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SELF-DUAL REPRESENTATIONS OF DIVISION ALGEBRAS AND WEIL
GROUPS: A CONTRAST

By DIPENDRA PRASAD and DINAKAR RAMAKRISHNAN

Abstract. Irreducible selfdual representations of any group fall into two classes: those which carry
a symmetric bilinear form, and the others which carry an alternating bilinear form. The Langlands
correspondence, which matches the irreducible representations σ of the Weil group of a local field k
of dimension n with the irreducible representations π of the invertible elements of a division algebra
D over k of index n, takes selfdual representations to selfdual representations. In this paper we use
global methods to study how the Langlands correspondence behaves relative to this distinction among
selfdual representations. We prove in particular that for n even, σ is symplectic if and only if π is
orthogonal. More generally, we treat the case of GLm(B), for B a division algebra over k of index r,
and n=mr.

Introduction. Let ρ be a selfdual representation of a group G on a vector
space V over C. We will say that ρ is orthogonal, resp. symplectic, if G leaves a
nondegenerate symmetric, resp. alternating, bilinear form B : V ×V → C invari-
ant. If ρ is irreducible, exactly one of these possibilities will occur, and we may
define a sign, also called parity, c(ρ) ∈ {±1}, taking it to be +1 in the orthogonal
case and −1 in the symplectic case.

Now let k be a local field of characteristic 0. The groups of interest to us will
be on the one hand, G= GLm(D), where D is a division algebra with center k and
index d, and on the other hand, the Weil group Wk.

The local Langlands correspondence [HT, Hen1] when used in conjunction
with the Jacquet-Langlands correspondence [Bad], gives a bijection π→ σ, satis-
fying certain natural properties, between the discrete series representations of G
and the set of equivalence classes of irreducible representations σ of W ′

k of dimen-
sion n = md. Here W ′

k denotes Wk if k is archimedean, and the extended Weil
group Wk× SL2(C) if k is non-archimedean. One calls σ the Langlands param-
eter of π. It is immediate from the construction that π is selfdual if and only if σ
is, cf. [HT, page 2, property 5]. However, it is not a priori clear whether the local
Langlands reciprocity respects the sign, i.e., whether c(π) should equal c(σ). The
main result of this paper is the following.

THEOREM A. Let n=md,D a division algebra of index d over a local field k
of characteristic zero, G= GLm(D), and π an irreducible selfdual discrete series
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representation of G with parameter σ—an irreducible representation of W ′
k of di-

mension n. Then we have

(−1)mc(π) = (−1)nc(σ)m.

COROLLARY B. Let π be an irreducible, selfdual representation of D×, for
any division algebra D of index n over a local field k of characteristic zero, and
let σ be the Langlands parameter of π. If n is odd, π is always orthogonal, while if
n is even,

π orthogonal⇐⇒ σ symplectic.

Indeed when n is odd, σ is necessarily orthogonal, and so Theorem A implies,
for any factorization n=md and G= GLm(D) with D a division algebra of index
d, that c(π) = +1, i.e., π is orthogonal. For m = 1, we get c(π) = (−1)d+1c(σ),
which implies that an irreducible selfdual representation π of D×, D of even in-
dex d, is symplectic if and only if σ is orthogonal. This surprising flip is what we
noticed first for d = 2, spurring our interest in the general case, which is more
subtle to establish. Based on considerations of Poincaré duality on the middle di-
mensional cohomology of certain coverings of the Drinfeld upper-half space, we
conjectured in [PR] the assertion of Corollary B, and established some positive
results in [PR, Pra], including the case of n = 2. In [Pra] it was proved that if d
is odd and if the residual characteristic of k is odd, then D× has no selfdual irre-
ducible representations of dimension > 1, showing that in this case, the conjecture
is difficult only in the even residual characteristic. A program to prove Corollary B
(for G =D×) along the geometric lines, using cohomological methods involving
the formal moduli of Lubin-Tate groups, has been announced in the supercuspidal
case by Laurent Fargues; it does not seem, however, that, without further input, his
suggested methods would work for general discrete series representations, nor for
GLm(D) with m> 1.

Corollary B associates, to each irreducible, symplectic Galois representation
σ of dimension n (even), a new secondary invariant, defined by whether or not
the associated orthogonal representation π of D×, D of index n, lifts to the (s)pin
group. This aspect was investigated for n= 2 in [PR].

Our proof of Theorem A for non-archimedean k proceeds by using global
methods, made possible by the following product formula.

THEOREM C. Let F be a global field, G = GLm(D), where D is a division
algebra over F and Z the center of G. Suppose Π= ⊗′vΠv is an irreducible, self-
dual discrete automorphic representation of G(AF ) of central character ω. Then
we have ∏

v∈ram(D)

c
(
Πv

)
= 1,

where ram(D) denotes the set of places where D is ramified.
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As a consequence, we see that in the case m= 1 and ram(D) = {u,v}, we have
c(Πu) = c(Πv), i.e., Πu and Πv have the same parity. In particular, if we know one,
we know the other. Thanks to this product formula, given an irreducible selfdual
representation π of D×, with D a division algebra over a local field k, our strategy
is to find a number field F with Fv = k for a place v of F , a division algebra
D over F with ram(D) = {u,v}, and a selfdual automorphic representation Π of
D
×(AF ) such that Πv = π and Πu a representation for which Theorem A can be

checked. Thanks to the Jacquet-Langlands correspondence between D
× and GLn,

we see that it suffices to find a selfdual discrete automorphic representation Π′ of
GLn(AF ) with Π′v, resp. Π′u, being associated to Πv, resp. Πu. The difficulty is not
so much in globalizing per se, but in choosing a global Π′ which is also selfdual.
This has been made possible by the work of Jiang and Soudry in the appendix to
this paper.

In Section 3 we check Theorem A for representations of D× trivial on D×(1),
which can be used at the place u, allowing a foothold on all the representations.

We would like to mention that at the moment the globalization of local self-
dual representations of GLn (of the same sign) to a global selfdual representa-
tion is available only for supercuspidal representations, and not yet for discrete
series representations; in particular, we are not allowed to prescribe Steinberg rep-
resentations at some local places, which would have simplified many considera-
tions in the paper. This creates problems for those representations of D× whose
Jacquet-Langlands lift to GLn is not supercuspidal, which are then dealt with us-
ing Mœglin-Waldspurger’s description in [MW] of residual spectrum of GLn, on
which the general Jacquet-Langlands correspondence has been established by Bad-
ulescu [Bad]. This strategy works with only minor modifications for GLm(D) too.

One of the subtle points (see Section 5) of our proof is that as we go back and
forth between the local and global correspondences, we might not come back to the
same local representation π which we started with, but rather to the representation
i(π) obtained from π by applying the Aubert-Zelevinsky involution i. Luckily, π
and i(π) turn out to have the same sign.

