
I. BRIGGS-HALDANE AND BEYOND: BASICS

DINAKAR RAMAKRISHNAN AND ROBERT D. TANNER

This is the first pat of our sequence of papers on enzyme Kinetics giving an
algebro-geometric view, by making use of the geometry of surfaces in space which
arise from our point of view. The new geometry will be exposed in the second part.

Introduction

1. The basic differential equations

If X is a substance, we will use [X] for its molar concentration in gram moles
per liter. It is customary in Chemistry to write (X), but we will not use it here
since we want to be able to write f(X) to mean a function of X.

S: Substrate
E: Enzyme
ES: Intermediate complex
P : Product
t: Time
v: d[P ]

dt
V : k3E

∗

S∗: Initial concentration of Substrate = value of [S] at t = 0
E∗: Initial concentration of Enzyme
(ES)∗: Initial concentration of the intermediate complex
P ∗: Initial concentration of Product

We have the following Reaction Kinetic Scheme:

S + E
k1−→ ES

k3−→ P + E

S + E
k2←− ES

To conform to the notation used in Chemistry, we write [S], [E], [ES], [P ] to
denote the functions of t defined by S,E,ES, P .

Hypothesis: d[S]
dt < 0, for all positive t.

So [S] is a strictly decreasing function, and it goes from S∗ to 0. In particular, it
is one-to-one as a function of t and admits an inverse. Consequently, we may view
all the basic quantities, which are a priori functions of t, as functions of [S].
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Assuming the Law of Mass Action, we obtain the following four inter-related,
inhomogeneous differential equations

(1)
d[S]

dt
= −k1[S][E] + k2[ES]

(2)
d[ES]

dt
= k1[S][E]− (k2 + k3)[ES]

(Note that d[ES]
dt would be > 0 if k3 were zero, since then d[ES]

dt would equal −d[S]
dt .)

(3)
d[E]

dt
= −k1[S][E] + (k2 + k3)[ES]

(4) v =
d[P ]

dt
= k3[ES]

Adding (2) and (3) and integrating, we get

(5) [ES] = (ES)∗ + E∗ − [E],

while adding (1), (2) and (4), followed by integration, leads to

(6) [S] + [ES] + [P ] = S∗ + (ES)∗ + P ∗.

Consequently, given all the initial parameters, the four quantities [S], [E], [ES], [P ]
are all determined by just the knowledge of any two of them.

Thanks to (4) and (5), we see that v is 0 at the start, i.e., when [S] = S∗, and it
is again zero at the end, i.e., when [S] = 0. Thus the maximum value of v occurs
in (0, S∗)

Put
Sp: the value of [S] where the absolute maximum value of v occurs.
We will see later (see Lemma 2.1) that Sp is unique.

Lemma 1.1 At any critical point of v as a function of [S] in (0, S∗), we have

[S] =

(
k2 + k3

k1

)(
(ES)∗ + E∗ − [E]

[E]

)
.

In particular, this happens at Sp.

Proof. As v = d[P ]
dt , we have

dv

d[S]
=

dt

d[S]

d

dt

d[P ]

dt
.

Recall that by our hypothesis, d[S]
dt is strictly negative, so dt

d[S] is well defined and

non-zero (outside the end points). So we see that the critical points occur exactly
when

dv

dt
=

d2[P ]

dt2
= 0.

Applying (4), since k3 > 0, we have to solve

d[ES]

dt
= 0.
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Thanks to (2), this condition becomes

k1[S][E]− (k2 + k3)[ES] = 0.

Because of (5), the critical point for v occurs at [S] if and only if we have

k1[S][E]− (k2 + k3)((ES)∗ + E∗ − [E]) = 0.

The Lemma now follows easily. �

We have implicitly assumed that E∗ − [E] is positive except possibly at the end
points, which is a reasonable hypothesis.

