarily have ni = nσ(i) for each i. So the Lemma is a consequence
of the following

Sublemma. Let η, η′ be cuspidal automorphic representation of GL(m,AF ).
Then the set X of idele class characters µ such that

η � η′ ⊗ µ

is finite.

Proof of Sublemma. We may assume that X is non-empty, as there is nothing
to prove otherwise. Pick, and fix, any member, call it ν, of X. Put

Y = {µν−1 |µ ∈ X}.

Since X and Y have the same cardinality, it suffices to prove that Y is finite. We
claim that for any χ in Y ,

η � η ⊗ χ.

Indeed, if χ = µν−1 with µ ∈ X, we have

η � η′ ⊗ µ � (η′ ⊗ ν)⊗ (µν−1) � η ⊗ χ,
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whence the claim.
Now the set Y , which parametrizes the self-twists of η, is finite by Lemma

3.6.2 of [Ra], and hence the Sublemma is proved; so is the Lemma. �

Proof of Proposition (contd.)
For each j, let θj be a generator of Gal(Kj/F ), and δj a character of F cutting

out Kj (by class field theory). Note that, for each i ≥ 1, the pull back to Ki of
δj by the norm map Ni from Ki to F cuts out the compositum KiKj .
We will write, for each j,

(3) πj � �d(j)
k=1π

k
j ,

with each πk
j a cuspidal automorphic representation of GL(nk(j),AF ), with n =

∑d(j)
k=1 nk(j).
We claim that

(4) πj ◦ θj � πj (∀j).

For all j, r ≥ 1, let θj,r denote the automorphism of KjKr such that (i) θj,r |Kj =
θj , and (ii) θj,r|Kr = 1 (where 1 denotes the identity automorphism). It is easy
to see that the base change of πj ◦ θj to KjKr is simply (πj)KjKr ◦ θj,r . (For the
basic results on base change, see [AC]; for a quick summary see Prop. 2.3.1 of
[Ra].) Applying (DC), we then have

(πj ◦ θj)KjKr � (πr)Kj Kr ◦ θj,r � (πr)KjKr � (πj)Kj Kr ,

since θj,r is trivial on Kr . Since KjKr is a cyclic extension of Kj of prime degree,
we must have by Arthur-Clozel,

(5) πj ◦ θj � πj [(δr ◦Nj)mr ],

for some d(j)-tuple mr = (mr(1), . . . ,mr(d(j))) of integers in {0, 1, . . . , p − 1}.
For every fixed r ≥ 1, and for all k �= r, we then have the self-twist identity

πj � πj [(δr ◦Nj)mr ][(δk ◦Nj)−mk ].

Note that δr ◦Nj and δk ◦Nj must be distinct unless their ratio is a power of δj .
So the Lemma above forces mr to be the zero vector for all but a finite number
of r. The claimed identity now follows by taking r to be outside this exceptional
finite set.

As a result, by applying base change ([AC]; Prop. 2.3.1 of [Ra]) once again,
we see that there exists, for each j ≥ 1, an isobaric automorphic representation

π(j) = �b(j)
k=1 π(j)

k
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of GL(n,AF ), with each π(j)k a cuspidal automorphic representation of GL(Nk(j),AF )
and

n =
b(j)∑

k=1

Nk(j),

such that

(6) πj � (π(j))Kj .

Such a π(j) is of course unique only up to replacing it by π(j)[δa
j ] for some

d(j)-tuple a = (a1, . . . , ab(j)) of integers in {0, 1, . . . , p− 1}. Clearly we have

b(j) ≤ d(j),

but equality need not hold.

It is important to note that, for any r �= j, we have the following compatibility
for base change in (cyclic) stages:

(7) ((π(j))Kj )KjKr � ((π(j))Kr )KjKr .

We see this as follows. Let v be a finite place of KjKr which is unramified for
the data. Denote by u (resp. w, resp. w′) the place of F (resp. Kj , resp. Kr)
below v. If σu denotes the representation of W ′

Fu
associated to π(j)u, then

res(Kj)w

(KjKr)v
(resFu

(Kj)w
(σu)) � res(Kr)w′

(KjKr)v
(resFu

(Kr)′w
(σu)).