The statement of Theorem A for n odd is the simplest as it does not refer to
the Langlands parameter at all: c(π) = 1 for any irreducible selfdual discrete series
representation of GLm(D) with n =md odd. It says in particular that a selfdual
irreducible representation of D× for a division algebra of index d, an odd integer,
must be orthogonal. SinceD×/k× is a profinite group, the question is clearly in the
realm of finite group theory. However, our proof uses many recent and nontrivial
results in the theory of Automorphic representations to achieve this. The recent
work of Bushnell and Henniart has given a local proof of this result for D× in
[BH2].

Acknowledgments. We thank D. Jiang and D. Soudry for writing an appendix
to this paper, where they explain their theorem (mentioned above) with the strategy
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of proof, allowing us to embed a local supercuspidal representation of GL(n) of
orthogonal or symplectic type into a global automorphic representation of the same
type.

The first author would like to thank the California Institute of Technology for
the invitation to visit, enabling the authors to collaborate on this work. He thanks
the Institute for Advanced Study where a significant portion of this work was done
during 2006-07, and also thanks the Clay Math Institute for supporting him at the
final stages of this work. He would also like to thank E. Lapid for his interest
and for suggesting a similar approach for G=D×. Both the authors would like to
thank J. Bernstein, for inquiring about GLm(D), as well as I. Badulescu, L. Clozel,
M. Harris, G. Henniart, F. Shahidi and W. Zink for making helpful comments. The
second author would in addition like to thank Hervé Jacquet and Akshay Venkatesh
for their interest. Both authors thank the referee for his comments which have
helped streamline the presentation.

1. Results we need. In this section we will review two key results we will
need, the first concerning globalization, due to Jiang and Soudry, described in the
appendix, and the second concerning the functorial correspondence between the
discrete automorphic forms of inner forms of GL(n), due to Badulescu.

THEOREM 1.1. LetK be a number field, and vi, i= 1, . . . ,d finite places ofK.
LetKvi be the corresponding local fields. Suppose that the πi are irreducible selfd-
ual supercuspidal representations of GLn(Kvi) whose parameters τi are either all
orthogonal, or all symplectic. Then there exists a selfdual cuspidal automorphic
representation Π on GLn(AK) with πi as the local component of Π at each of the
places vi.

We will explain why this follows from the results in the appendix. Suppose
π is an irreducible, selfdual supercuspidal representation of GLn(k) with param-
eter τ , where k is a non-archimedean local field with residue field Fq. Then, by
the local Langlands correspondence, τ is an irreducible n-dimensional represen-
tation of Wk, the Weil group. For any representation (σ,V ) of Wk, its L-function
is defined by L(s,σ) = det(I− q−s(ϕ|V I)), with ϕ being the Frobenius and I the
inertia group. It follows that L(s,σ) has a pole at s = 0 if and only if the triv-
ial representation of Wk is contained in σ. Taking σ to be r(τ), where r is either
the exterior square, or the symmetric square, representation of GLn(C), one sees
(the well known fact) that τ is symplectic or orthogonal if and only if L(s,r(τ))
has a pole at s = 0 (for the appropriate r). Moreover, since τ is irreducible, it
is a representation of Gal(k/k) up to twisting by an unramified character ν, and
the selfduality of τ forces ν to be of finite order, which may be chosen to be 1.
Then, being a continuous C-representation, τ factors through a finite Galois group,
resulting in all the inverse roots of ϕ being of absolute value 1. Thus L(s,r(τ))
has no pole at s = 1. Now let LSh(s,π,r) denote the L-factor attached to π and
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r ∈ {Λ2,Sym2} by Shahidi. Then by a theorem of Henniart [Hen3], L(s,r(τ)) and
LSh(s,π,r) coincide. (The local Langlands reciprocity only gives the equality of
L(s,Λ2(τ))L(s,Sym2(τ)) and LSh(s,π,Λ2)LSh(s,π,Sym2).) In the work of Jiang
and Soudry described in the appendix, they use the L-factor L(s,π,r) coming from
the Rankin-Selberg theory involving an integral representation. Their gamma factor
γ(s,π,r) associated to (π,r), which is, up to an invertible holomorphic function,
the quotient of L(s,π,r) by L(1− s,π,r) (as π is selfdual), coincides with the
corresponding Shahidi gamma factor. Then any pole of L(s,r(τ)) at s = 0 results
in a corresponding one of L(s,π,r) at the same point, unless this factor has a pole
at s = 1 as well. But if L(s,π,r) has a pole at s = 1, then L(s,π×π), which is
known to equal the Shahidi L-factor LSh(s,π×π), will also have a pole there, con-
tradicting the fact that L(s,r(τ)) has no pole at s = 1. Thus L(s,π,r) has a pole
whenever τ is symplectic, resp. orthogonal, for r = Λ2, resp. Sym2. Theorem 1.1
is now implied by Theorem A4 (of the appendix).

Next, the following form of the Jacquet-Langlands correspondence between
GL(n) and its inner forms, due to Badulescu, cf. [Bad, Theorem 5.1], will also
play crucial role for us in the proof of Theorem A; see also [HT, Theorem VI.1.1].
We will denote by i the Aubert-Zelevinsky involution (cf. [Bad, Section 2.6], for
example).

THEOREM 1.2. (Badulescu-Jacquet-Langlands) Let Π be an automorphic rep-
resentation of GLn(AK) of unitary central character ω : A×K/K

× → C
× which

occurs in the discrete part of L2(G(K)Z(AK)\G(AK),ω). Suppose B is a central
simple algebra over K of dimension n2. Let S be the finite set of places where B is
not split. Assume S has only non-archimedean places. Then Π can be transferred
to a discrete automorphic representation Π′ on B

×(AK) if at every place v in S,
Πv is either a discrete series representation or is a Speh representation. Moreover,
either Πv, or its Aubert-Zelevinsky involution i(Πv), has the same parameter as
Π′v. Finally, any automorphic representation of B×(AK) appears with multiplicity
1 in the discrete spectrum.

Here by a Speh representation we mean the unique irreducible quotient rep-
resentation, for a parabolic P associated to a partition (m,m,. . . ,m) of n = rm,
of the representation of GLn(Kv) induced from P by (ρ⊗ |det |(r−1)/2)× (ρ⊗
|det |(r−3)/2)× ·· · × (ρ⊗ |det |(1−r)/2), with ρ a supercuspidal representation of
GLm(Kv).

2. Orthogonality and reality. The following basic lemma is presumably
well known, but for lack of an appropriate reference outside the realm of compact
groups, we supply a proof.

LEMMA 2.1. An irreducible admissible, unitary representation (π,V ) of a p-
adic group G carries a nonzero symmetric bilinear form B : V ×V → C if and
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only if π is defined over R, i.e., there is a G-invariant real subspace W of V such
that V =W ⊗R C.

