Base Change of Hecke Characters revisited
Dinakar Ramakrishnan

Here we answer a nice question raised by Peter Sarnak as to whether
we can give a new proof of any instance of the well known base change
result for GL(1) by using trace inequalities.

Fix a finite Galois extension M/L of CM fields of degree m, and
denote by E, resp. F, the totally real subfield M, resp. L™, of M,
resp. L. For any number field K, write Ag = K, X Af( for the adele
ring of k, 'k for the absolute Galois group, and Ck the idele class
group A} /K*. For K € {M, L, set, for a fixed tuple k = (k)40 With
each k, in Z,

X (k) = {x € Homeous(Cr, S1) [ xo(2) = (2/|2])*, Vv | 00, Xleys , =

where Cg+ 1 denotes the image of A%, _» the subgroup of A}, con-
sisting of totally positive elements. Any y in X (k) is a unitary Hecke
character of weight k of K, which is anti-cyclotomic when trivial on
Ck+.

Fix a finite set R of primes in F', and denote by R,; the set of primes
of M above R. Let m = (m,),er be a tuple of positive integers m,.
Put

mul

H'Ll)'l)qw
q(Rar,m) = H lmv g, — 1) qu” [Muw:Lol=1)

vER vER

The object here is to construct the base change of x € X (k) of con-
ductor dividing [],., P;* to M without knowing a priori the answer
as being x o Ny/r.

We will choose, as we may, (R, m) large enough so that the following
holds:

1/2
0)  q(Ray,m) > C = (6r)MU-(L (deE) L(1,vrr)

dydp L(L VM/E) ,
where di denotes, for any number field K, the absolute value of the
discriminant of K, and vy p, resp. vyyk is the quadratic character of
I, resp. F, attached to L, resp. M.

For the choice of measures we will take below,
vol(L*Af L \AT)

C = (6r)MU-IL:Q _
(67) vol(M A, \A%)

Theorem Let M/L be a finite Galois extension of CM fields. Fiz a
weight k = (k,). Then there exists a setY of positive density, consisting

of degree one primes w in M such that for every x in Xp(k) Iy €
1
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X (K') for k' = (k) with k., € {0,£k,} for every w | oo, such that
for all but finitely many w € Y, x., = Xo if v is the place of L lying
below w.

This is what the trace inequality argument below will give, and when
k # 0, a modification of the argument will even allow us to take Y to
be of density one. In any case, to go further and obtain the full base
change, we may appeal to a theorem of Hecke, which will assert that
X' is necessarily of the form (x o Ny )v for a finite order character v
of M as x’" and x o Ny agree on a set of primes of positive density;
in particular, &’ = k. Thus the desired base change arises by setting
xu = xXv"

To approach this without knowing about yo N/, note that by Serre
every Y, resp. Y/, is attached, for ¢ a prime, to an f-adic character xy,
resp. xp of I'z, resp. I'j; with the same L-function as x, resp. x’.
Then for every w in the set Y of degree one primes given by Theorem,
the restrictions of x, to I'z, and xj to M, are the same modulo the
identification of M,, with L, (when w | v). This forces the quotient
ve = X3/ Xe|r,, and X} to have trivial restrictions to I'yz, for w is a set
of positive density. This forces their quotient v, to have finite order. If
we accept the existence of a finite order idele class character v attached
to v, we again see that yus := x'v~! is the desired base change, with

L(S7XM> = L(S7XZ|F]\/[)'

Proof of Theorem:

Denote by X}, the (density one) set of finite places w of M which
are unramified and of degree one over Q. Let S be any finite set of
places in X}, with the property that no pair of elements of S has the
same norm (in Q). The key is to prove the following:

Proposition A For every x € X1(k) and for every S as above which
does not meet the (finite) set R(x) of primes where x is ramified, there
is a character XM € Xy (K'), for some k' € {0, £k}, such that for
every w € S, M5 = v, if the place v of L lies below w.

