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Abstract: This is a redaction of the Inaugural Lecture the author
gave at the University of Hyderabad in January 2019 in honor of
the late great Geometer (and Fields medalist) Maryam Mirzakhani.

What is presented here is a limited perspective on a huge field,
a meandering path through a lush garden, ending with a circle of
problems of current interest to the author. No pretension (at all) is
made of being exhaustive or current.

1. Something light to begin with

When Nasruddin Hodja claimed that he could see in the dark, his friend pointed
out the incongruity when Hodja was seen carrying a lit candle at night. ”Not so,”
said Nasruddin, ”the role of the light is for others to be able to see me.”

The moral is of course that one needs to analyze all possibilities before asserting
a conclusion.

Maryam Mirzakhani, whom this Lecture is named after, would have liked the
stories of Hodja.

Mirzakhani’s mathematical work gave deep insights into the structure of geodesic
curves on hyperbolic surfaces. Such surfaces also play a major role in the field of
Number theory, often through an analysis of Diophantine equations.

Etymology: Hod (or Khod) is of Persian origin meaning God, and ‘Hodja’ serves
God, signifying a Mullah, Priest, Rabbi, Minister or Pundit (depending on one’s
favorite religion).

The expression Khoda Hafez (or ‘Khuda Hafiz’ in Urdu) of course means ‘May
God protect you’ or just ‘Goodbye’ in the modern usage.

Hafiz is of Arabic origin meaning ‘protector’.

2. A basic Definition

By a Diophantine equation, one means an equation of the form

f(X1, X2, . . . , Xn) = 0

∗Corresponding author. Email: dinakar@caltech.edu

1



Telangana Academy of Sciences

where f is a polynomial (in n variables) with coefficients in the ring of integers
Z = {0,±1,±2, . . . ,±n, . . . }. Denote as usual by Q the field of rational numbers.

One wants to find integral (or rational) vectors x = (x1, . . . , xn) such that f(x) =
0.

A study of these equations was initiated by Diophantus of Alexandria, who
lived in the third century AD. He wrote a series of books titled Arithmetica, whose
translation into Latin by Bachet influenced many including Pierre de Fermat. See
[D], which gives a link to an English translation, and [Sch] which links to an
interesting essay on Diophantus.

Diophantus may have lived earlier, and a key commentary on him by Hypatia
is missing. Also one of Diophantus’s works is missing, as he quotes some Lemmas
from there in Arithmetica.

The consensus seems to be that he was Greek. He was likely well versed in
Ancient Greek, as many learned people probably were in Alexandria, but could he
have been Egyptian (or Jewish or Caldean)?

Of particular interest ar homogeneous Diophantine equations, i.e., with
f(x1, . . . , xn) = 0 with f a homogeneous polynomial. In this case, any integral
solution a = (a1, . . . , an) leads to infinitely many integral solutions (ba1, . . . , ban)
as b varies in Z. One calls the solutions a primitive if the gcd of {a1, . . . , an} is 1.

More generally, one may consider Diophantine systems, which are finite collec-
tions of Diophantine equations, and look for simultaneous integral (or rational)
solutions.

3. Pythagorean triples

These are (positive) Integral Solutions of X2 + Y 2 = Z2.
The first sixteen primitive Pythagorean triples are

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (20, 21, 29), (12, 35, 37),
(9, 40, 41), (28, 45, 53), (11, 60, 61), (33, 56, 65), (16, 63, 65),
(48, 55, 73), (36, 77, 85), (13, 84, 85), (39, 80, 89), and (65, 72, 97).

A larger triple is (403, 396, 565).
Many old civilizations (in Babylon, China, India, for example) studied this equa-

tion long before Pythagoras. The Babylonians even found the non-trivial triple
(3367, 3456, 4825).

All primitive solutions can in fact be parametrized by:
(2mn,m2 − n2,m2 + n2), m > n, with
m,n of opposite parity, (m,n) = 1.

To get at this, one looks for rational solutions of u2 + v2 = 1, which are geomet-
rically realized as rational points on the unit circle S.

They are obtained by intersecting S with secant lines with rational slope ema-
nating from (−1, 0).
This illustrates the basic idea of embedding rational solutions inside real, or com-
plex, points of the variety V defined by the diophantine equation f(x) = 0.