2. Convexity of v = d[P ]
dt as a function of [S]

Recall that Sp is, by definition, where v attains its absolute maximum. Since v
is a differentiable function of [S], it attains its maximum at a critical point. On the
other hand, by Lemma 1.1, there is a unique critical point of v, which gives part
(i) of the following:

Lemma 2.1 We have

(i) Sp is the unique critical point of v = d[P ]
dt on the open interval (0, S∗);

(ii) d2v
d[S]2 is everywhere negative, hence the graph of v as a function of [S] is

entirely bell-shaped (convex).

Proof. We need to prove only part (ii). Again, since by our hypothesis, d[S]/dt is
everywhere negative on (0, S∗), and as k3 is positive, we are left (by equation (4)
of section 1) to prove that

d

dt

(
d[ES]

d[S]

)
> 0.

Applying equations (1) and (2) of section 1, we obtain

d[ES]

d[S]
=

[ES]′

[S]′
=

k1[S][E]− (k2 + k3)[ES]

−k1[S][E] + k2[ES]
,

where [S]′, resp. [ES]′, denotes d[S]
dt , resp. d[ES]

dt . Comparing (1) and (2), we have

[ES]′ = −[S]′ − k3[ES],

which yields
d[ES]

d[S]
= −1− k3

[ES]

[S]′
.

Taking derivatives with respect to t and multiplying both sides by −k−13 ([S]′)2, we
obtain

−k−13 ([S]′)2
d

dt

(
d[ES]

d[S]

)
= [S]′[ES]′ − [S]′′[ES].

Now we claim that on the open interval (0, S∗),

d

dt

(
d[ES]

d[S]

)
6= 0.

Indeed, the left hand side can be zero if and only if we have

[S]′[ES]′ − [S]′′[ES] = 0.
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In other words,
[S]′′

[S]′
=

[ES]′

[ES]
,

which integrates to give
log[S]′ = log[ES] + c,

for a real constant c. Exponentiating, we obtain

[S]′ = ec[ES].

Since ec > 0 for any real number c, we deduce that, if the claim were false, [S]′

and [ES] must, in particular, have the same sign in (0, S∗). This is patently false
as [S]′ is negative and [ES] is ≥ 0. Hence the Claim.

Consequently, to prove the Proposition, we need only show that

[S]′[ES]′ − [S]′′[ES] < 0, for some [S].

This is because the expression on the left is continuous (since [ES], [S] are repeat-
edly differentiable) and non-zero (by the claim above), and thanks to the interme-
diate value theorem, once it is positive somewhere, it will be so everywhere.

Since [S]′ < 0 and [ES] ≥ 0, it suffices to prove that

∃ [S] such that [ES]′ > 0 and [S]′′ > 0.

We know that [ES]′ is negative when t is small, i.e., when [S] is near S∗. More-
over, differentiating (1) (with respect to t) yields

[S]′′ = −k1[S]′[E]− k1[S][E]′ + k2[ES]′.

From (2) and (3), we see that [E]′ = −[ES]′, implying

[S]′′ = −k1[S]′[E] + (k1[S] + k2)[ES]′,

which is positive when [ES]′ > 0, since [S]′ < 0, while [E], [S], k1, k2 are positive.
This finishes the proof of the Proposition.

�

3. The Briggs-Haldane model

Now suppose we make (just in this section) the following stationary state
assumption:

(7)
d[ES]

dt
= 0,

or equivalently (by (2)):

(7′) k1[S][E] = (k2 + k3)[ES].

Proposition 3.1 (Briggs-Haldane) Under the steady state assumption above, we
have

v =
V [S]

Km + [S]
, where V = k3E

∗, Km = (k2 + k3)/k1.

In particular, in this model, v = d[P ]
dt goes to zero as [S] → 0, i.e., as t → ∞.

Moreover, at the peak point [S] = Sp, this curve meets the actual curve defining v.

