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Here we answer a nice question raised by Peter Sarnak as to whether
we can give a new proof of any instance of the well known base change
result for GL(1) by using trace inequalities.

Fix a finite Galois extension M/L of CM fields of degree m, and
denote by E, resp. F , the totally real subfield M+, resp. L+, of M ,
resp. L. For any number field K, write AK = K∞ × Af

K for the adele
ring of k, ΓK for the absolute Galois group, and CK the idele class
group A∗

K/K
∗. For K ∈ {M,L, set, for a fixed tuple k = (kv)v|∞ with

each kv in Z,

XK(k) := {χ ∈ Homcont(CK , S
1) |χv(z) = (z/|z|)kv ,∀v | ∞, χ|CK+,+

= 1},

where CK+,+ denotes the image of A∗
K+,+, the subgroup of A∗

K+ con-

sisting of totally positive elements. Any χ in XK(k) is a unitary Hecke
character of weight k of K, which is anti-cyclotomic when trivial on
CK+ .

Fix a finite set R of primes in F , and denote by RM the set of primes
of M above R. Let m = (mv)v∈R be a tuple of positive integers mv.
Put

q(RM ,m) :=
∏
v∈R

∏
w|v q

mv−1
w (qw − 1)

qmv−1
v (qv − 1)

≥
∏
v∈R

qmv([Mw:Lv ]−1)
v .

The object here is to construct the base change of χ ∈ XL(k) of con-
ductor dividing

∏
v∈R Pmv

v to M without knowing a priori the answer
as being χ ◦NM/L.

We will choose, as we may, (R,m) large enough so that the following
holds:

(0) q(RM ,m) ≥ C := (6π)[M :Q]−[L:Q]

(
dLdE
dMdF

)1/2 L(1, νL/F )

L(1, νM/E)
,

where dK denotes, for any number field K, the absolute value of the
discriminant of K, and νL/F , resp. νM/K is the quadratic character of
F , resp. E, attached to L, resp. M .

For the choice of measures we will take below,

C = (6π)[M :Q]−[L:Q]
vol(L∗A∗

F,+\A∗
L)

vol(M∗A∗
E,+\A∗

M)
.

Theorem Let M/L be a finite Galois extension of CM fields. Fix a
weight k = (kv). Then there exists a set Y of positive density, consisting
of degree one primes w in M such that for every χ in XL(k) ∃χ′ ∈
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XM(k′) for k′ = (k′
w) with k′

w ∈ {0,±kw} for every w | ∞, such that
for all but finitely many w ∈ Y , χ′

w = χv if v is the place of L lying
below w.

This is what the trace inequality argument below will give, and when
k ̸= 0, a modification of the argument will even allow us to take Y to
be of density one. In any case, to go further and obtain the full base
change, we may appeal to a theorem of Hecke, which will assert that
χ′ is necessarily of the form (χ ◦NM/L)ν for a finite order character ν
of M as χ′ and χ ◦ NM/L agree on a set of primes of positive density;
in particular, k′ = k. Thus the desired base change arises by setting
χM = χ′ν−1.

To approach this without knowing about χ◦NM/L, note that by Serre
every χ, resp. χ′, is attached, for ℓ a prime, to an ℓ-adic character χℓ,
resp. χ′

ℓ of ΓL, resp. ΓM with the same L-function as χ, resp. χ′.
Then for every w in the set Y of degree one primes given by Theorem,
the restrictions of χℓ to ΓLv and χ′

ℓ to Mw are the same modulo the
identification of Mw with Lv (when w | v). This forces the quotient
νℓ := χ′

ℓ/χℓ|ΓM
and χ′

ℓ to have trivial restrictions to ΓMw for w is a set
of positive density. This forces their quotient νℓ to have finite order. If
we accept the existence of a finite order idele class character ν attached
to νℓ, we again see that χM := χ′ν−1 is the desired base change, with

L(s, χM) = L(s, χℓ|ΓM
).