Proof of Proposition A
Fix a character o in X (k). If xo is the trivial character, then we
M,S . :
can take x, '~ to be trivial as well, so we may, and we will, assume
that xo is non-trivial. At each finite place v, let m, = m,(xo) denote

the exponent of the conductor U™ of yo, where U™ is Orifn =0
and 1 + P if n > 0. (Here P, denotes the prime ideal at v.) Put

R = R(xo), which is the finite set of v where m, > 0. Write Rj, for
the set of primes of M above R.



3

For any number field k, assign the product measure d*zr = ®,d*z,
on the idele group A} such that at any finite place v, d*z, gives volume
1 to Oy, at real v the measure d*z, = dx,/|z,| (with dz, being
Lebesgue), and for v complex, d*x, = %d@ (in polar coordinates x, =
re®), r € R%,0 € [0,2n]. We also get an induced measure on the
relevant quotients of Aj).

At any finite place v of L, call a compactly supported, locally con-
stant function f, on L} strongly positive if it is of the form Z;Zl c;i€jv*

jvﬂj such that for every j <r, ¢; > 0, and &, * ijw takes values in R .

(Here, as usual, £’ denotes the function x — &,(x~1).) Thus such an
fv 1s of positive type and takes non-negative values.

Write S for the set of places of L below S, and define a (factorizable)
function f = ®,f, on A} such that

(a) f, is is the characteristic function of U{™, if v is a finite place

outside Sy,

(b) If v is archimedean, let f,(re) equal 1, resp. 3 + 2cos(k@), if
k=0, resp. k # 0;

(c) If v € Sp, it is in the (closed) positive cone spanned by functions
of the form & &Y, with £ = >~ _| anchenos, a, > 0.

Here ch denotes the characteristic function, and w, the uniformizer at
v.

Note that each f,, and hence f, takes non-negative values on Aj.
Moreover, f, is invariant under U, = O} for each v € Sy, and f is
invariant under [, Uy X [[,cx U™
construction invariant under RY.

Associate to f a function ¢ = ®,¢, on A}, by defining ¢,, to be
the characteristic function of U{U(m“) if w ¢ S, and the function f, if
w € S, for w | v. (This makes sense as M,, = L, for w € S.)

For K € {L, M}, put

. If v is archimedean, f, is by

Vi = L*(K"Ajer \AL),

which is a unitary representation under the translation action rx of Aj..
Then, by the compactness of K*Aj, | \A%, we have the decomposition
as the Hilbert sum

Vi =~ Opezixa Dyexpm) Hy,

where each H, is the y-isotypic component, which is one-dimensional.



If we denote by trrk(h) for the trace of any smooth, compactly
supported function h on A%, then for h factorizable,

(1) treg(h) = > Y try() =Y > J[erx

with

trxv(hy) = hy(xy) == /*XV@V)hV(tV)dXtV
On the right hand side expression of (1), the product inside is over all
the places v of K, and since for all but a finite number of places y, is
unramified and h,, is the characteristic function of O,, tr xy(hy) equals,
with our choice of measures, 1 for almost all v, and so the product is
finite. Note that at any v, if A, is of the form fv x &) then

(2) trxv(hy) = [trxe (&) > 0.

which is well known, but let us indicate why. Since h,(z) = |, Ls & (xy)E, (y)dy,
tr x(hy) equals

5 WAy | &(zy)xo(r)d*z = trx.(&) 5 &)X (y Hdy,

L3

where we have made the change of variables # + zy~! to get the
expression on the right. Now (2) follows as x, is unitary.

Now let v be an archimedean place. Then if h, = 3+ 2 cos(k,0,), we
have for x,(ref) = e™?,

2m
(3) tr (Xv(hv)) :/ (Seinvﬁ + ei(nv—kv)G +ei(nv+kv)0) do = 27T<I1V>,
0

where (n,) is 0, resp. 3, resp. 1, if n, ¢ {0, £k, }, resp. n, = 0, resp.
n, = *k,. In any case, it is always > 0 when h,, is of this special form.
Now let K be L, with h being our choice of f = ®, f,. Then

(4)
trrg (f Z Z b(n) (H[O* : ) [Tt x (&)l = o,

n  xeXg(n)|m(x)<m vER veSs

where m(y) < m means m(x,) < m, at each finite v, the first sum is
over {n|n, € {0,%k,},Vo}, and b(n) = (b(nw) )| is s.t. b(ny) is 6,
resp. 2m when n,, is 0, resp. *£k,,.