Once we have the rational solutions (u, v) of u2 + v2 = 1, one can clear the
denominators and get integral solutions of x2 + y2 = z2. A bit more work yields all
the primitive Pythagorean triples.

A quick subjective comment. The approach of the Greeks in such problems
stressed the importance of a proof (of completeness), which forms the basis of
modern mathematics, while that of the earlier ones was more algorithmic.
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4. X2 − dY 2 = 1

Fermat’s challenge of 1657 to find an integral solution for d = 61 brought this
equation, attributed to Pell, to prominence.

However, three centuries earlier, Bhaskara in India had derived the solution
(1766319049, 226153980)
using the Chakravaala Vidhi (Cyclic method or ‘rule’) due to him and (earlier)
Jeyadeva.

This method provided an algorithm to construct from one solution many other
solutions, infinitely many, and one gets all solutions this way, though there was no
proof at that time.

In fact, already in the seventh century, Brahmagupta had solved this equation
for d = 83. He derived a composition law and also ‘shortcuts’ like going from a
solution of u2 = dv2 = −4) to u2 − dv2 = 1; for N = 61, 392 − 61(52) = −4.

For an instructive and beautiful discussion of this method of the Indian math-
maticians of olden times, see [We].

5. Sums of three squares

Diophantus investigated the representation of a positive integer n as a sum of three
squares, i.e., looked at the equation

X2 + Y 2 + Z2 = n.

For n = 10, he found the elegant solution in positive integers:

x =
1321

711
, y =

1285

711
, z =

1288

711
.

His method is still interesting to peruse. He also wanted the minimum of {x, y, z}
to be

√
3, which he achieved.

In 1797/8, Legendre proved that the only positive integers n which are not sums
of three squares are those of the form

n = 4a(8b+ 7), with a, b > 0.

By contrast, one knows by Lagrange that every positive integer is a sum of four
squares.

6. X4 + Y 4 = Z2 and Fermat

Fermat proved that this equation, and hence X4+Y 4 = Z4, has no positive integral
solutions, and in the process introduced the Method of infinite descent.

His argument: By the previous section, any solution (x, y, z) will need to satisfy
x2 = 2mn, y2 = m2 − n2, implying that m or n is even, say m; then y2 + n2 is
0 modulo 4, forcing n to be even as well, leading to a smaller solution. One can
continue this ad infinitum, resulting in a contradiction.

This case led Fermat to claim (in the 1630’s) that XN+Y N = ZN has no positive
integral solutions for N ≥ 3. He claimed that the margin was too small to contain
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his reasoning, but there seems to be a general scepticism that he had a proof. For
n = 3, substantial progress was made a century late by Euler.

It is now elementary to observe that to establish FLT, it suffices to settle it for
odd prime exponents.

7. Sophie Germain

Given that this lecture is in honor of Maryam Mirzakhani, it is imperative to point
out a terrific female mathematician who made significant progress on the Fermat
problem. Sophie Germain, born in 1776 in Paris, was extremely talented in Math,
and since at that time the Ecole Polytechnique would not admit women, she could
not attend the lectures of Lagrange there, but still followed them by getting the
notes under a male psuedonym!

In the early eighteen hundreds she made a real breakthrough and proved the
following:
Let p be any prime such that 2p+1 is also a prime. Then there is no solution (x, y.z)
in whole numbers with p - xyz satisfying the Fermat equation Xp + Y p = Zp.

These primes are now called Sophie Germain primes, with obvious examples
being p = 5 and p = 11. It is expected that there are infinitely many such primes,
but this is still open.

8. Faltings

In 1983 the German mathematician Gerd Faltings supplied a dramatic proof (in
[F]) of a Conjecture of Mordell, implying:

There are only a finite number of rational solutions (up to scaling) of the Fermat
Equation FN : XN + Y N = ZN for all N ≥ 4.

In fact he proved this for solutions in any number field, i.e., a finite extension
field K of Q, and moreover, one could replace FN by any plane curve defined by
an irreducible polynomial equation of degree >

√
3 (so that each square is greater

than 3, but they all add up to 10, making each square roughly of the same size).
This also showed the stark contrast between the number of (projective, meaning

up to scaling) rational solutions of FN for N≤ 2 and N ≥ 4. One sees a dichotomy
here. But in fact, there is a trichotomy.