Then (2.3.0) of [Ra] implies the local identity (for all such v)

((π(j)u)(Kj)w
)(Kj Kr)v

� ((π(j)u)(Kr)′w)(KjKr)v
.

The global isomorphism (7) follows by the strong multiplicity one theorem for
isobaric automorphic representations ([JS]).

We can then rewrite (DC) as saying, for all j, r ≥ 1,

(8) ((π(j))Kj )Kj Kr � ((π(r))Kj )Kj Kr .

Consequently we must have, after renumbering, an equality of partitions (∀ (r, j)):

(N1(j), . . . , Nb(j)(j)) = (N1(r), . . . , Nb(r)(r))

of n. In particular, we have

(9) b : = b(j) = b(r) and Nk : = Nk(j) = Nk(r).
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Moreover,

(10) (π(j))Kj � (π(r))Kj [(δr ◦Nj)m(r,j)],

for some b-tuple m(r, j) = (m(r, j)1, . . . ,m(r, j)b) of integers. We can replace
π(r) by π(r)[δ−m(r,j)

r ] and get

(11) (π(j))Kj � (π(r))Kj .

Then, by replacing π(j) by a twist by δa
j for a b-tuple a of integers, we can arrange

to have π(j) and π(r) be isomorphic. In sum, we have produced, for every pair
(j, r), a common descent, say π(j, r), of πj , πr , i.e., with

(12) π(j, r)Kj � πj and π(j, r)Kr � πr.

Fix non-zero vectors a, c in (Z/p)b, and consider the possible isomorphism

(13) π(j, r) � π(j, r)[δa
j ][δ

−c
r ].

We claim that this cannot happen outside a finite set Sa,c of pairs (j, r). To see
this fix a pair (i, %) and consider the relationship of π(i, %) to π(j, r). Since π(i, %)
and π(j, %) have the same base change to K�, they must differ by twisting by a
b-tuple power of δ�. Similarly, π(j, %) and π(j, r) differ by a twist as they have
the same base change to Kr. Put together, this shows that π(i, %) and π(j, r) are
twists of each other. Then (13) would imply that

(14) π(i, %) � π(i, %)[δa
j ][δ

−c
r ] � π(i, %)[χa,−c],

where
χa,−c = (δa1

j δ−c1
r , . . . , δab

j δ−cb
r ).

The claim now follows since, by the Lemma above, π(i, %) admits only a finite
number of self-twists, and since the b-tuples χa,−c are all distinct for distinct
pairs (j, r) (as a, c are fixed).
Now choose a pair (j, r) not belonging to Sa,c for any pair (a, c) of non-zero

vectors in (Z/p)b, and set

(15) π = π(j, r).

We assert that for all but a finite number of indices m,

(16) πKm � πm.

It suffices to show that, for any large enough m, π = π(j, r) is isomorphic to
either π(j,m) or π(m, r). Suppose neither is satisfied. Then there exist non-zero
vectors a, c in (Z/p)b such that

π(j,m) � π(j, r)[δa
j ] and π(m, r) � π(j, r)[δc

r ].
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We also have π(j,m) � π(m, r)[δe
m ], for some vector e in (Z/p)

b. Putting these
together, we get the self-twisting identity

(17) π(j, r) � π(j, r)[δa
j ][δ

−c
r ][δ−e

m ].

By our choice of (j, r), e cannot be the zero vector. But for each non-zero e,
the set of indices m for which such an identity can hold is finite, again by the
Lemma. Hence we get a contradiction for large enough m, which implies that a
or c should be 0, giving the requisite contradiction. Thus π = π(j, r) must be
isomorphic to either π(j,m) or π(m, r) for large enough m. Since we have, by
(12),

π(j,m)Km � πm � π(m, r)Km ,

the Proposition is now proved. �
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