Indeed, suppose that for some x € X, m(x,) > m, at some finite
place v, so that x, is non-trivial on U*. Then, since f, is invariant



under U™,
trxy (fy) ZX () / f, (i u)xy (u)du,

with the inside integral being

> hEmem [ de,

U
aeU, /U™ v

which is zero by the orthogonality of characters of the compact group
U,

It is important that the sums over n and y in the expression (4) are
both finite, which is because there are only a finite number of possible
infinity types and the conductor of x is restricted.

Similarly, for K = M and h being our ¢ attached to f (and 5),
(5)

ENOED DY b(n’><H[O U )Hmma,
() <m

n’/ X EXM(II ) | m wERM veS

which is again non-negative, with v(w) denoting the place of L below
w. As with trr,(f), the only tuples n' = (n,)y| Which contribute are
those with n), € {0, &kyw)}, which restricts the x’ to lie in a finite set
(since its conductor is also restricted).

Now define, for K € {L, M}. the Aj-stable subspace V% of Vi by
Vi = V) & C,

so that the characters x appearing in V2 are all the non-trivial ones
(which are 1 on K*Aj% ). Let 7} denote the restriction of rg to Vi.

Comparing the geometric sides of the two trace formulae below, we
will obtain

Proposition B Let (M/L,x, R, S, f, ¢) be as above, with x # 1. Then
(a) tr(rn(f)) < C'tr(r8,(9)), where

* . (mv) * Ak *
¢ = (6m) @bl T 1 s 2 ) VOl(L*Af,+\Ai) .
vER lev[ow : Uy e ] VOI(M AE,-&-\AM)

(b) Suppose (0) holds, with C' given by the expression there. Then
tr(rp () < Ctr(ri(9))-
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Proof of Proposition B Since the group is commutative, the con-
jugacy classes are singletons. Noting that A, N L* = FT, we get

(6) tr(r(f)) = vol(L"AR \AL) Y fla) > 0,
a€FI\L*
using the fact that f takes non-negative values.
We may, by replacing each « by its multiple by [], ¢ pl for suitable
l, € Z, p, = N(v), we may choose a representative for a in L* which
is a unit at every v € S. We have

f(Oé) = H fv(Oé)a

where at all the finite places v outside S, as f, is the characteristic
function of U™, a, needs to be a unit for fo(a) to be non-zero.
Furthermore, since every v in S is of degree one over Q, say with norm
Py, we may also modify « by such that the modified o has valuation
0 at each v € S. (Since the places v in S have distinct norms, the
modification at any v € S does not affect the situation at another
place (in S). Thus, for f(a) to be non-zero, it is necessary for « to be
a global unit with
a e U™, Vv < oo.

Similarly, we have, over M, the geometric expression
tr (rar(¢) = vol(M*AR \AY) D> 6(B) > 0.
BeQ\M~

Since we have a natural injection F*\L* — E*\M*, we get a lower
bound

(7) tr (rar(9) > vol(M*AL \AY) > d(a) >0,
a€F\L*
and we call the right hand side the L-hereditary part of the trace of
0.
Lemma C For every « in L* lying in o for all v < o0,
f() < éla).
Proof of Lemma C 1t suffices to check that for each place v of L,

fol@) < T dula).
wlv
When v € RU S, each side is 1. When v € R, the left hand side is
(mw)

1ifa e Uy and 0 otherwise, and in the former case, « is also in
U{H(m“) for each w, and by our choice of ¢,,, the value there is 1. So
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now consider when v is in S. If w is above v but is not o(v), then ¢,
is the characteristic function of the unit group at w, and so ¢, (o) =1
for such w. Finally, ¢4,y = f,, and so takes on the same vale at « as
fo(a). Hence the Lemma.