Proof. Recall that a complex vector space V is defined over R if and only if
there is a complex conjugation on V , i.e., an involution v → v̄ on V such that
zv = z̄v̄ where z belongs to C.

Let H : V ×V → C be a positive definite G-invariant Hermitian form on V .
We will prove that if V is defined over R (and therefore has a complex conjugation:
v→ v̄), then V carries a nonzero G-invariant symmetric bilinear form. Define,

B(v,w) =H(v,w̄).

Clearly, B(λv,μw) = λμB(v,w) for λ,μ ∈ C; further B is a G-invariant nonzero
bilinear form. It remains to check that B is symmetric, which amounts to the rela-
tion

H(v,w) =H(v̄, w̄),

for v,w ∈ V .
In any case, by the uniqueness (up to a positive real number) of a positive-

definite Hermitian form on V , there exists a λ > 0 such that

H(v,w) = λH(v̄, w̄).

Since ¯̄v = v, λ2 = 1, which means that λ = 1 as it is positive, proving that B is
symmetric.

Conversely, we show that if there exists a symmetric G-invariant bilinear form
B : V ×V → C, then V is defined over R, by constructing an involution v→ v̄ on
V (which is G-invariant, and conjugate linear).

This part of the proof will use the fact that since V is admissible, any smooth
linear form on V , i.e., a linear form which is left invariant by a compact open
subgroup of G, is of the form v→H(v,w) for a unique w in V . This allows us to
define a map, w→ w′ on V by

B(v,w) =H(v,w′),

for all v,w ∈ V . Clearly, w → w′ is conjugate linear. Using the fact that B is
symmetric, it is easy to see that w→ w′ is an involution if and only if

H(v,w) =H(v′,w′).

However, this is not true in general. In any case, by uniqueness (up to a positive
real number) of positive definite Hermitian forms,

H(v,w) = λH(v′,w′),
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for some λ > 0. It is then easy to check that v→ v̄ =
√
λv′ is an involution, giving

rise to a real structure on V , proving the lemma. �

COROLLARY 2.2. Let (π,V ) be an irreducible unitary representation of a p-
adic group G, and H a closed subgroup of G. Assume that the space of linear
forms � : V → C which are H-invariant is one-dimensional. Then if π is selfdual,
it is orthogonal.

Proof. It suffices to prove that the representation (π,V ) of G can be defined
over R. This is equivalent to proving that there is a conjugate linear automorphism
ϕ of V commuting with the G-action with ϕ2 = 1. Since V is unitary and selfdual,
V is isomorphic to V̄ , and therefore there is a conjugate linear automorphism φ of
V commuting with the G-action which by Schur’s lemma has φ2 = μ for some μ
in C

×. We will prove that φ can be scaled to achieve μ= 1.
Because of the uniqueness of the H-invariant linear form �,

�(v) = λ�(φ(v)),

for all v ∈ V (for some λ ∈ C
×). Applying this identity to φ(v) instead of v, and

noting that φ2(v) = μ ·v, we find that

λ̄−1�(v) = λμ�(v).

Therefore μ−1 = λλ̄, and changing φ to ϕ = λφ, we have ϕ2 = 1, proving the
corollary. �

COROLLARY 2.3. Let π1 be an irreducible unitary selfdual representation of a
p-adic group G, H a closed subgroup of G, and π2 an irreducible unitary selfdual
representation of H such that HomH(π1,π2) ∼= C. Then π1 and π2 have the same
parity.

Proof. The previous corollary applied to the representation π1 � π∨2 of the
group G×H containing the subgroup Δ(H) ↪→ H ×H ↪→ G×H proves this
assertion. �

Now consider the Aubert-Zelevinsky involution π1→ i(π1) (cf. [Bad, Section
2.6]) defined on the Grothendieck group of smooth representations of a p-adic re-
ductive group G as an alternating sum of parabolically induced representations of
the various Jacquet modules of π1. The involution π1 → i(π1) is known to send
an irreducible representation to another irreducible representation |i(π1)| equal to
i(π1) up to a sign.

PROPOSITION 2.4. Let G be a reductive algebraic group over a non-
archimedean local field k. Then an irreducible representation π is orthogonal if
and only if |i(π)| is orthogonal.
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Proof. The assertion follows by combining Lemma 2.1 with the fact that both
induction and the Jacquet functor take real representations to real representations;
cf. the lemma below. �

LEMMA 2.5. Let K be subfield of C, and G a reductive p-adic group. Let
RK(G) denote the Grothendieck group of admissible representations of G over K
which are of finite length when tensored with C. Then an irreducible representation
π of G (over C) which belongs to RK(G) can be defined over K.

Proof. We recall the proof of this well-known result for finite groups, which
works in the p-adic context too. The essential points of the proof are:

(1) The set of isomorphism classes of irreducible representations of G over K
form a basis of RK(G).

(2) For two distinct irreducible representations π1 and π2 of G over K (of
finite length over C), the representations π1⊗K C and π2⊗K C are semi-simple
and have no irreducible representations in common.

We will leave the proofs of these assertions to the reader, but observe that it
clearly proves the lemma by writing π = V1− V2 in the Grothendieck group of
representations of G over K, with V1,V2 representations of G over K, and writing
each Vi as a sum of irreducible representations of G over K . �

3. The product formula: proof of Theorem C. Preserving the notations
of Theorem C, define a G(AF )-invariant bilinear form B on Π by

(f,g)−→
∫
G(F )Z(AF )\G(AF )

fgdμ, ∀f,g ∈Π,

where dμ is an invariant measure on G(F )Z(AF )\G(AF ). We check that this is a
non-degenerate bilinear form on Π. Note that the space of functions spanned by f̄
(the complex conjugate of f ), as f varies over Π, gives rise to the representation
Π∨, which is isomorphic to Π. Hence by the multiplicity 1, f̄ ∈Π. Since

B(f, f̄) =

∫
f f̄dμ �= 0,

the bilinear form B on Π is non-degenerate. It is evidently symmetric too, proving
that c(Π) = 1.

Now c(Πv) = 1 for all places v where the division algebra D is unramified is
a consequence of the following result, proving Theorem C.

PROPOSITION 3.1. Every irreducible admissible selfdual representation π of
GLn(k) over any local field k is orthogonal.

