A DESCENT CRITERION FOR ISOBARIC REPRESENTATIONS

DINAKAR RAMAKRISHNAN

This will appear as an appendix to the paper Functoriality for the exterior square of GL_4 and the symmetric fourth of GL_2 ([K]) by Henry Kim.

The object here is to prove the following extension (from cuspidal) to *isobaric* automorphic representations of Proposition 3.6.1 of [Ra], which was itself an extension to GL(n) of the Proposition 4.2 (for GL(2)) in [BR]. The argument is essentially the same as in [Ra], but requires some delicate bookkeeping.

Proposition. Fix $n, p \in \mathbb{N}$ with p prime. Let F a number field, $\{K_j \mid j \in \mathbb{N}\}$ an infinite family of cyclic extensions of F with $[K_j : F] = p$, and for each $j \in \mathbb{N}$, π_j an isobaric automorphic representation of $GL(n, \mathbb{A}_{K_j})$. Suppose that, for all $j, r \in \mathbb{N}$, the base changes of π_j, π_r to the compositum K_jK_r satisfy

$$(DC) (\pi_j)_{K_j K_r} \simeq (\pi_r)_{K_j K_r}.$$

Then there exists a unique isobaric automorphic representation π of $GL(n, \mathbb{A}_F)$ such that

$$(\pi)_{K_i} \simeq \pi_j,$$

for all but a finite number of j.

Proof. Recall that the set *Isob* of isobaric automorphic representations of $GL(n, \mathbb{A}_F)$ for all $n \geq 1$ admits a sum operation \mathbb{H} , called the *isobaric sum*, such that

$$L(s, \pi \boxplus \pi') = L(s, \pi)L(s, \pi'), \forall \pi, \pi' \in Isob.$$

Moreover, given any isobaric automorphic representation π of $GL(n, \mathbb{A}_F)$ there exist cuspidal automorphic representations π^1, \ldots, π^d of $GL(n_1, \mathbb{A}_F), \ldots, GL(n_d, \mathbb{A}_F)$, with $n = n_1 + \ldots + n_d$, such that

(1)
$$\pi \simeq \pi^1 \boxplus \ldots \boxplus \pi^d.$$

Here the cuspidal datum (π^1, \ldots, π^d) is unique up to (isomorphism and) permutation. We will say that π is of width d. For the basic properties of isobaric representations see [La] and [JS].

Given any isobaric automorphic representation π of width d in the form (1), and any d-tuple $\chi := (\chi^1, \ldots, \chi^d)$ of idele clas characters of F, we define the χ -twist of π to be

(2)
$$\pi[\chi] := (\pi^1 \otimes \chi^1) \boxplus \ldots \boxplus (\pi^d \otimes \chi^d).$$

If an isobaric automorphic representation π' is isomorphic to $\pi[\chi]$ for some χ , we will say that π' is a twist of π . And if μ is an idele class character of F and $m = (m(1), \ldots, m(d))$ a d-tuple of integers, we will set

$$\mu^m := (\mu^{m(1)}, \dots, \mu^{m(d)}).$$

Now we need the following

Lemma. Let $\pi = \pi^1 \boxplus \ldots \boxplus \pi^d$ be an isobaric automorphic representation of $GL(n, \mathbb{A}_F)$, with π^1, \ldots, π^d being cuspidal automorphic representations of $GL(n_1, \mathbb{A}_F), \ldots, GL(n_d, \mathbb{A}_F), n = n_1 + \ldots + n_d$. Then there exist at most a finite number of d-tuples $\chi = (\chi^1, \ldots, \chi^d)$ of idele class characters such that

$$\pi \simeq \pi[\chi].$$

Proof of Lemma. By the uniqueness of the isobaric sum decomposition of π into cuspidals, there must be a permutation σ in S_d such that we have, for each $i \leq d$, an isomorphism

$$\pi^i \simeq \pi^{\sigma(i)} \otimes \chi_{\sigma(i)}.$$

We must necessarily have $n_i = n_{\sigma(i)}$ for each i. So the Lemma is a consequence of the following

Sublemma. Let η, η' be cuspidal automorphic representation of $GL(m, \mathbb{A}_F)$. Then the set X of idele class characters μ such that

$$\eta \simeq \eta' \otimes \mu$$

is finite.

