A DESCENT CRITERION FOR
ISOBARIC REPRESENTATIONS

DINAKAR RAMAKRISHNAN

This will appear as an appendix to the paper Functoriality for the exterior
square of GLy and the symmetric fourth of GLy ([K]) by Henry Kim.

The object here is to prove the following extension (from cuspidal) to isobaric
automorphic representations of Proposition 3.6.1 of [Ra], which was itself an
extension to GL(n) of the Proposition 4.2 (for GL(2)) in [BR]. The argument is
essentially the same as in [Ra], but requires some delicate bookkeeping.

Proposition. Fizn,p € N with p prime. Let F' a number field, {K;|j € N} an
infinite family of cyclic extensions of F' with [K; : F| = p, and for each j € N,
mj an isobaric automorphic representation of GL(n,Ax,). Suppose that, for all
J,m € N, the base changes of mj, m, to the compositum K; K, satisfy

(DC) (7)) ks /6 =~ (T ) K K-

Then there ezists a unique isobaric automorphic representation m of GL(n,AFr)
such that
(ﬂ-)Kj = 7y,

for all but a finite number of j.

Proof. Recall that the set Isob of isobaric automorphic representations of GL(n, Ap)
for all n > 1 admits a sum operation H, called the isobaric sum, such that

L(s,m@Bn") = L(s,m)L(s,n"), Vr,n" € Isob.

Moreover, given any isobaric automorphic representation m of GL(n,Ap) there
exist cuspidal automorphic representations !, ... , 7¢ of GL(n1,AF), ..., GL(ng4, AFr),
with n = ni + ...+ ng, such that

(1) 7~ @, Bl

Here the cuspidal datum (7!,...,7%) is unique up to (isomorphism and) per-
mutation. We will say that 7 is of width d. For the basic properties of isobaric

representations see [La] and [JS].
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Given any isobaric automorphic representation 7 of width d in the form (1),
and any d-tuple x = (x!,...,x?) of idele clas characters of F', we define the
x-twist of 7 to be

(2) = (rtex)B.. B @ ex9).

If an isobaric automorphic representation 7’ is isomorphic to m[x] for some Yy,
we will say that 7’ is a twist of 7. And if p is an idele class character of F' and
m = (m(1),... ,m(d)) a d-tuple of integers, we will set

m

pme= (um®, ),

Now we need the following

Lemma. Let 71 = 7wt B ... B 7% be an isobaric automorphic representation

of GL(n,Af), with 7' ... 7 being cuspidal automorphic representations of

GL(n1,Ar), ..., GL(ng,Ar), n = n1 + ...+ nqg. Then there exist at most a

finite number of d-tuples x = (x',...,x%) of idele class characters such that
T~ m[x].

Proof of Lemma. By the uniqueness of the isobaric sum decompostition of 7 into
cuspidals, there must be a permutation o in Sz such that we have, for each 7 < d,
an isomorphism

7Ti ~ Wa(i) & Xo (i)

We must necessarily have n; = n,; for each i. So the Lemma is a consequence
of the following

Sublemma. Let n,n" be cuspidal automorphic representation of GL(m,AF).
Then the set X of idele class characters p such that

n~nepu
18 finite.

Proof of Sublemma. We may assume that X is non-empty, as there is nothing
to prove otherwise. Pick, and fix, any member, call it v, of X. Put

Y = {wpe X}

Since X and Y have the same cardinality, it suffices to prove that Y is finite. We
claim that for any x in Y,
n~ndx.

1

Indeed, if x = pr=" with u € X, we have

n=n®p~(fer)o () ~nex,
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whence the claim.
Now the set Y, which parametrizes the self-twists of n, is finite by Lemma
3.6.2 of [Ra], and hence the Sublemma is proved; so is the Lemma. [J

Proof of Proposition (contd.)

For each j, let 6; be a generator of Gal(K;/F'), and ¢; a character of F' cutting
out K; (by class field theory). Note that, for each ¢ > 1, the pull back to K; of
0; by the norm map N; from K; to F' cuts out the compositum K;Kj.

We will write, for each j,

(3) mj o~ Bk,

with each ﬂ’? a cuspidal automorphic representation of GL(n(j),Ar), with n =

S ().

We claim that
(4) mjot; ~m; (Vj).

For all j,r > 1, let 6, denote the automorphism of K; K, such that (i) 6, ,|x, =
6;, and (ii) 6;,|x, = 1 (where 1 denotes the identity automorphism). It is easy
to see that the base change of 7; 0 0; to K; K, is simply (7;)k, k, ©0;,. (For the
basic results on base change, see [AC]; for a quick summary see Prop. 2.3.1 of
[Ra].) Applying (DC), we then have

(mj 0 0) ik, =~ (7r)K; Kk, 005 = (7)) KK, = (T))K, K,

since 0; , is trivial on K,. Since K; K, is a cyclic extension of K; of prime degree,
we must have by Arthur-Clozel,

() 00 =~ m;[(or o Nj)"™"],

for some d(j)-tuple m, = (m,(1),... ,m,(d(j))) of integers in {0,1,... ,p — 1}.
For every fixed r > 1, and for all k # r, we then have the self-twist identity

mj == wi[(0r 0 Nj)"™ ][(0k o Nj)~™*].