9. View from Riemann Surfaces

Given a homogeneous polynomial f(X,Y, Z), one always has the trivial (zero)
solution, and any multiple of a given solution is another.

So one scales the solutions, to get an algebraic curve C defined by f in the
Projective plane P2, which can be thought either as the space of lines through the
origin in the (affine) three space, or as the compactification of the (affine) plane
by adding a line at infinity.

When C is smooth, its complex solutions form a compact Riemann surface M ,
which has a genus g. (Simply speaking, a Riemann surface is a real surface on
which one can measure angles.) Note that M is a real surface and a complex curve!
(It of course makes sense as C is a 2-dimensional vector space over R.)
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One can think of g as the number of handles one can attach to the Riemann
sphere to obtain M (up to homeomorphism) or as the number of independent
holomorphic differential 1-forms ω on M .

When M is defined by a homogeneous equation f(X,Y, Z) of degree n, then g
is given by (n − 1)(n − 2)/2. In particular the genus is > 1 when N ≥ 4 and is 0
when N ≥ 2.

What Mordell conjectured was that when g ≥ 2, the number of rational points
of C, embedded in M , is finite. This is what Faltings proved in its full generality!

10. The Trichotomy

In genus zero, as soon as one has a rational point, then there are infinitely many,
in fact in bijection with the points on a projective line.

For example, the projective curve X2 +Y 2 +Z2 = 0 has no rational point at all,
while F2 defined by X2 + Y 2 − Z2 = 0 has infinitely many points.

And by Mordell (proved by Faltings), the number of rational points is finite for
g ≥ 2.

The case g = 1 is special; it has either no rational point, or else it is an elliptic
curve, whose Q-points form an abelian group E(Q), known by Mordell to be iso-
morphic to Zr × G, for a finite group G and r a non-negative integer, called the
rank.

So in this intermediate (boundary) case, the number of points could in general
be finite or infinite! For F3, it happens to be finite.

11. Wiles and FLT

One would be remiss to not mention the deep and successful program of Andrew
Wiles, completed in 1995, resulting in the establishment (in [W]) of FLT for all
N > 2, partly relying on an important joint work with Richard Taylor ([TW]).

The proof is ingenious, involving a series of difficult arguments, but quite com-
plicated for us to attempt to describe it here! It also involves deep results on elliptic
curves and modular forms, and proceeds by establishing a modularity conjecture
for elliptic curves over Q, the sufficiency of which had earlier been established by
K. Ribet using some ideas of G. Frey. The starting point of the strategy is to make
use of the theorem of Langlands and Tunnell (cf. [La], [Tu]) that Artin’s conjec-
ture holds for Galois representations with image in GL2(F3) (which is solvable),
resulting in the modularity modulo 3 of any E.

For a thousand-word exposition, see https://simonsingh.net/books/fermats-last-
theorem/the-whole-story/

In a related vein, a deep conjecture of J.-P. Serre asserting the modularity con-
jecture for odd 2-dimensional Galois representations was settled in 2005/8 by the
elegant works of C. Khare and J.-P. Wintenberger [KW].

12. L-functions

To be concrete, let us look at elliptic curves E over Q, defined by Y 2 = f(X), with
f a cubic polynomial with Q-coefficients and distinct roots (in C); For FLT, one
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is interested in E such that f has three distinct roots in Z. One can look at the
number of points νp of the reduction of E modulo p, which will be non-singular at
all p not dividing its conductor N . One sets ap = p+ 1− νp for each p, and defines
the L-function by the infinite (Euler) product

L(s, E) =
∏
p

1

1− app−s + ω(p)p1−2s

with ω(p) = 1 iff p - N and = 0 otherwise. By a basic result of Hasse, one knows
that |ap| ≤ 2

√
p, and this implies the normal convergence of L(s, E) in <(s) > 2.

The modularity of E signifies the existence of a (normalized new) cusp form f
of weight 2, level N , with Q-coefficients and trivial character, such that for each
p - N , ap is the p-th Hecke eigenvalue of f . In other terms, the L-functions of E
and f coincide (where an argument is needed at the bad P ).

The utility of modularity for arithmetic is that by Hecke theory one knows that
L(s, f) admits a holomorphic continuation to the whole s-plane, and satisfies a
functional equation relating s to 2− s, making s = 11 the critical center.