Proof of Sublemma. We may assume that X is non-empty, as there is nothing to prove otherwise. Pick, and fix, any member, call it ν , of X. Put

$$Y = \{ \mu \nu^{-1} \, | \, \mu \in X \}.$$

Since X and Y have the same cardinality, it suffices to prove that Y is finite. We claim that for any χ in Y,

$$\eta \simeq \eta \otimes \chi$$
.

Indeed, if $\chi = \mu \nu^{-1}$ with $\mu \in X$, we have

$$\eta \simeq \eta' \otimes \mu \simeq (\eta' \otimes \nu) \otimes (\mu \nu^{-1}) \simeq \eta \otimes \chi,$$

whence the claim.

Now the set Y, which parametrizes the self-twists of η , is finite by Lemma 3.6.2 of [Ra], and hence the Sublemma is proved; so is the Lemma. \square

Proof of Proposition (contd.)

For each j, let θ_i be a generator of $Gal(K_i/F)$, and δ_i a character of F cutting out K_i (by class field theory). Note that, for each $i \geq 1$, the pull back to K_i of δ_i by the norm map N_i from K_i to F cuts out the compositum K_iK_i .

We will write, for each j,

$$\pi_j \simeq \boxplus_{k=1}^{d(j)} \pi_j^k,$$

with each π_i^k a cuspidal automorphic representation of $GL(n_k(j), \mathbb{A}_F)$, with n = $\sum_{k=1}^{d(j)} n_k(j).$ We claim that

(4)
$$\pi_j \circ \theta_j \simeq \pi_j \quad (\forall j).$$

For all $j, r \ge 1$, let $\theta_{j,r}$ denote the automorphism of $K_j K_r$ such that (i) $\theta_{j,r}|_{K_j} =$ θ_j , and (ii) $\theta_{j,r}|_{K_r}=1$ (where 1 denotes the identity automorphism). It is easy to see that the base change of $\pi_j \circ \theta_j$ to $K_j K_r$ is simply $(\pi_j)_{K_j K_r} \circ \theta_{j,r}$. (For the basic results on base change, see [AC]; for a quick summary see Prop. 2.3.1 of [Ra].) Applying (DC), we then have

$$(\pi_j \circ \theta_j)_{K_j K_r} \, \simeq \, (\pi_r)_{K_j K_r} \circ \theta_{j,r} \, \simeq (\pi_r)_{K_j K_r} \, \simeq \, (\pi_j)_{K_j K_r},$$

since $\theta_{j,r}$ is trivial on K_r . Since K_jK_r is a cyclic extension of K_j of prime degree, we must have by Arthur-Clozel,

(5)
$$\pi_j \circ \theta_j \simeq \pi_j [(\delta_r \circ N_j)^{m_r}],$$

for some d(j)-tuple $m_r = (m_r(1), \ldots, m_r(d(j)))$ of integers in $\{0, 1, \ldots, p-1\}$. For every fixed $r \geq 1$, and for all $k \neq r$, we then have the self-twist identity

$$\pi_j \simeq \pi_j[(\delta_r \circ N_j)^{m_r}][(\delta_k \circ N_j)^{-m_k}].$$

Note that $\delta_r \circ N_j$ and $\delta_k \circ N_j$ must be distinct unless their ratio is a power of δ_j . So the Lemma above forces m_r to be the zero vector for all but a finite number of r. The claimed identity now follows by taking r to be outside this exceptional finite set.

