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Introduction

Let F be a number field with adele ring AF , and let π, π′ be cuspidal auto-
morphic representations of GL(2,AF ), say with the same central character. If the
symmetric squares of π and π′ are equivalent, we know that π′ will need to be an
abelian, in fact quadratic, twist of π, which amounts to a multiplicity one state-
ment for SL(2) ([11]). It is of interest to ask if the situation is the same for the
symmetric cube transfer (from GL(2) to GL(4)) constructed by Kim and Shahidi
(cf. [8]). In an earlier paper [12], dedicated to Freydoon Shahidi, we showed that
the answer is in the negative: If π is of icosahedral type in a suitable sense (which
is meaningful even for π without an associated Galois representation), there is a
cusp form π∗ on GL(2)/F , which we call the “conjugate” of π, having the same
symmetric cube, but which is not an abelian twist of π. (We also showed there
that such a π is algebraic when the central character ω is algebraic.) In this note
we consider the converse direction and show that for π not of solvable polyhedral
type, if sym3(π) � sym3(π′) with π′ not an abelian twist of π, then a certain degree
36 L-function has a pole at s = 1. If one knew the automorphy of the symmetric
fifth power of π, which we do not assume in our principal result below, then such
a pole would imply that π is icosahedral with π′ twist equivalent to the conjugate
π∗. The situation is simpler if one could associate a Galois representation to π.

Given a cusp form π on GL(2)/F , one can define, for everym ≥ 1, an admissible
representation symm(π) of GL(m+1,AF ), and the principle of functoriality predicts
that it is automorphic, which is known (without any hypothesis on π) for m ≤ 4 ([3]
for m = 2, [8] for m = 3, [6] for m = 4). We will say that π is solvable polyhedral
if symm(π) is Eisensteinian for some m ≤ 4.

Theorem A. Let F be a number field, and π, π′ be cuspidal automorphic
representations of GL(2,AF ), such that π is not solvable polyhedral, with central
characters ω, ω′ respectively. Suppose we have sym3(π) � sym3(π′). Then π′ is
also not solvable polyhedral. Also, up to replacing π′ by a cubic twist, ω′ = ω,
sym4(π′) � sym4(π), and exactly one of the following happens :

(a) π′ � π;
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(b) The functorial product Π := π� sym2(π′) is cuspidal on GL(6)/F , and the
formal Rankin–Selberg L-function LS(s, sym5(π)× (Π⊗ ω)∨) is meromorphic and
has a pole at s = 1, where S is any finite set of places containing the Archimedean
and ramified primes for π, π′.

Furthermore, in case (b), we also have

− ords=1 L
S(s, sym5(π)× (Π′ ⊗ ω)∨) ≥ 1,

where Π′ := sym2(π) � π′.

When we are in case (b) of Theorem A, we will say that π is of icosahedral
type. In [12], we used a closely related condition of being s-icosahedral, which is
equivalent to the one in part (b) of Theorem A above if sym5(π) is automorphic,
as one can see by using the corollary below.

The functorial product � used in Theorem A above, also called the Rankin–
Selberg product (of automorphic forms), from GL(k)×GL(r) to GL(kr) is known
to exist for (k, r) = (2, 2) ([11]) and for (k, r) = (2, 3) by Kim–Shahidi ([8]).

When π is of solvable polyhedral type, there is an associated 2-dimensional
C-representation ρ of the global Weil group WF with solvable image, and the fibres
of the symmetric cube may be evaluated directly without recourse to automorphic
L-functions.

Corollary B. Suppose π is of icosahedral type (as in part (b) of Theorem A),
with π, π′ having the same symmetric cubes and central character, but not twist
equivalent. If sym5(π) is in addition automorphic, then it is equivalent to Π =
π � sym2(π′), and also to Π′ := π′ � sym2(π). In particular, it is cuspidal. In
this case, symm(π) is also automorphic for m = 6, 7, and we have isobaric sum
decompositions

sym6(π) �
(
(π � π′)⊗ ω2

)
�

(
sym2(π′)⊗ ω2

)
.

and

sym7(π) �
(
sym2(π) � π′ ⊗ ω2

)
�

(
π′ ⊗ ω3

)
.