Proof of Theorem:
Denote by Σ1

M the (density one) set of finite places w of M which
are unramified and of degree one over Q. Let S be any finite set of
places in Σ1

M with the property that no pair of elements of S has the
same norm (in Q). The key is to prove the following:

Proposition A For every χ ∈ XL(k) and for every S as above which
does not meet the (finite) set R(χ) of primes where χ is ramified, there
is a character χM,S ∈ XM(k′), for some k′ ∈ {0,±k}, such that for
every w ∈ S, χM,S

w = χv if the place v of L lies below w.

Proof of Proposition A
Fix a character χ0 in XL(k). If χ0 is the trivial character, then we

can take χM,S
0 to be trivial as well, so we may, and we will, assume

that χ0 is non-trivial. At each finite place v, let mv = mv(χ0) denote

the exponent of the conductor U
(mv)
v of χ0, where U

(n)
v is O∗

v if n = 0
and 1 + P n

v if n > 0. (Here Pv denotes the prime ideal at v.) Put
R = R(χ0), which is the finite set of v where mv > 0. Write RM for
the set of primes of M above R.
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For any number field k, assign the product measure d×x = ⊗vd
×xv

on the idele group A∗
k such that at any finite place v, d×xv gives volume

1 to O∗
k,v, at real v the measure d×xv = dxv/|xv| (with dxv being

Lebesgue), and for v complex, d×xv =
dr
r
dθ (in polar coordinates xv =

reiθ), r ∈ R∗
+, θ ∈ [0, 2π]. We also get an induced measure on the

relevant quotients of A∗
K).

At any finite place v of L, call a compactly supported, locally con-
stant function fv on L∗

v strongly positive if it is of the form
∑r

j=1 cjξj,v ∗
ξ∨j,v such that for every j ≤ r, cj ≥ 0, and ξj,v ∗ ξ∨j,v takes values in R+.

(Here, as usual, ξ∨v denotes the function x 7→ ξv(x−1).) Thus such an
fv is of positive type and takes non-negative values.

Write S0 for the set of places of L below S, and define a (factorizable)
function f = ⊗vfv on A∗

L such that

(a) fv is is the characteristic function of U
(mv)
v , if v is a finite place

outside S0,
(b) If v is archimedean, let fv(re

iθ) equal 1, resp. 3 + 2 cos(kθ), if
k = 0, resp. k ̸= 0;

(c) If v ∈ S0, it is in the (closed) positive cone spanned by functions
of the form ξ ∗ ξ∨, with ξ =

∑r
n=1 anchϖn

vO∗
v
, an ≥ 0.

Here ch denotes the characteristic function, and ϖv the uniformizer at
v.

Note that each fv, and hence f , takes non-negative values on A∗
L.

Moreover, fv is invariant under Uv = O∗
v for each v ∈ S0, and f is

invariant under
∏

v ̸∈R Uv ×
∏

v∈R U
(mv)
v . If v is archimedean, fv is by

construction invariant under R∗
+.

Associate to f a function ϕ = ⊗wϕw on A∗
M by defining ϕw to be

the characteristic function of U ′
w
(mv) if w ̸∈ S, and the function fv if

w ∈ S, for w | v. (This makes sense as Mw = Lv for w ∈ S.)
For K ∈ {L,M}, put

VK := L2(K∗A∗
K+,+\A∗

K),

which is a unitary representation under the translation action rK of A∗
K .

Then, by the compactness of K∗A∗
K+,+\A∗

K , we have the decomposition
as the Hilbert sum

VK ≃ ⊕n∈Z[K:Q] ⊕χ∈XK(n) Hχ,

where each Hχ is the χ-isotypic component, which is one-dimensional.
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If we denote by tr rK(h) for the trace of any smooth, compactly
supported function h on A∗

K , then for h factorizable,

(1) tr rK(h) =
∑
n

∑
χ

trχ(h) =
∑
n

∑
χ

∏
v

trχv(hv),

with

trχv(hv) = ĥv(χv) :=

∫
K∗

v

χv(tv)hv(tv)d
×tv.