As a result, by applying base change ([AC]; Prop. 2.3.1 of [Ra]) once again. we see that there exists, for each $j \geq 1$, an isobaric automorphic representation

$$\pi(j) = \bigoplus_{k=1}^{b(j)} \pi(j)^k$$

of $\mathrm{GL}(n,\mathbb{A}_F)$, with each $\pi(j)^k$ a cuspidal automorphic representation of $\mathrm{GL}(N_k(j),\mathbb{A}_F)$ and

$$n = \sum_{k=1}^{b(j)} N_k(j),$$

such that

(6)
$$\pi_i \simeq (\pi(j))_{K_i}.$$

Such a $\pi(j)$ is of course unique only up to replacing it by $\pi(j)[\delta_j^a]$ for some d(j)-tuple $a=(a_1,\ldots,a_{b(j)})$ of integers in $\{0,1,\ldots,p-1\}$. Clearly we have

$$b(j) \leq d(j),$$

but equality need not hold.

It is important to note that, for any $r \neq j$, we have the following compatibility for base change in (cyclic) stages:

(7)
$$((\pi(j))_{K_j})_{K_jK_r} \simeq ((\pi(j))_{K_r})_{K_jK_r}.$$

We see this as follows. Let v be a finite place of K_jK_r which is unramified for the data. Denote by u (resp. w, resp. w') the place of F (resp. K_j , resp. K_r) below v. If σ_u denotes the representation of W'_{F_u} associated to $\pi(j)_u$, then

$$\operatorname{res}_{(K_{i}K_{r})_{v}}^{(K_{j})_{w}}(\operatorname{res}_{(K_{i})_{w}}^{F_{u}}(\sigma_{u})) \simeq \operatorname{res}_{(K_{i}K_{r})_{v}}^{(K_{r})_{w'}}(\operatorname{res}_{(K_{r})'_{w}}^{F_{u}}(\sigma_{u})).$$

Then (2.3.0) of [Ra] implies the local identity (for all such v)

$$((\pi(j)_u)_{(K_j)_w})_{(K_jK_r)_v} \simeq ((\pi(j)_u)_{(K_r)'_w})_{(K_jK_r)_v}.$$

The global isomorphism (7) follows by the strong multiplicity one theorem for isobaric automorphic representations ([JS]).

We can then rewrite (DC) as saying, for all $j, r \geq 1$,

(8)
$$((\pi(j))_{K_j})_{K_jK_r} \simeq ((\pi(r))_{K_j})_{K_jK_r}.$$

Consequently we must have, after renumbering, an equality of partitions $(\forall (r, j))$:

$$(N_1(j),\ldots,N_{b(j)}(j)) = (N_1(r),\ldots,N_{b(r)}(r))$$

of n. In particular, we have

(9)
$$b := b(j) = b(r)$$
 and $N_k := N_k(j) = N_k(r)$.

Moreover,

(10)
$$(\pi(j))_{K_i} \simeq (\pi(r))_{K_i} [(\delta_r \circ N_j)^{m(r,j)}],$$

for some b-tuple $m(r,j) = (m(r,j)_1, \ldots, m(r,j)_b)$ of integers. We can replace $\pi(r)$ by $\pi(r)[\delta_r^{-m(r,j)}]$ and get

(11)
$$(\pi(j))_{K_i} \simeq (\pi(r))_{K_i}.$$

Then, by replacing $\pi(j)$ by a twist by δ_j^a for a *b*-tuple *a* of integers, we can arrange to have $\pi(j)$ and $\pi(r)$ be isomorphic. In sum, we have produced, for *every pair* (j,r), a *common descent*, say $\pi(j,r)$, of π_j,π_r , i.e., with

(12)
$$\pi(j,r)_{K_j} \simeq \pi_j \text{ and } \pi(j,r)_{K_r} \simeq \pi_r.$$

Fix non-zero vectors a, c in $(\mathbb{Z}/p)^b$, and consider the possible isomorphism