For holomorphic Hilbert modular newforms of weight ≥ 2 generating π, there
has been a lot of progress recently on the automorphy of the symmetric fifth power
of π (and more), due to the striking (independent) works of Dieulefait ([2]) and of
Clozel and Thorne ([1]). But in this situation one can directly describe the fibres of
the symmetric cube (and higher powers) by using the openness of the image of ρ à
la Serre and Ribet. See [10] for an elegant general result for �-adic representations.
For π defined by a form of weight one, which has an attached Galois representation
ρ of Artin type (cf. [15, Thm. 2.4.1]), one has a lot of information on the symmetric
powers (see [14]).

In [12] it was proved that when π is of icosahedral type, the finite part πf

is Q[
√
5]-rational when ω = 1, but not rational over Q, and that π′ is its Galois

conjugate π∗ by the non-trivial automorphism of Q[
√
5]. The fibre of the symmetric

cube transfer has two elements in this case (up to character twists). For general

ω, an icosahedral π is only rational over the field generated over Q[
√
5] by the

values of ω. This paper may be viewed as a completion of [12], but can be read
independently.

Here is some general philosophy, which is not needed for this Note, but under-
lies the motivation. Langlands conjectures that given any cusp form π on GL(n)/F ,
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there is an associated irreducible, reductive subgroup G(π) of GL(n,C), generaliz-
ing the construction of the Zariski closure of the image of a Galois representation ρ,
if one may be associated to π. Such a G(π) is expected to exist for any π, even one
which is not algebraic, and for any finite-dimensional representation r of GL(n,C),
the way the restriction of r to G(π) decomposes should explicate the analytic be-
havior of L(s, π; r). When n = 2, there are not too many choices for G(π), and
if it does not contain SL(2,C), then its image in PGL(2,C) will be finite or its
connected component must be a torus; the former should correspond to when π is
dihedral, tetrahedral, octahedral or icosahedral, while the latter to when π is dihe-
dral, though of infinite image. The solvable polyhedral case is when one is in the
dihedral, tetrahedral or octahedral situation, and here one can give an automorphic
definition by the works of Kim and Shahidi ([7]). For our study of the fibres of
the symmetric cube transfer, the icosahedral case is the one of interest. For a π
which is not polyhedral, G(π) should contain SL(2,C) and so all the symmetric
power L-functions of π should be entire. It may be remarked that the article [9]
of Ram Murty with C.S Rajan investigates, under a hypothesis, certain analytic
consequences of that case of general type.

This article is dedicated to Ram Murty, a friend whose works I have long
read with interest. We thank the referee for some comments which improved the
presentation of the article.

1. Preliminaries

Let F be a number field. If π1, . . . , πk are isobaric automorphic representations
of GLn1

(AF ), . . . ,GLnk
(AF ) respectively, and if r1, . . . , rk are polynomial represen-

tations of GLn1
(C), . . . ,GLnk

(C), then for any (idele class) character μ of F , we
have the associated Langlands L-function

(1.1) L(s, π1, . . . , πk; r
1 ⊗ · · · ⊗ rk ⊗ μ)

of degree d =
∑k

j=1 dim(rj), equipped with an Euler product over the places v of
F , convergent in a right half plane. Let S denote the finite set of places of F made
up of the union of the Archimedean places and the finite places where some πj or
μ is ramified. Then for every finite place v outside S of norm qv and uniformizer
�v, there are conjugacy classes Av(π1,v), . . . , Av(πk,v) in GLn1

(C), . . . ,GLnk
(C)

respectively, such that the v-factor of (1.1), denoted by Lv(s, π1, . . . , πk; r
1 ⊗ · · · ⊗

rk ⊗ μ), is defined to be

(1.2) det
(
Id − q−s

v μ(�v)r
1
(
Av(π1)

)
⊗ · · · ⊗ rk

(
Av(πk)

))−1

.

Even at a ramified (resp. Archimedean) place v, one can use the local Langlands
correspondence, established for GL(n) by Harris–Taylor and Henniart, to define the
corresponding local factor, but we will not need to use it.