By the actual curve, we mean the one obtained without the steady state as-
sumption. Later on, we will denote the approximate expression for v given by
Briggs-Haldane by vBH .
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Proof of Proposition 3.1 Write [ES]′ for d[ES]
dt , etc. From equation (5) of section

1, we see that [E]′ = −[ES]′ (since [ES] = (ES)∗ + E∗ − [E]), so the steady state
hypothesis gives, thanks to equation (3) (of section 1),

k1(E∗ − [ES])[S] = (k2 + k3)[ES],

which yields

(k1[S] + k2 + k3)[ES] = k1E
∗,

or equivalently,

[ES] =
V [S]

Km + [S]
,

with Km, V as in the statement of the Proposition. (The subscript m usually
stands for Michaelis.)

Now substituting this in the equation (4) gives us the assertion on v = d[P ]
dt under

the steady state assumption.

It is left to prove that the Briggs-Haldane approximation vBH , as denoted from
here on, equals the actual function v at [S] = Sp. For this recall that in section 2
we proved, with no hypothesis, that Sp is the unique critical point of v in (0, S∗).
Since v = [P ]′ equals k3[ES] by equation (4),

dv

d[S]
= k3

[ES]′

[S]′
,

which vanishes at the unique critical point, and since [S]′ is non-zero in (0, S∗), we
see that

d[ES]

dt
= 0 at [S] = Sp.

Since this vanishing is the starting point (“steady state”) for the Briggs-Haldane
model, we get

v = vBH at [S] = Sp.

In other words, the graphs of v and vBH as functions of [S] meet at the peak point
[S] = Sp. (This point is not the peak for vBH , however.)

�

4. A new approach

As S approaches 0 (corresponding to t→∞), so does v = d[P ]
dt as long as there

is no back reaction between [P ] + [E] and [ES], which we will assume to be the
case. Thanks to equation (4), [ES] goes to zero as well.

Here we present a recursive approach to understanding the situation near the
point [S] = 0, which also works at the other boundary point [S] = S∗. It does
not make use of any steady state hypothesis, and so is independent of the Briggs-
Haldane approach.

For simplicity, we will assume from here on that the initial values (ES)∗ and P ∗

of [ES] and [P ], respectively, are zero.

Step 1: Start with [ES] = 0, which happens at [S] = 0. (It also happens at
[S] = S∗ if [ES]∗ = 0.)

Then equation (1) becomes

[S]′ = −k1E∗[S],
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resulting in the unique solution

(8) [S] = S∗e−k1E
∗t.

Moreover, equation (6) then yields [P ] = S∗ − [S], i.e.,

[P ] = S∗(1− e−k1E
∗t).

Hence v = [P ]′ equals k1E
∗S∗e−k1E

∗t. Combining this with (8), we get

(9) v =
V

k3/k1
[S],

where V = k3E
∗. This is a different starting point than what one gets in the

Briggs-Haldane or the Michaelis-Menton models. In all three cases (including our
own, the general form is v = V

K [S], for suitable K.
Of course [ES] will soon become non-zero as we go away from [S] = 0, and the

idea is to feed the information we have obtained at the end of this step back into
the differential system.

Step 2: At the end of Step 1, we had

v = m1[S], with m1 := k1E
∗,

where := means definition. (We will denote this value of v at the first stage as v1.)
Since v = k3[ES], this gives us the starting point of this step, namely

(10a) [ES] =
k1E

∗

k3
[S].

Differentiating this with respect to t, we get

(10b) [ES]′ =
k1E

∗

k3
[S]′.

To make use of this equation, we have to first calculate [S]′. Using equation (1)),
we obtain

(11) [S]′ = −k1E
∗

k3
(k3 − k2)[S] +

k21E
∗

k3
[S]2.

Recall that by adding equations (1), (2) and (4),

(12) v + [S]′ + [ES]′ = 0.

Hence by (10b),

v = −(1 +
k1
k3

E∗)[S]′.

Substituting for [S]′ from (11) yields

(13) v = (1 +
k1
k3

E∗)

(
k1E

∗

k3
(k3 − k2)[S]− k21E

∗

k3
[S]2

)
.