(13)
$$\pi(j,r) \simeq \pi(j,r) [\delta_j^a] [\delta_r^{-c}].$$

We claim that this cannot happen outside a finite set $S_{a,c}$ of pairs (j,r). To see this fix a pair (i,ℓ) and consider the relationship of $\pi(i,\ell)$ to $\pi(j,r)$. Since $\pi(i,\ell)$ and $\pi(j,\ell)$ have the same base change to K_{ℓ} , they must differ by twisting by a b-tuple power of δ_{ℓ} . Similarly, $\pi(j,\ell)$ and $\pi(j,r)$ differ by a twist as they have the same base change to K_r . Put together, this shows that $\pi(i,\ell)$ and $\pi(j,r)$ are twists of each other. Then (13) would imply that

(14)
$$\pi(i,\ell) \simeq \pi(i,\ell)[\delta_j^a][\delta_r^{-c}] \simeq \pi(i,\ell)[\chi_{a,-c}],$$

where

$$\chi_{a,-c} = (\delta_i^{a_1} \delta_r^{-c_1}, \dots, \delta_i^{a_b} \delta_r^{-c_b}).$$

The claim now follows since, by the Lemma above, $\pi(i,\ell)$ admits only a finite number of self-twists, and since the *b*-tuples $\chi_{a,-c}$ are all distinct for distinct pairs (j,r) (as a,c are fixed).

Now choose a pair (j,r) not belonging to $S_{a,c}$ for any pair (a,c) of non-zero vectors in $(\mathbb{Z}/p)^b$, and set

(15)
$$\pi = \pi(j,r).$$

We assert that for all but a finite number of indices m,

It suffices to show that, for any large enough m, $\pi = \pi(j, r)$ is isomorphic to either $\pi(j, m)$ or $\pi(m, r)$. Suppose neither is satisfied. Then there exist non-zero vectors a, c in $(\mathbb{Z}/p)^b$ such that

$$\pi(j,m) \simeq \pi(j,r)[\delta_j^a]$$
 and $\pi(m,r) \simeq \pi(j,r)[\delta_r^c]$.

We also have $\pi(j,m) \simeq \pi(m,r)[\delta_m^e]$, for some vector e in $(\mathbb{Z}/p)^b$. Putting these together, we get the self-twisting identity

(17)
$$\pi(j,r) \simeq \pi(j,r)[\delta_i^a][\delta_r^{-c}][\delta_m^{-e}].$$

By our choice of (j, r), e cannot be the zero vector. But for each non-zero e, the set of indices m for which such an identity can hold is finite, again by the Lemma. Hence we get a contradiction for large enough m, which implies that a or c should be 0, giving the requisite contradiction. Thus $\pi = \pi(j, r)$ must be isomorphic to either $\pi(j, m)$ or $\pi(m, r)$ for large enough m. Since we have, by (12),

$$\pi(j,m)_{K_m} \simeq \pi_m \simeq \pi(m,r)_{K_m},$$

the Proposition is now proved. \square

References

- [AC] J. Arthur and L. Clozel, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. Math. Studies 120, Princeton, NJ, 1989.
- [BR] D. Blasius and D. Ramakrishnan, Maass forms and Galois representations, in Galois groups over Q, ed. by Y. Ihara, K. Ribet and J.-P. Serre, Academic Press, NY, 1990, pp. 33-77.
- [JS] H. Jacquet and J.A. Shalika, Euler products and the classification of automorphic forms I & II, Amer. J of Math. 103 (1981), 499–558 & 777–815.
- [K] H. Kim, Functoriality for the exterior square of GL_4 and the symmetric fourth of GL_2 , to appear.
- [La] R.P. Langlands, Automorphic representations, Shimura varieties and motives. Ein M\u00e4rchen, Proc. Symp. Pure Math. 33, ed. by A. Borel and W. Casselman, part 2, AMS, 1979, pp. 205-246.
- [Ra] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and Multilicity One for SL(2), Annals of Mathematics **152** (2000), 45–111.

Dinakar Ramakrishnan
Department of Mathematics
California Institute of Technology
Pasadena, CA 91125
dinakar@its.caltech.edu