The modularity of arbitrary, not just semistable, elliptic curves over Q was ac-
complished (extending [TW], [W]), by the works of Brueil, Conrad, Diamond and
Taylor (cf. [BCDT]).

For general V over Q, the Langlands philosophy predicts a modularity, for each
degree j ≥ 0, of the degree j L-function L(j)(s, V ) of the j-th cohomology Hj(V )
in terms of automorphic forms on GL(bj) which are Hecke eigenforms (generating
automorphic representations), where bj is the j-th Betti number (= dim(Hj(V )).

(When V is an elliptic curve E, L(1)(s, E) is the L-function defined above, while
L(0)(s, E) = ζ(s) and L(2)(s, E) = ζ(s−1), where ζ(s) is the Riemann Zeta function
defined by the Dirichlet series

∑
n≥1 n

−s (in <(s) > 1). Some positive, striking
results are known beyond elliptic curves, mostly tied up with modular (or Shimura)
varieties ([Pic], [SSA]). Moreover, a fundmental new viewpoint has been brought
to the subject by P. Scholze; see his recent works with A. Caraiani and others on
the arxiv.

13. BSD

Let E be an elliptic curve over Q. Then as noted earlier, one knows by Mordell that
the (commutative) group E(Q) of Q-rational points on E is finitely generated, i.e.,
of the form Zr × H, with H a finite group. The exponent r is the rank of E(Q).
It turns out, by a major theorem of Mazur that there are only a finite number of
possibilities for H as one varies E over all elliptic curves over Q; see [B1].

So the remaining (very) difficult problem is to understand the rank r. The famous
Conjecture of Birch and Swinnerton-Dyer, colloquially referred to as BSD, predicts
that r equals the order of zero at s = 1 of L(s, E).

This is one of the Clay Millennial problems; see
https://www.claymath.org/millennium-problems/birch-and-swinnerton-dyer-

conjecture
In particular, BSD predicts that when r is positive L(s, E) must vanish. Here

is the heuristic argument in that case: Suppose we ignore that fact that the Euler
product expansion of L(s, E) does not make sense at s = 1, and formally plug in
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s = 1, we see that

L(1, E) “ =′′
∏
p

p

p− ap + ω(p)
= C

∏
p-N

p

νp

with C 6= 0, where we have used ap = p + 1 − νp. When r > 0, one expects a lot
of points mod p for lots of primes p, which by the Hasse bound implies that νp is
close to p + 1 + 2

√
p for many p, which results in the infinite product being zero,

suggesting the same for L(1, E).

There is an enormous body of literature on this fundamental conjecture with
several partial, but striking, theorems. We will content ourselves to describing one
recent result of Bhargava, Skinner and Wei Zhang [BSZ].

In this paper the authors show that over 60 percent of elliptic curves E over Q,
when ordered by the height, have r = ords=1L(s, E) ≤ 1. Their method is to
analyze the Selmer group at p = 5. If that can be done at an arbitrary p, then they
can reach 100 percent (statistically).

14. Sato-Tate

Given any elliptic curve E over Q, we may, thanks to the Hasse bound, write
ap = 2

√
p cos θp, for a phase θp ∈ [0, π] ⊂ R. When E admits complex multiplication

(by an imaginary quadratic number), the distribution of the angles θp has been
understood for some time.

In the non-CM case, an elegant conjecture of Sato and Tate, independently
made, asserts that the angles θp are equidistributed on [0, π] according to the
measure 2

π sin2 θdθ. This conjecture was brilliantly solved by L. Clozel, M. Harris,
N. Shepherd-Barron and R. Taylor (under a multiplicative reduction condition at
a prime p) in an elaborate joint program, with the proof stretched over a series of
three papers [CHT], [HST], [T].

Roughly speaking, these authors vastly generalize [TW] in the higher dimen-
sional case, utilizing unitary Shimura varieties, and deduce the requisite analytic
properties of L(s, E, symn) ,the symmetric power L-functions of E.

A generalization valid for non-CM holomorphic newforms f of weight k ≥ 2,
removing also the multiplicative reduction condition for E attached to f of weight
2, was established in [BGHT].

A beautiful recent preprint of J. Newton and J.A. Thorne has made a break-
through and established the modularity of all the symmetric powers of all
semistable elliptic curves E/Q, and of all newforms f of level 1 (cf. [NT]).