If we put

m2 = (1 +
k1
k3

E∗)

(
k1E

∗

k3
(k3 − k2)

)
,

then we have, in particular,

v = m2[S] + O([S]2).

In other words, when [S] is small enough so that [S]2 is negligible, v is like m2[S]
at the end of Step 2. So m2 gives an approximation, finer than m1, to the slope of
the tangent to the curve v as a function of [S] at [S] = 0.
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Of course, (13) gives a more precise formula at this stage, and also allows us to
keep track of the quadratic term.

Step n + 1: After the n-th step, we get an analogue of (13):

(14) v = vn =

n∑
j=1

cj(n)[S]j ,

for suitable constants cj(n), with c1(n) = mn. This gives an expression for [ES]
(via (4)), and also one for [S]′ by using (1). Then we find [ES]′ by differentiating,
and using the expression for [S]′. Now, equation (12) gives a new expression for v
as a polynomial of degree n in [S] with new coefficients cj(n + 1).

Continue this way ad infinitum, and take the limit as n→∞.

Theorem For every positive integer n, let vn denote the expression on the right
of (14), i.e., the value of v at the end of Step n. Then there exists a positive real
number R > 0 such that the sequence vn converges for [S] < R. Moreover, the limit
is v near [S] = 0.

We will supply a proof of this result later.

5. The slope at [S] = 0

Put

bj =
kj
k3

, for j = 1, 2.

Let V = k3E
∗ as before. In our recursive method, [ES], and hence v, is zero at

the zeroth stage; we put v0 = 0 = m0. After the n-th stage, v is given by vn as
in (14), with v1 = b1V [S]. So [ES] is given by [ES]n := vn/k3, and this leads to
expressions for [S]′n and also [ES]′n.Then our procedure gives

(15) vn+1 = −[S]′n − [ES]′n,

which is the key recursive formula.

If we now use the fact that vn = mn[S] + O([S]2), we get by (15),

(16) mn+1 = −
(

1 +
mn

k3

)
(b1V − b2mn).

Put (formally)

(17) m : = lim
n→∞

mn.

Then (16) implies, by taking limits of both sides,

m =

(
1 +

m

k3

)
(b1V − b2m).

In other words, m satisfies the quadratic equation

(18). b2m
2 − (b1V − (b2 + 1)k3)m− b1V = 0.

This equation has real solutions, incidentally showing that the limit exists. Indeed,
if we look at the discriminant of this quadratic, namely

(19a) D = (b1V − (b2 + 1)k3)2 + 4b1b2V,

then
D > (b1V − (b2 + 1)k3)2 ≥ 0.
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There is a unique positive solution, given by

(19b) m =
b1V − (k2 + k3)

2b2
+

√
D

2b2
.

The positivity of the slope is forced by the convexity (proved in section 2) of v as
a function of [S].

Let us state the final result for later use:

Proposition The convex curve describing the graph of v = dP
dt as a function of

[S], has the following slope at [S] = 0:

m =
1

2k2

(
k1V − (k2 + k3)k3 +

√
(k1V − (k2 + k3)k3)2 + 4k1k2V

)
.

6. Comparison of m with mBH and mMM

Let m denote the slope at [S] = 0 obtained in the section above. Put

(20a) mBH :=
k1V

k2 + k3
,

which is the slope in the Briggs-Haldane model, and

(20b) mMM :=
k1V

k2
,

the slope coming from the Michaelis-Menton model.

Proposition We have
mBH ≤ m ≤ mMM .