Back to the proof of Proposition B
Thanks to Lemma C, we now have, applying (7):
(8) tr(ra(¢) > vol(M*Ap \A3) DY fla) >0
aEF;\L*
Comparing this with (6), we then obtain
vol(L*F\A7])

(9) tr (rL(f)) < Btr (TM(Cb))’ with B = Vol(M*AEJF\AK/[)’

which proves part (a) of Proposition B.
On the other hand, we have by (4),

(10)  tr (D) = tr (D (8) + (6m)"2 (H vol(U?v)) [Ti.a

veR veS

Similarly by (5), using ¢y = fo,

(11) tr (ru(9)) = tr (1§4()) + (6m) ¢ { TT ][ vor(uy) | [TE (1)

veR wlv veS
Consequently, using (9),
(12)
vol(Uy .
tr (00 (6m) - TT£.(1) < Bir (1 (6)+(6m) 9B (H L el >> [Tt
vol( Udv
ves veR v ves

Note that by our normalization of measures which gives volume 1 to
U, and U,,

H Hw|v V01<Urv€v) _

vol(Um) 4(Bar,m).

vER

The following can be deduced, as remarked by H. Jacquet, for our
choice of measures, by imitating the computations in the book, Basic
Number theory, by A. Weil.

Lemma D For K € {L, M}, we have

dg
dg+

1/2
vol (K*Aj, [ \AL) = ( ) L(L, xx/x+)-



Thus (0) implies that

oo (T ey TR0 < 699 [0

vER vES vES

which, when used in conjunction with (12), yields part (b) of Proposi-
tion B.

(In fact, we didn’t really need Lemma D, as (0) could have been
phrased directly in terms of the toric volumes.)

Back to the proof of Proposition A
We now have a positive constant C', independent of S| f, such that
Ctrry(¢) — trrd (f) > 0.

Recall that we started with a character xo in Xp(k) of conductor
[I,cr P, so trrf(f) > 0. Spectrally expanding, we get, using the
strong positivity of f and ¢,

trxo(f) < CY_ try'(¢)

where x’ runs over Hecke characters in @y ) X3, (K'), with each &/, €
{0, £k, } if w | v, and with conductor [],cp P P with ml, < m,. In
any case the number of x’ which intervene are finite in number.

Note that try,(f;) is 1 when v is not in the set Sy below S, and
similarly, trx, (¢w) = 1 when w ¢ S. At any archimedean place, the
trace is 27 or 67 from (3) (as we have reduced to considering only those
Ny, resp. n.,, which are in {0, £k,}. Putting these together, we obtain,
using Po(w) = fo for w =0 (v) € 5,

H folxn) < A T A0GW), A= (2mira-iazide s g,

vESp x' vESp

Since our f, is, for each v € Sy, of the form &, % &/, with &, =
> m bmChgmy, with by, > 0 (and 0 for all bt a finite number of m € Z),
we get for any unramified character A of F, using vol(Uy) = 1,

(14) Fo) = &P = 1Y by ™ Mww)™ 2.

We have freedom in choosing the b,,, as long as they are non-negative
and are non-zero only for a finite number of m.

We have to show that for some x’, x'(w,) equals x(w,) at every v in
Sp. Suppose not. Then there is a non-empty subset S; of Sy such that

(15) X (@) # x(@y), Vv € Si.



And (13) becomes
(16) [T 1600 < AY 0 [T 1EOG@)P

vES] X' vES:
We get a contradiction once we prove the following

Lemma E For every v € Sy, and for any pair of positive real numbers
a, B with o > (B, there exists &, such that

‘év(Xv)’ > «, and év(Xi;) <p, Vx.

Fix any v € Si, and enumerate the ' in the relevant finite set as
Xis- -+, Xe. Since X, X, are unitary, we may write x,(w,) = ¢ and
Xjo(0) = ¢, 1< j <r. Clearly, to,t; are uniquely defined only
up to translation by 27 (logq,)%. Write 6, = t,(logq,)/2m, for every
n = 0,1,...,r. By hypothesis, §; # 60, for any 7 > 1. Moreover,
by our choice of S, no chi, takes the value —1 on w,, so if we think
of 0, as lying in [—7, 7], it never takes the value 0 for any n > 1.
If & = >, bmchgmy, with b, > 0, writing x, as xp, and putting
Cm = byg, ™, we then have,