Proof. First let k be non-archimedean. Let U(k) be the subgroup of GLn(k)
consisting of upper-triangular unipotent matrices. By a theorem of Zelevinsky [Zel,
Corollary to Theorem 8.1], for any representation π of GLn(k), there is a character
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ψ : U(k)→ C
× which appears in π as a quotient with multiplicity 1. We may

assume that π is not one-dimensional, which forces ψ to be non-trivial. Since ψ
is not selfdual, we cannot directly apply Corollary 2.3, but a small modification
works. Let s be the diagonal element (1,−1,1, . . . ,(−1)n−1), which normalizes
U(k) and takes the character ψ to its inverse. Put H := 〈s〉�U(k) ⊂ GLn(k).
Then the 2-dimensional representation τ of H induced by the character ψ of U(k)

is an irreducible orthogonal representation; cf. Proposition 4.1 below. Moreover,
by Frobenius reciprocity, HomH(π,τ) is HomU(k)(π,ψ) = C. So Corollary 2.3
applies, with π1 = π and π2 = τ , to yield the desired conclusion.

It is left to prove the Proposition when k is archimedean.
It is a general result due to D. Vogan [Vog, page 2, Theorem 1.2] that any ir-

reducible (g,K)-module has a minimal K-type which occurs with multiplicity 1.
This completes the proof for GLn(R), since for its maximal compact subgroup
On(R), every irreducible representation carries an invariant symmetric bilinear
form by the lemma below. For GLn(C), the minimal K-type is unique—the au-
thors owe this remark to D. Vogan—as a general fact for any Complex Lie group
due to Zelobenko, see [Žel2], and therefore a selfdual representation of GLn(C)
has a selfdual minimal K-type. By the following well-known lemma, every irre-
ducible, selfdual representation of the compact groups On(R) and Un(R) carries
an invariant symmetric bilinear form, concluding the proof of this lemma. (Note
the difference between Un(R) and SUn(R); there are already irreducible symplec-
tic representations of SU2(R), but they do not extend to selfdual representations of
U2(R).) �

LEMMA 3.2. Every irreducible, selfdual representation of Un(R) is orthogo-
nal. Every irreducible representation of On(R) is selfdual and orthogonal.

Proof. We supply one of the many possible proofs for the convenience of the
reader. For a compact connected Lie group G with maximal torus T , and w0 the
longest element in the Weyl group of T (with respect to some ordering of positive
roots), the dual of a finite dimensional irreducible representation πλ with highest
weight λ is π−w0(λ). For Un(R), let T be the diagonal torus, andw0(t1, t2, . . . , tn)=

(tn, . . . , t2, t1). Therefore highest weights of irreducible selfdual representations are
of the form:

λ1 ≥ λ2 ≥ ·· · ≥ −λ2 ≥−λ1.

By the well-known branching law from Un(R) to Un−1(R), cf. [Žel1, Section
132, pp. 385–387], we find that an irreducible selfdual representation of Un(R)

contains an irreducible selfdual representation of Un−1(R) with multiplicity one;
therefore by induction on n, every irreducible selfdual representation of Un(R) is
orthogonal.

For SO2n+1(R), and SO4n(R),w0 =−1, so every irreducible representation of
these groups is selfdual. For SO2n(R), with n odd, the inner conjugation action of
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O2n(R) takes a representation of SO2n(R) to its dual, hence every irreducible rep-
resentation of O2n(R) is selfdual for n odd also. By the (multiplicity freeness of)
branching from On(R) to On−1(R), cf. [Žel1, Section 129, Corollaries of Thmeo-
rems 2 and 3, pp. 378–379], we are done again. �

This completes the proof of Theorem C.
Having considered the case of GLn(R), and GLn(C), it is natural to consider

the case of GLn(H), for H the unique quaternion division algebra over R, specially
since this case also can be handled along similar lines; however, we will not have
any occasion to use this result in this paper.

PROPOSITION 3.3. An irreducible admissible selfdual representation π of
GLn(H) is orthogonal if and only if its central character is trivial.

Proof. The proof follows from the existence of a minimal K-type, appearing
with multiplicity one, for K a maximal compact subgroup of GLn(H), which in
this case is the compact form of Spn(C) all whose irreducible representations are
selfdual, and an irreducible representation of Spn(C) is orthogonal if and only if
its central character is trivial. �

4. Sign in the Level 1 case. In this section we prove Theorem A about
irreducible selfdual representations of D×/D×(1) where {D×(i)}, i = 1,2, . . . ,
denotes the standard decreasing filtration, with D×(i) being the subgroup of D×

consisting of elements in O×D congruent to the identity modulo �i
D. Here OD de-

notes a maximal order ofD and �D the uniformizing parameter. The global proofs
in this paper involve a reduction step using the product formula, and this approach
depends crucially, in most situations, on this local input, which represents the sim-
plest of the situations for Theorem A.

Various aspects of the representation theory of D×/D×(1) are analyzed in the
work of Silberger and Zink in [SZ]. We begin with some notation, and recalling the
parametrization of the irreducible representations of D×/D×(1) from [SZ] (called
level zero representations there).

As in the rest of the paper, let D be a division algebra with center a non-
archimedean local field k, and of index n. Suppose that n = ef , and let kf be the
unramified extension of k of degree f , contained in D. Let Df be the centralizer
of kf in D which is a division algebra with center kf and of index e. A character χ
of k×f will be called regular if all its Galois conjugates are distinct. For a character
χ of k×f , let χ̃ be the character of D×f obtained by composing χ with the reduced
norm mapping Nrd : D×f → k×f . If the character χ is tame, i.e., trivial on k×f (1),
then D×(1) normalizes (D×f , χ̃), and hence the character χ̃ of D×f can be extended
to a character of D×(1)D×f by declaring it to be trivial on D×(1), which, by abuse
of notation, we again denote by χ̃.

With this notation, it follows from Clifford theory as in [SZ] that the dimen-
sions of irreducible representations of D×/D×(1) are divisors of n, and that there
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is a bijection between irreducible representations of D×/D×(1) of dimension f
and Gal(kf/k)-orbits of regular characters of k×f which are trivial on k×f (1) ob-
tained by inducing the character χ̃ of D×(1)D×f to D×.

We analyze these representations to see if they are orthogonal or symplectic in
the following general proposition.

PROPOSITION 4.1. Let N be a normal subgroup of a group G of index f > 1,
such that G/N is a cyclic group of order f . Let� be an element of G whose image
inG/N is a generator of the cyclic groupG/N . Let π be an irreducible representa-
tion of G of dimension f whose restriction to N contains a character χ :N →C

×,
so that π = IndGN χ. If χ is of order 2, then π is an orthogonal representation of G.
Assume now that χ is not of order 2, then the following hold:

(1) If π is selfdual, then f is even, say f = 2d.
(2) The representation π is selfdual (of dimension f = 2d) if and only if χ−1 =

χ<d>, where χ<d>(n) = χ(�dn�−d) for n ∈N .
(3) If π is selfdual, then χ(�f ) = ±1, and χ(�f ) = 1 if and only if π is an

orthogonal representation.
(4) If π is selfdual, then it is orthogonal if and only if detπ(�) =−1.