On the right hand side expression of (1), the product inside is over all
the places v of K, and since for all but a finite number of places χv is
unramified and hv is the characteristic function of Ov, trχv(hv) equals,
with our choice of measures, 1 for almost all v, and so the product is
finite. Note that at any v, if hv is of the form ξv ∗ ξ∨v , then

(2) trχv(hv) = |trχv(ξv)|2 ≥ 0.

which is well known, but let us indicate why. Since hv(x) =
∫
L∗
v
ξv(xy)ξv(y)dy,

trχv(hv) equals∫
L∗
v

ξv(y)d
×y

∫
L∗
v

ξv(xy)χv(x)d
×x = trχv(ξv)

∫
L∗

ξv(y)χv(y
−1)dy,

where we have made the change of variables x 7→ xy−1 to get the
expression on the right. Now (2) follows as χv is unitary.

Now let v be an archimedean place. Then if hv = 3+2 cos(kvθv), we
have for χv(re

θ) = einvθ,

(3) tr (χv(hv)) =

∫ 2π

0

(
3einvθ + ei(nv−kv)θ + ei(nv+kv)θ

)
dθ = 2π⟨nv⟩,

where ⟨nv⟩ is 0, resp. 3, resp. 1, if nv ̸∈ {0,±kv}, resp. nv = 0, resp.
nv = ±kv. In any case, it is always ≥ 0 when hv is of this special form.

Now let K be L, with h being our choice of f = ⊗vfv. Then
(4)

tr rL(f) =
′∑
n

∑
χ∈XL(n) |m(χ)≤m

b(n)

(∏
v∈R

[O∗
v : U

(mv)
v ]

)∏
v∈S

|trχv(ξv)|2 ≥ 0,

where m(χ) ≤ m means m(χv) ≤ mv at each finite v, the first sum is
over {n |nv ∈ {0,±kv},∀v}, and b(n) = (b(nw))w|∞ is s.t. b(nw) is 6π,
resp. 2π when nw is 0, resp. ±kw.

Indeed, suppose that for some χ ∈ XL, m(χv) > mv at some finite
place v, so that χv is non-trivial on Umv

v . Then, since fv is invariant
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under Umv
v ,

trχv(fv) =
∑
j∈Z

χ(ϖj)

∫
Umv

v

fv(ϖ
j
vu)χv(u)du,

with the inside integral being∑
u∈Uv/U

(mv)
v

fv(ϖ
j
vu)χv(u)

∫
Umv
v

χv(u1)du1,

which is zero by the orthogonality of characters of the compact group

U
(mv)
v .
It is important that the sums over n and χ in the expression (4) are

both finite, which is because there are only a finite number of possible
infinity types and the conductor of χ is restricted.

Similarly, for K = M and h being our ϕ attached to f (and S),
(5)

tr rM(ϕ) =
∑
n′

∑
χ′∈XM(n′) |m(χ′)≤m

b(n′)

( ∏
w∈RM

[O∗
w : U

(mv(w))
w ]−1

)∏
v∈S

|trχ′
σ(v)(ξv)|2,

which is again non-negative, with v(w) denoting the place of L below
w. As with tr rL(f), the only tuples n′ = (n′

w)w|∞ which contribute are
those with n′

w ∈ {0,±kv(w)}, which restricts the χ′ to lie in a finite set
(since its conductor is also restricted).

Now define, for K ∈ {L,M}. the A∗
K-stable subspace V0

K of VK by

VK = V0
K ⊕ C,

so that the characters χ appearing in V 0
K are all the non-trivial ones

(which are 1 on K∗A∗
K+,+). Let r

0
K denote the restriction of rK to V0

K .

Comparing the geometric sides of the two trace formulae below, we
will obtain

Proposition B Let (M/L, χ,R, S, f, ϕ) be as above, with χ ̸= 1. Then

(a) tr(rL(f)) ≤ C ′tr(r0M(ϕ)), where

C ′ = (6π)[L:Q]−[M :Q]

(∏
v∈R

[O∗
v : U

(mv)
v ]∏

w|v[Ow
∗ : Uw

(mv)]

)
vol(L∗A∗

F,+\A∗
L)

vol(M∗A∗
E,+\A∗

M)
> 0.