We will denote by rm the standard (m-dimensional) representation of GL(m,C),
and by symj , resp. Λj , the symmetric, resp. alternating, jth power of rm. For any
Euler product, L(s) =

∏
v Lv(s), and a set T of places of F , we will denote by

LT (s) the incomplete Euler product
∏

v/∈T Lv(s).

For k = 2 and rj = rnj
, the L-function (1.2) is called the Rankin–Selberg L-

function of the pair (π1, π2) ([4,13]), which admit meromorphic continuation and a
standard functional equation, such that when both πj are cuspidal, there is a pole at
s = 1 iff n1 = n2 and moreover, π2 is the contragredient π∨

1 (of π1). It is expected
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(by Langlands’ functoriality principle) that there exists an isobaric automorphic
form π1�π2, called the Rankin–Selberg product or the automorphic tensor product,
on GL(n1n2)/F , whose standard L-function agrees with L(s, π1 × π2), which is a
shorthand for L(s, π1, π2; rn1

⊗ rn2
). This is known to be true for n1 = n2 = 2

([11]) and for (n1, n2) = (2, 3) by Kim-Shahidi ([8]).
For any cuspidal (and hence isobaric) automorphic form π on GL(2)/F , a

fundamental result we will use is the existence, for j ≤ 4, of the symmetric j-th
power transfer to GL(j+1)/F , which is classical (due to Gelbart–Jacquet) for j = 2
(cf. [3]) and for j = 3, 4 due to Kim–Shahidi ([8]) and Kim ([6]). For j = 2, one
knows (by [3]) that (for cuspidal π), sym2(π) is cuspidal iff π is not dihedral, i.e.,
monomial attached to a character of a quadratic extension K/F . A beautiful result
of Kim and Shahidi ([7]) asserts that for j = 3, resp. j = 4, symj(π) is cuspidal iff π
is not tetrahedral, resp. octahedral, which means sym2(π) is not monomial attached
to a character of a cyclic cubic, resp. non-normal cubic, extension E/F . We will
say that π is solvable polyhedral iff it is dihedral, tetrahedral or octahedral.

We will call a cusp form π s-icosahedral iff there is another cusp form π∗ such
that

LS(s, π; sym5) = LS(s, sym2(π∗) � π ⊗ ω).

We will at times write, by abuse of notation L
(
s, symm(π)

)
for any m, though

symm(π) is only known to be an admissible representation of GL(m + 1,AF ) for
general m.

We will also have occasion to make use of Henry Kim’s exterior square func-
toriality η �→ Λ2(η) (cf. [6]) from GL(4)/F to GL(6)/F , such that the standard
L-function of Λ2(η) agrees with L(s, η; Λ2).

2. Two Lemmas

Let π, π′ be cuspidal automorphic representations of GL(2,AF ) which are not
abelian twists of each other, and not solvable polyhedral, with respective central
characters ω, ω′, such that sym3(π) and sym3(π′) are equivalent. Let S denote a
finite set of places of F containing the Archimedean and ramified places (for π, π′).

Lemma 2.1. Suppose π, π′ are as above, and are not twist equivalent. Then

(a) The automorphic representations

π � π′, Π := π � sym2(π′), Π′ := π′ � sym2(π)

are all cuspidal. Moreover, π�π′ does not admit any non-trivial self-twist.
(b) When ω = ω′, Π � Π′.

Proof.

(a) Just the fact that π, π′ are not dihedral implies that π�π′ is cuspidal unless
π′ is an abelian twist of π (cf. [11]), which we have assumed to be not the case. So
we have cuspidality in this case. Suppose π � π′ is equivalent to π � π′ ⊗ χ for a
character χ. Since we know the fibres of (π, π′) �→ π � π′ (from [11]), we see that
there must be characters χ1, χ2 such that χ = χ1χ2, π � π ⊗ χ1 and π′ � π′ ⊗ χ2.
Since π, π′ do not admit any self-twist, for otherwise they will be dihedral, we are
forced to have χ1 = χ2 = 1, thus χ = 1, and the assertion of part (a) is proved for
π � π′.
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Next we will show the assertions for Π and note that by symmetry they also
hold for Π′. Consider the Rankin–Selberg L-function