15. Hyperbolicity and Lang’s Conjecture

The Uniformization theorem implies that every compact Riemann surface M of
genus g ≥ 2 is covered by the upper half plane H := {x + iy ∈ C | y > 0}, or
equivalently the open unit disk in C.

For g = 0 (resp. g = 1, the universal cover is the sphere S2 (resp. the complex
plane C)

The natural Poincaré metric dxdy/y2 on H furnishes a hyperbolic structure to
M of genus ≥ 2, i.e., gives it negative sectional curvature. Note that for g = 0,
(resp. g = 1), the curvature is positive (resp. 0).
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Suppose V is a smooth projective variety of dimension n defined by a system of
diophantine equations.

Let us call V hyperbolic if there is a non-constant holomorphic map ϕ : C→M ,
where M is the complex manifold (of complex dimension N) defined by the complex
points of V .

Note that in dimension one, being hyperbolic is the same as the genus being ≥ 2.

Conjecture (Lang) When V is hyperbolic, it is Mordellic, i.e., has only a finite
number rational points, and in fact over any number field.

This was partly inspired by groundbreaking work of Paul Vojta ([V]), who,
through his analogy between Nevanlinna theory and Diophantine approximation,
made his own strong conjectures.

For an insightful discussion of general conjectures on rational points, see [M2].

16. The Bombieri-Lang Conjecture

An algebro-geometric generalization of algebraic curves of genus g ≥ 2 is given by
the algebraic varieties of general type.

The Bombieri-Lang Conjecture asserts that for n-dimensional V of general type,
the Zariski closure Z of the rational points has irreducible components of dimension
< n.

When n = 2, i.e., when V is a surface, this conjecture is closely related to
Lang’s conjecture above. Indeed, for V a surface of general type, the Bombieri-
Lang Conjectureasserts that the irreducible components of Z are all of dimension
≤ 1. If C is (the normalization of) a dimension one component, then C must have
genus ≥ 2 if V is hyperbolic, as any C of genus ≤ 1 will have universal cover S2 or
C, inducing a non-zero holomorphic map from C to B, which is impossible. Then
by Faltings, Z could have only a finite number of rational points, thereby yielding
Mordellicity.

A very interesting situation is when V = Y ∪ D with Y open and hyperbolic,
with D a divisor with normal crossings. Such a situation arises for the celebrated
surfaces of Picard.

17. Picard Modular surfaces

Now we will focus on dimension 2, i.e., when V is a smooth projective surface
which is itself hyperbolic or contains an open surface Y which is hyperbolic.

Here, hyperbolicity does not guarantee the universal cover being the unit disk B
in C2.

However, many beautiful examples are furnished by the Picard modular sur-
faces Y (C) = Γ\B, which have smooth compactifications V (C) with complement
a divisor D with normal crossings.

Γ is a discrete subgroup of finite covolume in SU(2, 1) defined by a hermitian
form on K3 with K an imaginary quadratic field. It is known that such quotients
admit models over number fields.

The divisor D at infinity turns out to be a finite union of elliptic curves with
complex multiplication by K.

Much is known about these surfaces - due to J. Rogawski, R. Kottwitz, J.S. Milne
and others [Pic], [Ro].
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Here is something this lecturer proved jointly with Mladen Dimitrov [DR].

Theorem Let V = Y ∪ D be a Picard modular surface as above relative to an
arithmetic subgroup Γ of SU(2, 1). Then Lang’s conjecture holds for a finite cover
Y ′ of Y .

As a consequence, one gets Mordellicity of surfaces Y which arise this way.
There is also a version establishing an analogue for compact arithmetic quotients

X of B. In that case, the result had earlier been known (by a different method) by
Emmanuel Ullmo.

One gets examples this way of general type surfaces arising as intersections of
hypersurfaces in Pn. A particularly simple one is the surface in P5 given by the
solution set of the Diophantine system of equations:

x51 + y5 = z5, x52 + z5 = w5, x53 + w5 = y5,

which involves the familiar Fermat equations.

If a beginner wants more information on the rudiments of Number the-
ory, zie could look at the author’s Notes: Introduction to Number Theory at
http://www.its.caltech.edu/ dinakar/
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