Proof. If the character χ is of order 2, then clearly π= IndGN χ is an orthogonal
representation. We will therefore in the rest of the proof assume that χ is not of
order 2.

Since π is irreducible, all the conjugates χ<i> of χ, defined by χ<i>(n) =
χ(�in�−i) are distinct for i = 0,1, . . . ,f − 1. The representation π = IndGN χ is
selfdual if and only if IndGN χ= IndGN χ

−1, i.e., if and only if χ−1 = χ<i> for some
i. This implies that 2i ≡ 0modf , which means that f must be even, say f = 2d,
and i= d.

As the element �f commutes with�, χ<i>(�f ) = χ(�f ) for all i. Therefore
�f operates on π by a scalar, which, if π is selfdual, must be ±1.

Let e0 be any nonzero vector in the space of π on which N operates via the
character χ. Define ei = π(�i)e0 for 0≤ i≤ f −1. If π(�f )e0 =−e0, then

e0∧ ed+ e1∧ ed+1 + · · ·+ ed−1∧ e2d−1,

is left invariant under both � and N , hence the representation is symplectic. On
the other hand, if �f · e0 = e0, then the vector

e0 · ed+ e1 · ed+1 + · · ·+ ed−1 · e2d−1

in Sym2(π) is left invariant under both � and N , hence π is orthogonal.
Since π(�)ei = ei+1 for i ∈ Z/f , if and only if π is orthogonal, it implies that

if π is selfdual, it is orthogonal if and only if detπ(�) =−1. �

Continuing now with the representations of D×/D×(1) of dimension f with
ef = n, let � be an element of D× which normalizes kn, an unramified extension
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of k inside D of degree n over k, such that �n = �k, a uniformizer in k. The
element � of D× projects to a generator of the cyclic group D×/D×(1)D×f

∼=
Z/fZ, and as�f centralizes kf , it lies inDf . Since (�f )e=�k, it follows that the
reduced norm of �f is (−1)e−1�k. From the previous proposition, we conclude
the following corollary. (We note that a regular character of k×f which is trivial on
k×f (1) cannot be of order 2.)

COROLLARY 4.2. Let χ be a regular tame character of k×f , and πχ the as-
sociated representation of D×/D×(1) of dimension f . Then πχ is selfdual if and
only if f is even, say f = 2d, and the character χ restricted to k×d is trivial on the
index 2 subgroup consisting of norms from k×f . Assuming πχ to be selfdual, it is

orthogonal if and only if χ restricted to k×d is trivial.

Recall that the Weil group Wkf/k sits in the exact sequence,

1−→ k×f −→Wkf/k −→ Gal
(
kf/k

)
−→ 1.

As there is an element � inWkf/k which maps to the generator of the Galois group
of kf over k, and whose f -th power is a uniformizer in k, we have the following
corollary for representations of the Weil group.

COROLLARY 4.3. For a regular character μ of k×f , let σμ be the induced rep-
resentation of Wkf/k of dimension f . Then σμ is selfdual if and only if f is even,
say f = 2d, and the character μ restricted to k×d is trivial on the index 2 subgroup
consisting of norms from k×f . Assuming σμ to be selfdual, it is orthogonal if and

only if μ restricted to k×d is trivial, or if and only if detσμ is nontrivial.

The following result, correcting a mistake in the remark on page 182 of the
paper of Silberger and Zink [SZ], was proposed by us to G. Henniart, and has since
been proved by Bushnell and Henniart; see [BH1]. This completes the proof of the-
orem A for representations of D× which are trivial on D×(1). In this theorem, and
in what follows, we will let spe denote the e-dimensional irreducible representation
of SL2(C).

THEOREM 4.4. The Langlands parameter of the representation πχ of dimen-
sion f of D× is σμ⊗spe, with σμ the f -dimensional representation of Wk induced
by the character

μ := χω
e(f−1)
2 : k×f −→ C

×,

where ω2 is the quadratic unramified character of k×f .

Remark 4.5. In order to be able to make use of representations of level
1, we must know that there are irreducible orthogonal as well as symplectic
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representations of D×/D×(1) of dimension f for any even divisor f = 2d of n.
By corollary 4.2, this reduces to a question over finite fields. A character of F×

q2d

extended to a tame character of k×f with values ±1 on the uniformizer gives rise
to an irreducible selfdual representation of D× of dimension f if and only if it
arises from the group of norm 1 elements of F×

q2d , denoted S
1(Fqd), through the

map x→ x/x̄ for x ∈ F
×
q2d , but does not factor through a smaller field under the

norm mapping. Since S
1(Fqd) is a cyclic group of order (qd+1), one can consider

characters on it of order (qd+ 1). Such characters of F×
q2d will not arise from an

intermediate field through the norm mapping as those have orders divisible by
(qs−1), where s is a divisor of 2d.

Remark 4.6. It may be noted that in case the index of D is odd but residue
characteristic of k is 2, then although there are selfdual representations of D×,
there are none of D×/D×(1) which are not one dimensional. This follows since
index being odd, we can twist a selfdual representation of D× to assume that its
central character is trivial, and by noting that D×/(k× ·D×(1)) is a group of odd
order.

5. Proof of Theorem A. We now prove Theorem A in the following equiv-
alent form.

THEOREM 5.1. Let n ≥ 1, n = md, k a non-archimedean local field, D a
division algebra over k of index d, and π′ an irreducible selfdual discrete series
representation of GLm(D). Then π′ is orthogonal if d is odd. If d is even, and m
is odd, then π′ is orthogonal if and only if its parameter σ is symplectic. If both m
and d are even, then the representation π′ is orthogonal.

Proof. Since π′ is a discrete series representation of GLm(D), its parameter
σ is an irreducible representation of W ′

k =Wk×SL2(C); write σ = τ ⊗ spb, with
ab = n and τ an irreducible, selfdual a-dimensional representation of Wk. The
proof divides naturally into three cases, according to whether b = 1, or b > 1 with
a is even, or b > 1 with a odd. Denote by π the irreducible selfdual representation
of GLn(k) corresponding to π′ by the local Jacquet-Langlands correspondence.

Case 1 (b = 1). In this case σ is trivial on SL2(C), and so π is supercuspidal.
Suppose d is odd. As π is selfdual and supercuspidal, we may globalize it,

by applying Theorem 1.1 (of Jiang-Soudry), to a selfdual, cuspidal automorphic
representation Π of GLn(AK) with π as its local component at Kv = k. Let E be
a cyclic extension of K of degree d such that v splits completely in E. Let ΠE
denote the base change of Π to E. Let B be the central division algebra over E
of dimension d2 over E such that B⊗K Kv

∼= Dd, and such that B has no other
ramification. The existence and uniqueness of such a division algebra B follows
from classfield theory.
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Let ΠB

E denote the automorphic representation of GLm(B(AE)) obtained from
ΠE by the global Jacquet-Langlands correspondence [Bad]. The component of ΠB

E

atEv :=E⊗KKv � kd is isomorphic to π′⊗d. At every place u ofE not lying over
v, the u-component of ΠB

E is a representation of GLn(Eu). Applying Proposition
3.1 and the product formula given by Theorem C, we find that the d-th power of
c(π′) is trivial, and therefore π′ is an orthogonal representation (as d is odd).