(17) Eo(X o) = 9(0,) =2 Z cme" N =0,1,...,7.

m>0

Such a finite Fourier series g(f) necessarily takes its maximum value
at 6 =0, as ¢,, > 0. The Lemma is easy to check wehn 6y, = 0, so we
may assume that there is an ¢ > 0 such that 6, lies in the set J :=
([-m, 7] — (—¢,¢)), for every n = 0,1,...,r. Choose an even, smooth,
positive function h on [—m, 7] such that its absolute value satisfies the
requisite inequalities at the 6;, 0 < j < r. We can also make h a positive
definite function by choosing it to be sufficiently large at 0. Then
the coefficients ¢, are non-negative for the Fourier series representing
h, which converges in C*-norm, implying uniform convergence of the
series and the derivatives. So we may uniformly approximate h by a
positive sum of characters. Since the inequalities satisfied by it form an
open condition, the approximating positive character sum also satisfies
the same inequalities at the 0’ and at 6. O

The passage from S to a set of positive density

Fix k = (k,), R,m = (m,) as above. Let Y be the set of primes
w of M which are of degree one over @ and where no character y’
of M of level dividing a := J[,cp L, P of weight k" = (k;,) with
k,, € {0, £kyw)} has the value 1 on w,,.

Lemma F Y has positive density. If k # 0, it has density one.
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Proof of Lemma E First look at ¥’ of weight 0, when it defines a ray
class character of conductor dividing a, and if the corresponding ray
class group is a product C; x - - - x C,,, with each C; cyclic of generator
xj, Tchebotarev assures of the existence of a set Z,, say, of primes
P, of positive density 6 whose Frobenius elements are (x1,...,xz,).
(0 is at least 1/hp(a).) Now suppose x’ is of weight k' # 0. We
claim that the set Z of primes P, where \/(w,) = 1 has density zero.
Indeed, if Z hs positive density, as x’ and the trivial character agree
on Z, their ratio will need to be of finite order, hence of weight 0,
contradicting the fact that &* # 0. The Lemma now follows because
there are only a finite number of relevant &’ and hence x’ (because of
bounded ramification). O

Let Yy denote the set of rational primes below Y, and write elements
of Yy as p1,p2,...,Dn,... with p; < p; if ¢ < j. Then enumerate the
primes of M lying in Y as {v;; | N(w; ;) = p;}. Given a finite set Sy of
Y, and a section o : Sy — Y, i.e., a choice of a place w = o(p) for every
p € Sy, it defines uniquely a finite set .S of the type we have considered
above, and every such S arises this way. Let x/(.S) (= x/(So, o)) be the
character of M attached above to y.

Lemma G There exists a (unique) character xp from among the
family of characters {x'(So,0)} indexed by (So,0), such that for all
place w in'Y but a finite number, we have

XMaw = Xov(w)-

Proof of Lemma G

Let N denote the cardinality of the finite set of anti-cyclotomic Hecke
characters x’ of M of conductor diviing a and weight &' = (k],) such
that for each archimedean w above v, k|, € {0, £k,}. Put

. log N
 log (1+(1/(d—1)))
Suppose the Proposition is false. Then there exists some integer m > v
such that, for any 73, (%) fails to hold at v+ 1 (or more) places v; with
7 < m. Fix such an m, and define an equivalence relation on the finite
set Sy, of restrictions of sections, again denoted by s, to {v1,...,vn},
by setting

S S/ = ﬂ-SE,s(Uj) ~ WSE’S/(UJ,).
Then the set S,,/ ~ of equivalence classes [s] in S, has cardinality
bounded above by N. Of course, |S,,| = d™. Then, by the pigeon-hole

principle, at least one class [s], call it O,,, must have at least d™/N
members in §,,.
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Note that if (%) fails to hold at r places in S,,, then the cardinality
of Oy, can be at most (d — 1)7d™™" = (%2)"d™. Since O,, > 4 it

N
follows that
1 d—1\"
— > (—),
v2 ()

log N

r <
~ log (1+(1/(d—1)))
Since r > v + 1, we get the desired contradiction.

or equivalently,

= V.

O

This completes the proof of the main Theorem.
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