(b) Suppose (0) holds, with C given by the expression there. Then

tr(r0L(f)) ≤ Ctr(r0M(ϕ)).
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Proof of Proposition B Since the group is commutative, the con-
jugacy classes are singletons. Noting that A∗

F,+ ∩ L∗ = F ∗
+, we get

(6) tr(rL(f)) = vol(L∗A∗
F,+\A∗

L)
∑

α∈F ∗
+\L∗

f(α) ≥ 0,

using the fact that f takes non-negative values.
We may, by replacing each α by its multiple by

∏
v∈S p

ℓv
v for suitable

ℓv ∈ Z, pv = N(v), we may choose a representative for α in L∗ which
is a unit at every v ∈ S. We have

f(α) =
∏
v

fv(α),

where at all the finite places v outside S, as fv is the characteristic

function of U
(mv)
v , αv needs to be a unit for fv(α) to be non-zero.

Furthermore, since every v in S is of degree one over Q, say with norm
pv, we may also modify α by such that the modified α has valuation
0 at each v ∈ S. (Since the places v in S have distinct norms, the
modification at any v ∈ S does not affect the situation at another
place (in S). Thus, for f(α) to be non-zero, it is necessary for α to be
a global unit with

α ∈ Umv
v , ∀ v < ∞.

Similarly, we have, over M , the geometric expression

tr (rM(ϕ) = vol(M∗A∗
E,+\A∗

M)
∑

β∈Q∗\M∗

ϕ(β) ≥ 0.

Since we have a natural injection F ∗\L∗ ↪→ E∗\M∗, we get a lower
bound

(7) tr (rM(ϕ) ≥ vol(M∗A∗
E,+\A∗

M)
∑

α∈F ∗
+\L∗

ϕ(α) ≥ 0,

and we call the right hand side the L-hereditary part of the trace of
ϕ.

Lemma C For every α in L∗ lying in U
(mv)
v for all v < ∞,

f(α) ≤ ϕ(α).

Proof of Lemma C It suffices to check that for each place v of L,

fv(α) ≤
∏
w|v

ϕw(α).

When v ̸∈ R ∪ S, each side is 1. When v ∈ R, the left hand side is

1 if α ∈ U
(mv)
v and 0 otherwise, and in the former case, α is also in

U ′
w
(mv) for each w, and by our choice of ϕw, the value there is 1. So
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now consider when v is in S. If w is above v but is not σ(v), then ϕw

is the characteristic function of the unit group at w, and so ϕw(α) = 1
for such w. Finally, ϕσ(v) = fv, and so takes on the same vale at α as
fv(α). Hence the Lemma.

Back to the proof of Proposition B

Thanks to Lemma C, we now have, applying (7):

(8) tr (rM(ϕ) ≥ vol(M∗A∗
E,+\A∗

M)
∑

α∈F ∗
+\L∗

f(α) ≥ 0,

Comparing this with (6), we then obtain

(9) tr (rL(f)) ≤ B tr (rM(ϕ)), with B =
vol(L∗F∗

+\A∗
L)

vol(M∗A∗
E,+\A∗

M)
,

which proves part (a) of Proposition B.
On the other hand, we have by (4),

(10) tr (rL(f)) = tr (r0L(f)) + (6π)[L:Q]

(∏
v∈R

vol(Umv
v )

)∏
v∈S

f̂v(1v).

Similarly by (5), using ϕσ(v) = fv,

(11) tr (rM(ϕ)) = tr (r0M(ϕ)) + (6π)[M:Q]

∏
v∈R

∏
w|v

vol(Umv
w )

∏
v∈S

f̂v(1v).

Consequently, using (9),
(12)

tr (r0L(f))+(6π)[L:Q]
∏
v∈S

f̂v(1v) ≤ Btr (r0M(ϕ))+(6π)[M:Q]B

(∏
v∈R

∏
w|v vol(U

mv
w )

vol(Umv
v )

)∏
v∈S

f̂v(1v)

Note that by our normalization of measures which gives volume 1 to
Uv and Uw, ∏

v∈R

∏
w|v vol(U

mv
w )

vol(Umv
v )

= q(RM ,m).

The following can be deduced, as remarked by H. Jacquet, for our
choice of measures, by imitating the computations in the book, Basic
Number theory, by A. Weil.