We are left to consider when d is even. Write the index as d = 2r, and the
Brauer invariant of D as s

2r ∈ Q/Z with (s,2r) = 1. Let D be a division algebra
over the number fieldK of index 2mr such that D gives rise to Mm(D) at one place
v, and with Brauer invariants −1

2mr ∈Q/Z at sm other places, call them u1, . . . ,usm.
We may further take D to be split at all the remaining places. The existence of such
a global division algebra follows from classfield theory.

Globalize π, using Theorem 1.1, to an automorphic representation Π of
GLn(AK) such that its local components at the places u1, . . . ,usm correspond to
representations of D×ui trivial on D

×
ui(1), and selfdual of the same parity as π (parity

to be understood on the Galois side). Transporting this automorphic representation
to D

×(AK), and using the product formula furnished by Theorem C, we get

c(π) =
[
− c(σ)

]sm
=

[
− c(σ)

]m
;

the first equality is because of our calculation of signs in the last section for selfdual
representations of D×ui trivial on D

×
ui(1), and the second equality due to the fact

that s is odd because of the condition earlier (s,2r) = 1. This is equivalent to the
conclusion of the theorem, therefore proving it when π is supercuspidal.

Case 2 (b �= 1 and a even). Let Σ be a selfdual cuspidal automorphic represen-
tation of GLa(AK) whose local component at the place v of K with completion k
has Langlands parameter τ . We may assume, thanks to Theorem 1.1, that at some
other finite places, say u1,u2, . . . ,usm, the local components Σui are supercuspidal
of level 1, with parameters τui of the same parity as τ . It is at this stage that we
need the restriction that τ is even dimensional as we are able to construct selfdual
representations ofD×/D×(1) with parameter τ⊗spb only for τ even dimensional.
If the residue characteristic of k is odd, by [Pra, Proposition 4] any irreducible self-
dual representation of the Galois group of k of dimension > 1 is even dimensional.
Hence τ must be even dimensional unless it is a character of order 2.

By the work of Mœglin and Waldspurger [MW], Σ=⊗vΣv gives rise to a self-
dual representation in the residual spectrum of GLn(AK) denoted by Σ[b]; the auto-
morphic representation Σ[b] is at each place u of K the unique irreducible quotient
of the parabolically induced representation Σu|det |(b−1)/2×·· ·×Σu|det |−(b−1)/2

of GLn(Ku). By Theorem 1.2 concerning the global Jacquet-Langlands correspon-
dence due to Badulescu, the representation Σ[b] of GLn(AK) can be transported to
an automorphic representation Σ′[b] of D×(AK), where D is the division algebra
of index n overK constructed earlier. Transporting the automorphic representation
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Σ[b] to D
×(AK), and using the product formula (Theorem C), we get

c(π) =
[
− c(σ)

]sm
=

[
− c(σ)

]m
,

the last equality due to the fact that s is odd because of the condition (s,2r) = 1.
This is equivalent to the conclusion of the theorem.

Case 3 (b �= 1 and a odd). If b is also odd, then D has odd index d because
ab= n =md, and the proof given above works again, in which we globalize σ to
an automorphic self-dual representation of GLa(AK), and then use [MW] as above
to construct Σ[b], a selfdual representation in the residual spectrum of GLn(AK).
As the index ofD is odd, we are able to conclude, as before, that c(π) = c(π)d = 1.

It remains to deal with parameters of the form σ = τ ⊗ spb, n= ab, with τ an
irreducible, selfdual a-dimensional representation of Wk with a odd and b even.
In this case, we need to prove that the representation π′ of GLm(D) is orthogonal.
Note that md= n= ab.

We will begin by proving the assertion assuming m = 1, so that π′ is a (self-
dual) representation of D×, with the Brauer invariant of D being s

ab ∈ Q/Z with
(s,ab) = 1.

As τ is an irreducible selfdual representation of Wk of dimension a, it corre-
sponds to a supercuspidal representation πτ , say, of GLa(k). We may globalize πτ
(by applying Theorem 1.1) to a selfdual, cuspidal automorphic representation Π of
GLa(AK) with πτ as its local component at two places v,w ofK with completions
Kv = k =Kw.

Since πτ is supercuspidal with central character of order ≤ 2, its parameter
can be rendered trivial upon restriction to (the Weil group of) a finite extension of
k which is a finite succession of cyclic extensions. Let E be a global extension of
K, which is a finite succession of cyclic extensions, so that

(i) the place v splits completely in E;
(ii) the place w remains inert; and
(iii) the parameter of πτ restricted to Ew is the trivial a-dimensional represen-

tation of Wk.
Let ΠE be the base change of Π to E (cf. [AC]). Let B be a central division algebra
over E of dimension n2 over E such that the invariant of B at a set of places of E
above v of cardinality a is that of D, and such that B is ramified at the place w of
E with Brauer invariant −sb ∈ Q/Z, and unramified everywhere else. That there is
such a division algebra B follows from classfield theory.

By [MW], ΠE gives rise to a selfdual representation in the residual spectrum
of GLab(AE) denoted by ΠE [b]. Next, by Theorem 1.2 (of Badulescu), ΠE [b] of
GLab(AE) can be transported to an automorphic representation Π′ := Π′E [b] of
B
×(AE), where B is the division algebra of index n= ab over E just constructed.

By the product formula (Theorem C), c(Π′v)
a equals the sign associated to

the representation Π′w of GLa(D′) obtained by parabolic induction of the trivial
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representation of the minimal parabolic of GLa(D′) (which has parameter (stb)a),
where D′ is a division algebra over Ew with Brauer invariant −sb . The representa-
tion Π′w is clearly unitary, and defined over R, hence orthogonal by Lemma 2.1.
Thus c(Π′v) = 1. This finishes the proof for m = 1.