7. A quadratic approximation for small [S]

We explicated the linear term of our method in the previous sections and com-
pared it to the Briggs-Haldane and Michaelis-Menton approaches. Our approach
can go much further and give an approximation of any order desired (for small [S]).
In the next section we will in fact give an exact infinite series expansion, from which
approximations of any order can be deduced. Now let us delineate the quadratic
case. We will preserve the earlier notations involving vn, [ES]n, etc., denoting the
values of v, [ES], etc., at the n-th stage of the recursion. Let us write

(21) vn = mn[S] + qn[S]2 + O([S]3),

where mn is the slope at the n-th stage, and qn the coefficient controlling the
quadratic term. As usual, O([S]r) denotes, for any r > 0, a sum of terms of order
at least [S]r. It follows by differentiation that

(22) [v]′n = mn[S]′ + 2qn[S][S]′ + [S]′O([S]2) + O([S]3).

Since v = k3[ES], we get from (21),

(23a) k2[ES]n =
k2
k3

mn[S] +
k2
k3

qn[S]2 + O([S]3),

and

(23b) k1[S][ES]n =
k1
k3

mn[S]2 + O([S]3).
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These give, thanks to (1) and (5), at stage n,

(24) [S]′, =

(
k2
k3

mn −
k1
k3

V

)
[S] +

(k1mn + k2qn)

k3
[S]2O([S]3).

In particular, [S]′ is O([S]), and

[S][S]′ =

(
k2
k3

mn −
k1
k3

V

)
[S]2 + O([S]3).

So (22) simplifies as

(25) k3[ES]′n = mn[S]′ +

(
k2
k3

mn −
k1
k3

V

)
[S]2 + O([S]3).

The recursion is defined in such a way that

(26) vn+1 = −[S]′n − [ES]′n,

where [S]n denotes the value of [S]′ at stage n. Thus, by (25),

(27) vn+1 = −
(

1 +
mn

k3

)
[S]′n −

(
k2
k3

mn −
k1
k3

V

)
[S]2 + O([S]3).

Plugging in (24), we then get
(28)

vn+1 = −
(

1 +
mn

k3

)(
k2
k3

mn −
k1
k3

V

)
[S]−

(
(1 +

mn

k3
)(

(k1mn + k2qn)

k3
)− (

k2
k3

mn −
k1
k3

V )

)
.

Since this is mn+1[S] + qn+1[S]2 + O([S]3), we obtain

(29) qn+1 = −
(

1 +
mn

k3

)(
k1mn + k2qn

k3

)
.

Now we let n go to infinity, and obtain, for q = lim
n→∞

qn, the relation

q = −
(

1 +
m

k3

)(
k1m + k2q

k3

)
.

This yields

(30) q = −
(1 + m

k3
)k1m

k3

1 + (1 + m
k3

)k2

k3

.

Note that this is independent of [E]∗.
Putting v = lim

n→∞
vn, this gives the expression

(31) v = m[S]−
(

(k3 + m)k1m

k23 + (k3 + m)k2

)
[S]2 + O([S]3),

where m is given by (19b). Consequently,

(32)
dv

d[S]
= m−

(
2(k3 + m)k1m

k23 + (k3 + m)k2

)
[S] + O([S]2).

If S∗ is small, then so is Sp, in which case this quadratic approximation has some

validity near it, allowing to deduce that Sp is close to
k2
3+(k3+m)k2

2(k3+m)k1
.
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8. A quadratic approximation at S∗

This section not delicate as the previous section, since the [S]-derivatives of v d[P ]
d[S]

are all well defined and easily calculated at S∗ (unlike at [S] = 0). Nevertheless,
the formulae below are useful in the following section. As before, we will write [S]′

for d[S]
dt , [ES]′ = d[ES]

dt , etc.

Lemma t the point [S] = S∗, the following values hold:

(a) [S]′ = −k2S∗E∗, [ES]′ = k1S
∗E∗, and [E]′ = k1S

∗E∗.
(b) dv

d[S] = −k3.

(c) d2v
d[S]2 = − k2

3

k1S∗E∗ .

Consequently, the quadratic Taylor approximation to v near [S] = S∗ is given by

v = −k3([S]− S∗)− k23
2k1S∗E∗

([S]− S∗)2 + O(([S]− S∗)3).

Proof. (a): This follows directly from the basic differential equations by
evaluation at S∗.