LS(s,Π×Π∨),

which can be rewritten as

LS(s, (π � π∨)×
(
sym2(π′) � sym2(π′)∨)

)
,

with isobaric decompositions

π � π∨ =
(
sym2(π)⊗ ω−1

)
� 1

and

sym2(π′) � sym2(π′)∨ �
(
sym4(π′)⊗ ω′−2

)
�

(
sym2(π′)⊗ ω′−1

)
� 1,

which may be taken as its definition. (Here 1 denotes the trivial automorphic
representation of GL1(AF ).) Thus we have the factorization

LS(s,Π×Π∨) = LS
1 (s)L

S
2 (s),

where LS
1 (s) is defined to be

LS(s, sym2(π)× sym4(π′)⊗ (ωω′2)−1)LS(s, sym2(π)× sym2(π′)⊗ (ωω′)−1)

× LS(s, sym2(π)⊗ ω−1),

and

LS
2 (s) := LS(s, sym4(π′)⊗ ω′−2

)LS(s, sym2(π′)⊗ ω′−1
)ζSF (s).

Note that by Jacquet–Shalika ([5]), Π is cuspidal iff the (incomplete) Rankin–
Selberg L-function LS(s,Π× Π∨) has a simple pole at s = 1. So we have to show
that LS

1 (s)L
S
2 (s) has a pole of order one. Since symm(η) is cuspidal for η = π, π′,

we see that LS
2 (s) has a simple pole at s = 1, and that the only possible pole

of LS
1 (s) could come from the factor LS(s, sym2(π) × sym2(π′) ⊗ (ωω′)−1), which

is usually written as LS
(
s,Ad(π) × Ad(π′)

)
, where Ad(π) is the self-dual adjoint

sym2(π) ⊗ ω−1. This factor can have a pole iff Ad(π) and Ad(π′) are equivalent,
which by [11] can happen iff π is an abelian twist of π′, which we have assumed to
be not the case. We are now done with proving part (a).

(b) Suppose ω = ω′. To prove that Π � Π′, we only have to show the existence
of a pole at s = 1 of

LS(s,Π×Π′∨) = LS(s, (π � sym2(π)∨)×
(
π′ � sym2(π′)∨

)∨
).

We have

π � sym2(π)∨ � sym3(π)⊗ ω−2 � π ⊗ ω−1,

and similarly for the corresponding expression involving π′. Thus LS(s,Π × Π′∨)
factors as

LS(s, sym3(π)× sym3(π′)∨)LS(s, sym3(π)×π′∨⊗ω−1)LS(s, π× sym3(π′)∨⊗ω′−1
)

times the entire function (since π, π′ are not twist equivalent):

LS(s, π × π′∨).

Note that LS(s, sym3(π)×sym3(π′)∨) has a simple pole at s = 1 since the symmetric
cubes of π, π′ are cuspidal and equivalent. The remaining two L-functions dividing
LS(s,Π×Π′∨) are entire and non-zero at s = 1. �



6 DINAKAR RAMAKRISHNAN

Lemma 2.2. Let π, π′ be as in Lemma 2.1. Then, up to replacing π by a cubic
twist, we have

(a) ω = ω′.
(b) sym4(π) � sym4(π′).

Proof. At any v 	∈ S with uniformizer �v, let the corresponding conjugacy
classes Av(π), Av(π

′) (of π, π′) be represented by diag(αv, βv), diag(α
′
v, β

′
v) respec-

tively, so that

ωv(�v) = αvβv, ω′
v(�v) = α′

vβ
′
v.

A direct calculation shows

(2.1) Λ2(sym3(πv)) �
(
sym4(πv)⊗ ωv

)
⊕ ω3

v .

This is the v-factor of the exterior square of the cusp form sym3(π) by Kim [6]. By
the strong multiplicity one theorem for isobaric automorphic representations ([5],
we obtain a global equivalence

(2.2a) Λ2
(
sym3(π)

)
�

(
sym4(π)⊗ ω

)
� ω3.

Similarly, as the symmetric cubes of π and π′ are equivalent,

(2.2b) Λ2
(
sym3(π)

)
�

(
sym4(π′)⊗ ω′) � ω′3.