Lemma D For K ∈ {L,M}, we have

vol
(
K∗A∗

K+,+\A∗
K

)
=

(
dK

dK+

)1/2

L(1, χK/K+).
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Thus (0) implies that

(6π)[M :Q]B

(∏
v∈R

∏
w|v vol(U

mv
w )

vol(Umv
v )

)∏
v∈S

f̂v(1v) ≤ (6π)[L:Q]
∏
v∈S

f̂v(1v),

which, when used in conjunction with (12), yields part (b) of Proposi-
tion B.

(In fact, we didn’t really need Lemma D, as (0) could have been
phrased directly in terms of the toric volumes.)

Back to the proof of Proposition A

We now have a positive constant C, independent of S, f , such that

Ctr r0M(ϕ)− tr r0L(f) ≥ 0.

Recall that we started with a character χ0 in XL(k) of conductor∏
v∈R Pmv

v , so tr r0L(f) > 0. Spectrally expanding, we get, using the
strong positivity of f and ϕ,

trχ0(f) ≤ C
∑
χ′

trχ′(ϕ),

where χ′ runs over Hecke characters in ⊕k′=(k′w)X
0
M(k′), with each k′

w ∈
{0,±kv} if w | v, and with conductor

∏
w∈RM

P
m′

w
w with m′

w ≤ mv. In
any case the number of χ′ which intervene are finite in number.

Note that trχv(fv) is 1 when v is not in the set S0 below S, and
similarly, trχ′

w(ϕw) = 1 when w ̸∈ S. At any archimedean place, the
trace is 2π or 6π from (3) (as we have reduced to considering only those
nv, resp. n

′
w, which are in {0,±kv}. Putting these together, we obtain,

using ϕσ(v) = fv for w = σ(v) ∈ S,
(13)∏

v∈S0

f̂v(χv) ≤ A
∑
χ′

∏
v∈S0

f̂v(χ
′
σ(v)), A = (2π)[M :Q]−[L:Q]3[M :Q]C > 0.

Since our fv is, for each v ∈ S0, of the form ξv ∗ ξ∨v , with ξv =∑
m bmchϖm

v Uv with bm ≥ 0 (and 0 for all bt a finite number of m ∈ Z),
we get for any unramified character λ of F ∗

v , using vol(Uv) = 1,

(14) f̂v(λ) = |ξ̂v(λ)|2 = |
∑
m

bmq
−m
v λ(ϖv)

m|2.

We have freedom in choosing the bm, as long as they are non-negative
and are non-zero only for a finite number of m.

We have to show that for some χ′, χ′(ϖv) equals χ(ϖv) at every v in
S0. Suppose not. Then there is a non-empty subset S1 of S0 such that

(15) χ′(ϖv) ̸= χ(ϖv), ∀ v ∈ S1.
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And (13) becomes

(16)
∏
v∈S1

|ξ̂v(χv)|2 ≤ A
∑
χ′

∏
v∈S1

|ξ̂v(χ′
σ(v))|2.

We get a contradiction once we prove the following

Lemma E For every v ∈ S1, and for any pair of positive real numbers
α, β with α > β, there exists ξv such that

|ξ̂v(χv)| > α, and ξ̂v(χ
′
v) < β, ∀χ′.

Fix any v ∈ S1, and enumerate the χ′ in the relevant finite set as
χ′
1, . . . , χ

′
r. Since χv, χ

′
v are unitary, we may write χv(ϖv) = qit0v and

χ′
j,v(ϖv) = q

itj
v , 1 ≤ j ≤ r. Clearly, t0, tj are uniquely defined only

up to translation by 2π(log qv)
Z. Write θn = tn(log qv)/2π, for every

n = 0, 1, . . . , r. By hypothesis, θj ̸= θ0 for any j ≥ 1. Moreover,
by our choice of S, no chi′v takes the value −1 on ϖv, so if we think
of θn as lying in [−π, π], it never takes the value 0 for any n ≥ 1.
If ξv =

∑
m bmchϖmUv with bm ≥ 0, writing χv as χ′

0,v and putting
cm = bmq

−m
v , we then have,

(17) ξ̂v(χ
′
n,v) = g(θn) := 2

∑
m≥0

cme
iθn , ∀n = 0, 1, . . . , r.