Now let us consider the case m> 1. Let Mm(D) have Brauer invariant sd with
(s,d) = 1. Replacing E, if necessary, by a cyclic extension of degree sm+ 1 in
which v splits completely, we may assume that there are places v0,v1, . . . ,vsm of
E with Evj = k such that for a selfdual, cusp form Π on GLn(AE), Πvj � π for all
j ≤ sm. Now we may, by class field theory, choose a division algebra D ramified
only at these vj such that Dv0 �Mm(D) of Brauer invariant s/d, and for every
j ∈ {1, . . . ,sm}, Dvj � B×, with B a division algebra over Evj = k of Brauer
invariant −1/md. Applying Theorem 1.2 again, we have a discrete automorphic
representation Π′ :=Π′

D
of D(AE)× whose local components have parameter σ at

each of the vj . Since Dvj is a division algebra for each j ≥ 1, we may apply what
we proved above for m= 1 and conclude that c(Π′vj ) = 1 for all j ∈ {1, . . . ,sm}.
Thus, applying the product formula again, we obtain c(Π′v) = 1, as desired.

To complete the proof in this case, we need to address the issue that the
global Jacquet-Langlands correspondence might produce a Speh representation on
GLm(D), whereas the assertion of Theorem A is about a corresponding discrete
series representations of GLm(D). In other words, the local representation Π′v
of Π′ may not be the π′ we started with on GLm(D) but is related to it by the
Aubert-Zelevinsky involution. Nevertheless, we claim that

c(π′) = c
(
Π′v

)
.

To deduce it we appeal to proposition 2.4 as well as the fact that the Aubert-
Zelevinsky involution [Bad, Section 2.6] interchanges Speh-modules with the cor-
responding generalized Steinberg representations.

We are now finished with the proof of Theorem A, and also Corollary B, which
is an immediate consequence. �

6. Rationality. The question whether an irreducible selfdual representation
is orthogonal or symplectic is part of the more general question about field of def-
inition of a representation. For example, as Lemma 2.1 shows, a selfdual, unitary
representation of a p-adic group is orthogonal if and only if it is defined over R.
We discuss this more general question in the section.

Let G be a group, and π an irreducible representation of G over C. Put

Gπ =
{
σ ∈Aut(C/Q) | πσ ∼= π

}
.

If either G is finite, or G is a reductive p-adic group, and π is a discrete series
representation with finite order central character, then Gπ is known to be a subgroup
of finite index of Aut(C/Q) (as there are only finitely many isomorphism classes
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of discrete series representations, up to twisting by characters, which have a fixed
vector under a given compact open subgroup of G as one knows that the formal
degree of discrete series representations, up to twisting, tends to infinity).

The group Gπ defines a finite extension K of Q. CallK the field of definition of
π. (If π is finite-dimensional, it is the field generated by the character values of π.)

Associated to π, there is a division algebra Dπ, finite dimensional over Q, with
center K (an abelian extension of Q) which measures the obstruction to π being
defined over K, called the Schur algebra associated to π; thus Dπ = K if and only
if π can be defined over K. If π is finite-dimensional, these assertions are well-
known; we leave the details for discrete series representations to the reader.

Now let σ→ πσ be the local Langlands correspondence between irreducible
representations of Gal(k̄/k) of dimension n, and irreducible discrete series rep-
resentations of GLm(D) where D is a division algebra of index d with dm = n.
Here and in what follows, we normalize the Langlands correspondence by multi-
plying it by the character x→|x|(n−1)/2 where x∈ k×. This normalized Langlands
correspondence is what is Galois equivariant on the coefficients; see for example,
Henniart [Hen2]. This implies that the center of Dσ is the same as the center of
Dπσ , prompting us to ask the following question.

Question 6.1. How are Dσ and Dπσ related?

The answer to Question 6.1 a priori might depend not just on the index of the
division algebra, but on its class in the Brauer group. However, we propose the
following conjecture, suggesting in particular that this is not the case.

CONJECTURE 6.1. Let D be a division algebra of index d over a p-adic local
field k, π an irreducible discrete series representation of GLm(D), and σ the as-
sociated n-dimensional representation of the Weil-Deligne group of k for n=md.
Let Dσ and Dπ be the associated Schur algebras with center a number field K
(which is a cyclotomic field). For the algebras Dσ and Dπ, the following hold:

(1) If π is not selfdual, or if π is selfdual with c(σ) = c(π), then Dσ =Dπ.
(2) If π is selfdual and c(σ) = −c(π), then K is totally real and the answer

depends on the parity of the degree of K over Q. If [K : Q] is even, then the Brauer
invariants of Dσ and Dπ are the same at all the finite places of K, and at all the
infinite places the invariants ofDσ and Dπ differ by 1/2. If [K : Q] is odd, in which
case there is an odd number of places in K above p, the invariants of Dσ and Dπ
are the same except at the archimedean places and the places in K above p, where
the invariants of Dσ and Dπ differ by 1/2.

Remark. The proof of Harris-Taylor [HT] realizing the Langlands correspon-
dence between GLn(k), D×, and the Weil group on an �-adic cohomology implies
that the Schur algebras Dσ and Dπ are the same expect at the places above p and
infinity. Since the sum of local invariants of a central simple algebra over a number
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field is zero, the information at infinity contained in this paper determines the re-
lationship between Dσ and Dπ when K has odd degree after one notes the well-
known theorem due to Benard-Schacher, cf. the book of Curtis-Reiner, volume II,
page 746, that the invariants of these algebras at places v of K over a place q of Q
are related to each other in a simple way. The case of [K : Q] even remains open.

One case of the conjecture is especially simple to state. This is when d, the
index of D, is odd, and π is a selfdual representation of GLm(D) with m odd. In
this case, irreducible selfdual representations of the Galois group of dimension n
exist only in even residual characteristic, cf. [Pra]. We are thus in the tame case
(n,p) = 1, and here it can be seen that such a Galois representation is induced by
a character θ of L×, where L is a degree n extension of k, with θ2 = 1. Thus θ
takes values ±1, and it follows in this case that the Galois representation is defined
over Q. Our Theorem B implies that the selfdual representations of GLm(D) are
defined over R, and the discussion in this section refines it to ask the following.

Question 6.2. LetD be a division algebra of odd index over a non-archimedean
local field k, and m> 0 an odd integer. Then, is every selfdual, irreducible discrete
series representation of GLm(D) defined over Q?

Recently, Bushnell and Henniart have answered Question 6.2 in the affirmative
in [BH2] if either m= 1, or d= 1.

7. A concluding remark. One of the reasons the proof of Theorem A is
so involved is that we do not know, as of yet, how to simultaneously globalize to
a selfdual cusp form on GL(n) a finite number of selfdual, square-integrable local
representations (with parameters of the same parity), when one of the representa-
tions is supercuspidal while another is (generalized) Steinberg. The reason is that
the method of Poincaré series applied to the classical groups will produce a generic
cusp form with appropriate local components only when every local discrete series
representation is integrable, which is not the case for the Steinberg representation
and its generalizations.

It is expected that such a general globalization result will follow by an appli-
cation, yet to be carried out, of Arthur’s stabilization of the twisted trace formula
for GL(n) in “Endoscopic Classification of Representations: Orthogonal and Sym-
plectic groups” (http://www.claymath.org/cw/arthur/pdf/Book.pdf). Some partial
results can be found in [CC].
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[Hen2] , Une caractérisation de la correspondance de Langlands locale pour GL(n), Bull. Soc. Math.
France 130 (2002), no. 4, 587–602.