Note that 6, o N; and d; o N; must be distinct unless their ratio is a power of 9;.
So the Lemma above forces m, to be the zero vector for all but a finite number
of r. The claimed identity now follows by taking r to be outside this exceptional
finite set.

As a result, by applying base change ([AC|; Prop. 2.3.1 of [Ra]) once again,
we see that there exists, for each j > 1, an isobaric automorphic representation

7(j) = B n(j)*
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of GL(n, Ar), with each (5)* a cuspidal automorphic representation of GL(N (), Ar)
and

b(5)
n =Y Ni(),
k=1
such that
(6) mj 2 (7(5)) s, -

Such a 7(j) is of course unique only up to replacing it by 7(j)[0%] for some
d(j)-tuple a = (a1, ... ,ay;) of integers in {0,1,... ,p — 1}. Clearly we have

b(j) < d(3),

but equality need not hold.

It is important to note that, for any r # j, we have the following compatibility
for base change in (cyclic) stages:

(7) (m())k; ),k = (7()k, )k, &, -
We see this as follows. Let v be a finite place of K; K, which is unramified for

the data. Denote by u (resp. w, resp. w’) the place of F' (resp. K, resp. K,)
below v. If o, denotes the representation of W, ~associated to 7(j)u, then

Kj w W K, w’ "
res( g i), (ros(ie ) (0)) = reszr) (ves(e ) (0u)).
Then (2.3.0) of [Ra] implies the local identity (for all such v)

(7)) (i y) (55 160y =2 (T )) (1), ) (0 -

The global isomorphism (7) follows by the strong multiplicity one theorem for
isobaric automorphic representations ([JS]).

We can then rewrite (DC) as saying, for all j,r > 1,
(8) (), )i i, > ((W(r) ;K K,
Consequently we must have, after renumbering, an equality of partitions (V (r, j)):
(N1 ()5 -+ Noyy(4)) = (Na(r), -+ s Nogry (1))
of n. In particular, we have

(9) b:= b(j) = b(?“) and Nk = Nk(j) = Nk(T)



A DESCENT CRITERION 5

Moreover,

(10) 7))k, ~ (7)), [(6r 0 Nj)™"D],

for some b-tuple m(r,j) = (m(r,j)1,... ,m(r,j)») of integers. We can replace
(r) by w(r) 6, ™" and get

(1 (), ~ (7(r))k; -

Then, by replacing 7(j) by a twist by 67 for a b-tuple a of integers, we can arrange
to have 7(j) and 7(r) be isomorphic. In sum, we have produced, for every pair
(4,7), a common descent, say mw(j,r), of mj, m,, i.e., with

(12) n(j, ")k, ~ 7 and 7w(j,7)K, = T
Fix non-zero vectors a, c in (Z/p)®, and consider the possible isomorphism
(13) m(j,r) = m(j,r)[67]6, ]

We claim that this cannot happen outside a finite set Sg . of pairs (j,r). To see
this fix a pair (4, ¢) and consider the relationship of 7 (i, ¢) to (3, 7). Since 7 (i, ¢)
and 7(j,¢) have the same base change to K/, they must differ by twisting by a
b-tuple power of d,. Similarly, 7(j,¢) and =(j,r) differ by a twist as they have
the same base change to K. Put together, this shows that 7 (i,¢) and 7(j,r) are
twists of each other. Then (13) would imply that

(14) (i, €) = m(i, 0)[071[0, ] = m(i, £)[Xa,~],

where
Xa,—c = (5;}15;017 - ,5;,”)5;05).

The claim now follows since, by the Lemma above, 7(i,¢) admits only a finite
number of self-twists, and since the b-tuples x, —. are all distinct for distinct
pairs (j,r) (as a,c are fixed).

Now choose a pair (j,r) not belonging to S, . for any pair (a,c) of non-zero
vectors in (Z/p)®, and set

(15) T = 7w(j,7).
We assert that for all but a finite number of indices m,
(16) TK,, ~~ Tm.

It suffices to show that, for any large enough m, = = 7(j,r) is isomorphic to
either 7(j,m) or w(m,r). Suppose neither is satisfied. Then there exist non-zero
vectors a, c in (Z/p)® such that

m(j,m) = w(j,7)[07] and w(m,r) ~n(j,r)[d;]
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We also have 7(j,m) ~ m(m,r)[d,], for some vector e in (Z/p)®. Putting these
together, we get the self-twisting identity

(17) m(g,r) = m(4,r)[07116, ][0,,°]-

By our choice of (j,r), e cannot be the zero vector. But for each non-zero e,
the set of indices m for which such an identity can hold is finite, again by the
Lemma. Hence we get a contradiction for large enough m, which implies that a
or ¢ should be 0, giving the requisite contradiction. Thus 7 = 7(j,7) must be
isomorphic to either 7(j,m) or m(m,r) for large enough m. Since we have, by
(12),

7T<j7 m)Km = Ty = ﬂ-(mvT)Kmv

the Proposition is now proved. [
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