Such a finite Fourier series g(θ) necessarily takes its maximum value
at θ = 0, as cm ≥ 0. The Lemma is easy to check wehn θ0 = 0, so we
may assume that there is an ε > 0 such that θn lies in the set J :=
([−π, π]− (−ε, ε)), for every n = 0, 1, . . . , r. Choose an even, smooth,
positive function h on [−π, π] such that its absolute value satisfies the
requisite inequalities at the θj, 0 ≤ j ≤ r. We can also make h a positive
definite function by choosing it to be sufficiently large at 0. Then
the coefficients cm are non-negative for the Fourier series representing
h, which converges in C∞-norm, implying uniform convergence of the
series and the derivatives. So we may uniformly approximate h by a
positive sum of characters. Since the inequalities satisfied by it form an
open condition, the approximating positive character sum also satisfies
the same inequalities at the θ′j and at θ0. �
The passage from S to a set of positive density

Fix k = (kv), R,m = (mv) as above. Let Y be the set of primes
w of M which are of degree one over Q and where no character χ′

of M of level dividing a :=
∏

v∈R
∏

w|v P
mv
w of weight k′ = (k′

w) with

k′
w ∈ {0,±kv(w)} has the value 1 on ϖw.

Lemma F Y has positive density. If k ̸= 0, it has density one.
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Proof of Lemma E First look at χ′ of weight 0, when it defines a ray
class character of conductor dividing a, and if the corresponding ray
class group is a product C1×· · ·×Cn, with each Cj cyclic of generator
xj, Tchebotarev assures of the existence of a set Zo, say, of primes
Pw of positive density δ whose Frobenius elements are (x1, . . . , xn).
(δ is at least 1/hM(a).) Now suppose χ′ is of weight k′ ̸= 0. We
claim that the set Z of primes Pw where χ′(ϖw) = 1 has density zero.
Indeed, if Z hs positive density, as χ′ and the trivial character agree
on Z, their ratio will need to be of finite order, hence of weight 0,
contradicting the fact that k′ ̸= 0. The Lemma now follows because
there are only a finite number of relevant k′ and hence χ′ (because of
bounded ramification). �

Let Y0 denote the set of rational primes below Y , and write elements
of Y0 as p1, p2, . . . , pn, . . . with pi < pj if i < j. Then enumerate the
primes of M lying in Y as {vi,j |N(wi,j) = pi}. Given a finite set S0 of
Y0 and a section σ : S0 → Y , i.e., a choice of a place w = σ(p) for every
p ∈ S0, it defines uniquely a finite set S of the type we have considered
above, and every such S arises this way. Let χ′(S) (= χ′(S0, σ)) be the
character of M attached above to χ.

Lemma G There exists a (unique) character χM from among the
family of characters {χ′(S0, σ)} indexed by (S0, σ), such that for all
place w in Y but a finite number, we have

χM,w = χv(w).

Proof of Lemma G
LetN denote the cardinality of the finite set of anti-cyclotomic Hecke

characters χ′ of M of conductor diviing a and weight k′ = (k′
w) such

that for each archimedean w above v, k′
w ∈ {0,±kv}. Put

ν :=
logN

log (1 + (1/(d− 1)))

Suppose the Proposition is false. Then there exists some integer m > ν
such that, for any πs

E, (∗) fails to hold at ν+1 (or more) places vj with
j ≤ m. Fix such an m, and define an equivalence relation on the finite
set Sm of restrictions of sections, again denoted by s, to {v1, . . . , vm},
by setting

s ∼ s′ ⇔ πs
E,s(vj)

≃ πs′

E,s′(vj)
.

Then the set Sm/ ∼ of equivalence classes [s] in Sm has cardinality
bounded above by N . Of course, |Sm| = dm. Then, by the pigeon-hole
principle, at least one class [s], call it Om, must have at least dm/N
members in Sm.
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Note that if (∗) fails to hold at r places in Sm, then the cardinality
of Om can be at most (d − 1)rdm−r =

(
d−1
d

)r
dm. Since Om ≥ dm

N
, it

follows that
1

N
≥
(
d− 1

d

)r

,

or equivalently,

r ≤ logN

log (1 + (1/(d− 1)))
= ν.

Since r ≥ ν + 1, we get the desired contradiction.
�

This completes the proof of the main Theorem.
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