Now since π, π′ are not solvable polyhedral, sym4(π) and sym4(π′) are cuspidal.
Hence (2.2b) implies that

− ords=1 L
S
(
s,Λ2

(
sym3(π)

)
⊗ ω′−3)

= 1.

But this L-function equals, by applying (2.2a):

LS(s, sym4(π)⊗ ωω′−3
)LS(s, (ω/ω′)3),

which will have no pole at s = 1 if ω3 is distinct from ω′3, giving a contradiction.
Thus we must have ω3 = ω′3, yielding part (a).

Comparing (2.2a) and (2.2b), we also get part (b). �

3. Proof of Theorem A

Let π, π′ be as in Theorem A. Since π is not solvable polyhedral, sym3(π) is
cuspidal and does not admit a quadratic self-twist. As π′ and π have the same
symmetric cubes, the same statements hold for sym3(π′), implying by [7] that π′

is also not solvable polyhedral.
There is nothing to prove if π and π′ are abelian twists of each other, so we

may assume that they are not. Then by part (a) of Lemma 2.2, we may assume
that π and π′ have the same central character ω.

Consider the functorial product π � π′ which, by Lemma 2.1, is cuspidal and
not equivalent to any non-trivial abelian twist of itself. We have, for any character
μ of F ,
(3.1)
LS(s, sym4(π)× (π � π′)⊗ μ) = LS(s, sym5(π)× π′ ⊗ μ)LS(s, sym3(π)× π′ ⊗ μω),

which also equals (by replacing sym4(π) by sym4(π′) in the left hand side L-function
of (3.1))

(3.2a) LS(s, sym5(π′)× π ⊗ μ)LS(s, sym3(π′)× π ⊗ μω).
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We may rewrite (3.2a) by replacing sym3(π′) therein by sym3(π) and decomposing
sym3(π)× π, to obtain

(3.2b) LS(s, sym5(π′)× π ⊗ μ)LS(s, sym4(π)⊗ μω)LS(s, sym2(π)⊗ μω2).

Appropriately twisting (3.1) and (3.2b) by sym2(π)∨ ⊗ (μω2)−1 (= sym2(π) ⊗
(μω4)−1), we are led to identify

(3.3a) LS(s, sym5(π)× sym2(π)× π′ ⊗ ω−4)LS(s, sym3(π)× sym2(π)× π′ ⊗ ω−3)

with

(3.3b) LS(s, sym5(π′)× sym2(π)× π ⊗ ω−4)LS(s, sym4(π)× sym2(π)⊗ ω−4)

× LS(s, sym2(π)× sym2(π)∨).

We have, for any character ν of F ,

(3.4a) LS(s, sym5(π′)× sym2(π)× π ⊗ ν)

= LS(s, sym5(π′)× sym3(π′)⊗ ν)LS(s, sym5(π′)× π ⊗ νω),

which equals the product of LS(s, sym5(π′)× π ⊗ νω) with

(3.4b) Λ(s) := LS(s, sym8(π′)⊗ ν)LS(s, sym6(π′)⊗ νω)2LS(s, sym4(π′)⊗ νω2).

Note that

(3.5) Λ(s)LS(s, π′ × π′ ⊗ νω3) == LS(s, sym4(π′)× sym4(π′)⊗ ν,

which shows that Λ(s) is invertible at s = 1, being the ratio of two meromorphic
functions with simple poles at s = 1. We now claim that LS(s, sym5(π′)×sym2(π)×
π ⊗ ν) is meromorphic with no pole or zero at s = 1. In view of (3.4a) and (3.4b),
it suffices to show that LS(s, sym5(π′) × π ⊗ νω) is (meromorphic and) invertible
at s = 1. (It is essential to note that we can prove this without knowing the
automorphy of sym5(π′), but exploiting the facts that (i) sym3(π′) and sym3(π)
are equivalent, with π′, π not twist equivalent and not solvable polyhedral, and (ii)
symj(π) and symj(π′) are automorphic for j ≤ 4.) Indeed, to this end let us first
note the factorization

(3.6) LS(s, sym3(π′)× sym2(π′) � π ⊗⊗νω)