(b): We saw in the proof of Lemma 2.1 that

d[ES]

d[S]
= −1− k3

[ES]

[S]′
.

Since v = k3[ES] and [ES] = E∗ − [E] is zero at S∗, we get dv
d[S] = −k3.

(c): Differentiating relative to t,

d

dt

(
d[ES]

d[S]

)
= −k3

[S]′[ES]′ − [S]′′[ES]

([S]′)2
.

9. Approximations to Sp

Now that we have expansions for v at 0 and at S∗, we can find a series of
approximations Sp,n to Sp, which will be good for small S∗, by equating the n-th
order terms of the respective expansions.

Proposition

(a) Sp,1 = k3S
∗

m+k3
;

(b) Sp,2 satisfies a quadratic equation:

AX2 + BX + C = 0,

with

A =

(
k23

2k1S∗E∗
− (k3 + m)k1m

k23 + k3 + mk2

)
,

B =

(
k3

2k1E∗
−m− k3

)
,

and

C =

(
k23

2k1E∗
− k3S

∗
)(

k3
2k1S∗E∗

− 1

)
.
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10. A recursive variation on Briggs-Haldane

Here we present a recursive approach to understanding the situation arround the
point [S] = Sp, starting with the steady state hypothesis of Briggs-Haldane, but
which does not hold any more after the first iteration.

For simplicity, we will continue to assume that the initial values (ES)∗ and P ∗

of [ES] and [P ], respectively, are zero.

Step 1: Start with [ES]′ = 0, which happens at [S] = Sp. Then by (2):

k1[S](E∗ − [ES]) = (k2 + k3)[ES],

which gives the Briggs-Haldane formulae

(33) [ES]BH =
E∗[S]

Km + [S]
and vBH = k3[ES]BH =

V [S]

Km + [S]
.

We will write [ES]0 and v0 = [P ]′0 instead to signify that these values are at the
zeroth stage.

Using (1), we also get

[S]′ = −k1E∗[S] + (k2 + k1[S])([ES]) = E∗[S]

(
−k1 +

k2 + k1[S]

Km + [S]

)
.

This simplifies as

(34) [S]′ = − V [S]

Km + [S]
.

Of course this should have been expected, as at the zeroth stage, [ES]′ = 0, while
the time derivative of equation (6) gives [ES]′ + [P ]′ + [S]′ = 0, and since v = [P ]′,
we get 0 = [ES]′ = −v − [S]′ (at that stage).

Of course [ES]′ will soon become non-zero as we go away from [S] = Sp, and the
idea is to feed the information we have obtained at the end of this step back into
the differential system.

Step 2: Differentiating [ES] using (33), we get

[ES]′ =
(E∗(Km + [S])− E∗[S])[S]′

(Km + [S])2
,

which simplifies as

(35) [ES]′ =
E∗Km[S]′

(Km + [S])2
.

Since v + [S]′ + [ES]′ = 0, we get from (35),

v = −[S]′
(

1 +
E∗Km

(Km + [S])2

)
.

Substituting for [S]′ from (34),

(36) v =

(
V [S]

Km + [S]

)(
1 +

E∗Km

(Km + [S])2

)
.

We call this v1.
Taking the derivative with respect to [S], we obtain

(37)
dv1
d[S]

=
V Km

(Km + [S])2
+

E∗V Km(Km − 2[S])

(Km + [S])4
.
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Clearly,

(38)
dv1
d[S] |[S]=0

=
V

Km
+

E∗V

K2
m

,

and
dv1
d[S]

= 0 ⇔ ([S] + Km)2 − 2E∗([S] + Km) + 3E∗Km = 0.

Thus the critical points of v1 are given by

[S] = −Km + E∗ ±
√

E∗(E∗ − 3Km).

Note that

If E∗ = 0 then

(
dv1
d[S]

= 0⇔ [S] = −Km

)
.

This agrees with the Briggs-Haldane limit; of course, in reality, [S] will not be
negative.