= LS(s, sym5(π′)× π ⊗ νω)LS(s, sym3(π′)× π ⊗ νω2)LS(s, π′ × π ⊗ νω3),

whose left hand side, due to the equivalence of the symmetric cubes of π and π′,
can be reexpressed as

(3.7) LS(s, sym2(π′)× sym3(π) � π ⊗⊗νω)

= LS(s, sym2(π′)× sym4(π)⊗ νω)LS(s, sym2(π′)× sym2(π′)⊗ νω2)

The claim follows.
Consequently, the expression in(3.3b) has a simple pole at s = 1, which results

in a simple pole (at s = 1) of (3.3a). On the other hand,

(3.8a) LS(s, sym3(π)×sym2(π)×π′⊗ω−4) = LS(s, sym3(π′)×sym2(π)×π′⊗ω−4),

which factors as

(3.8b) LS(s, sym4(π′)× sym2(π)⊗ ω−4)LS(s, sym2(π′)× sym2(π)⊗ ω−3).
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The first L-function of (3.8b) has no pole since (by virtue of π′ not being solvable
polyhedral) sym4(π′) is cuspidal. And the second L-function of (3.8b) has a pole
iff Ad(π) = sym2(π) ⊗ ω−1 is equivalent to Ad(π′), which would imply, by [11],
that π and π′ are twist equivalent, which is not the case. Thus the only possibility,
by looking at (3.3a), is to have

(3.9) − ords=1 L
S(s, sym5(π)×Π⊗ ω−4) = 1,

where, as before,

Π = sym2(π) � π′.

Note that

(Π⊗ ω)∨ � Π⊗ ω−4,

which gives the first assertion of case (b) concerning the existence of a pole. The
second assertion also follows since we know by Lemma 2.1 that Π and Π′ are
equivalent. All this has resulted under the assumption that we are not in case (a),
i.e., that π, π′ are not twist equivalent. Thus we get the dichotomy of Theorem A.

�

4. Proof of Corollary B

Suppose in addition to our working hypotheses, we also know that sym5(π)
is automorphic. As before, by replacing π′ by a cubic twist if necessary, we may
assume that it has the same central character ω as π. Then in case (b) of Theorem A,
the fact that

− ords=1 L
S(s, sym5(π)× (Π⊗ ω)∨) ≥ 1

implies that Π⊗ω occurs in the isobaric decomposition of sym5(π). However, both
Π and sym5(π) are representations of GL(6,AF ), which forces the equivalence

(4.1) sym5(π) � Π⊗ ω = π � sym2(π′)⊗ ω,

since Π is cuspidal. Thus by applying part (b) of Lemma 2.1, sym5(π) must be
cuspidal too, and moreover, using the second assertion of part (b) of Theorem A,
sym5(π) is also equivalent to Π′ ⊗ ω = π′ � sym2(π)⊗ ω.

Now we have the identifications sym2(π) � π = sym3(π) � π ⊗ ω, sym3(π) �
sym3(π′), and

(4.2) π′ � sym3(π′) = sym4(π′) � sym2(π′)⊗ ω,

which can be taken to be the definition of π′�sym3(π′). Thus we are able to realize,
in our (icosahedral) case, the functorial product of sym5(π) and π by setting

(4.3) sym5(π) � π � sym4(π′)⊗ ω � sym2(π′)⊗ ω2 � π′ � π ⊗ ω2.

On the other hand, we have the factorization

(4.4) L(s, sym5(π)× π) = L
(
s, sym6(π)

)
L(s, sym4(π)⊗ ω),

which is in fact correct at every place by the work of Shahidi ([13]). By Lemma 2.2,
sym4(π) and sym4(π′) are equivalent, implying (by a comparison of (4.3) and (4.4),
that

(4.5) L
(
s, sym6(π)

)
= L(s, sym2(π′)⊗ ω2)L(s, π′ � π ⊗ ω2).

Thus we may realize sym6(π) as the isobaric automorphic representation

(4.6)
(
sym2(π′)⊗ ω2

)
�

(
π′ � π ⊗ ω2

)
.
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The assertion about sym7(π) is established in a similar manner, and the proof
is left as an exercise. �
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