[Hen3] , Correspondence de Langlands et fonctions L des carrés extérieur et symétrique, Internat.
Math. Res. Notices (2010), no. 4, 633–673.

[MW] C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4) 22
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Appendix: On the local descent from GL(n) to classical groups

By DIHUA JIANG and DAVID SOUDRY

Introduction. The descent method of Ginzburg, Rallis and Soudry enables
one to construct, for an irreducible, self-dual, automorphic, cuspidal representation
τ of GLm(A), with A being the Adele ring of a number field k, an irreducible,
automorphic, cuspidal and globally generic representation σ on the Adelic points
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of the appropriate orthogonal (split or quasi-split), or symplectic group G, or meta-
plectic group (which we also denote by G(A)) such that σ lifts to τ at almost all
places. See [GRS1, GRS4, GRS3, GRS6, GRS5, S2]. This method works also for a
representation (cuspidal, generic) σ of a quasi-split unitary group G(A) = Um(A),
associated to a quadratic extension E of k, and its lift τ on GLm(AE). In case
L(τ,Λ2,s) has a pole at s = 1, and hence m = 2n is even, we showed that σ
lifts to τ at all places [JS1, JS2]. This was done by local descent, which is the
local counterpart of the global descent method, with almost complete analogy. It
allows us to construct, when G is orthogonal, symplectic, or metaplectic, for an
irreducible, self-dual, supercuspidal representation τ of GLm(F ), where F is a p-
adic field, an irreducible, supercuspidal, generic representation σ of G(F ), such
that γ(σ× τ,s,ψ) has a pole at s = 1, or equivalently, L(σ× τ,s) has a pole at
s= 0. This works also for quasi-split unitary groups. See [GRS3], where the repre-
sentations (irreducible, supercuspidal) τ of GL2n(F ), whose local exterior square
L-function has a pole at s= 0, are treated. Here, the representation σ, as above, is
on the metaplectic group S̃p2n(F ). The case of even quasi-split unitary groups is
treated in [T]. In this note, we will present a similar result for an irreducible, su-
percuspidal representation τ of GLm(F ), whose symmetric square L-function has
a pole at s = 0. In this case, G = Sp2n, when m = 2n+ 1, and G = SO2n, when
m= 2n (split, or quasi-split over F , according to the central character of τ being
trivial or (nontrivial) quadratic).

Local gamma factors. Let F be a p-adic field, and G = G(F ) be a local
orthogonal, symplectic, or metaplectic group, as in the introduction. Let σ, τ be
irreducible, generic representations of G, GLm(F ), respectively. The local gamma
factor γ(σ× τ,s,ψ) (ψ is a nontrivial character of F ) is obtained via a local func-
tional equation, which arises from the theory of global integrals of Rankin-Selberg
type, or Shimura type, and represent the standard L-functions for G×GLm. See
[G, GRS2, GRS3, S1], for G odd orthogonal, symplectic, or metaplectic. The
case where G is even orthogonal is treated in [G, K]. We restrict ourselves to
rank(G)<m. The local functional equation has the form

γ(σ× τ,s,ψ)
c(τ,s,ψ)

L
(
Wσ,D

ψ
(
fτ,s

))
= L

(
Wσ,D

ψ
(
M

(
fτ,s

)))
,

where L(Wσ,−) is defined below, following the table. Here, Wσ is in the Whit-
taker model of σ (with respect to a given character), fτ,s is a holomorphic sec-

tion in ρτ,s = IndHP τ |det ·|s− 1
2 , where H is an appropriate split classical group, or

a metaplectic group, and P ⊂ H is a Siegel type parabolic subgroup, with Levi
part isomorphic to GLm, according to the following table, where we also specify
c(τ,s,ψ), and where ρ signifies the relevant finite-dimensional representation of
GLm(C).
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G H c(τ,s,ψ) ρ

1. SO2n+1(F ) SO2m(F ) γ
(
τ,Λ2,2s−1,ψ

)
Λ2

2. S̃p2n(F ) Sp2m(F ) γ
(
τ,Λ2,2s−1,ψ

)
γ

(
τ,s− 1

2
,ψ

)
Λ2⊕st

3. SO2n(F ) SO2m+1(F ) γ
(
τ,sym2,2s−1,ψ

)
sym2

4. Sp2n(F ) S̃p2m(F ) γ
(
τ,sym2,2s−1,ψ

)
sym2

In case (4), we have to consider ρτ,s = IndHP γψτ |det ·|s− 1
2 instead (γψ is the Weil

factor); M is the intertwining operator corresponding to the long Weyl element;

L
(
Wσ,D

ψ
(
fτ,s

))
=

∫
N\G

Wσ(g)D
ψ
(
fτ,s

)
(g)dg,

where N is the (standard) maximal unipotent subgroup of G; Dψ(fτ,s) is given as
an integral along the unipotent radical of the standard parabolic subgroup, which
preserves a maximal flag in a totally isotropic subspace of dimension �, and fac-
tors through the Jacquet module of ρτ,s, which furnishes a Gelfand-Graev (resp.
Fourier-Jacobi) model of ρτ,s, stabilized by G, when H is orthogonal (resp. sym-
plectic or metaplectic). In fact Dψ defines an isomorphism with this Jacquet mod-
ule when τ is supercuspidal. Denote this Jacquet module by σψ,
(ρτ,s). The num-
ber � is determined easily by n and m; it is m−n− 1, in cases (1), (3), (4), and
it is m−n, in case (3). The gamma factor thus defined is the same as the Shahidi
gamma factor, at least up to a multiple by an exponential function, and hence it has
the same set of poles and zeroes.

Descent. The local functional equation above, defining the local gamma fac-
tor, implies the following theorem.

THEOREM A1. Let σ, τ be irreducible, supercuspidal representations of
G, GLm(F ) respectively. Then γ(σ× τ,s,ψ) has a pole at s = 1, if and only if
L(τ,ρ,s) has a pole at s = 0 and σ pairs with the Jacquet module above, where
we replace ρτ,1 with its image πτ by the intertwining operator M at s= 1.

Since L(τ,ρ,s) has a pole at s = 0, πτ is the Langlands quotient of ρτ,1. We
call σψ,
(τ) = σψ,
(πτ ) the descent of τ to G. Consider the cases of functoriality.

GLm(F ) pole at s= 0 H G descent

1. GL2n(F ) L
(
τ,Λ2,s

)
SO4n(F ) SO2n+1(F ) : 
= n−1 σψ,n−1(τ)

2. GL2n(F ) L
(
τ,Λ2,s

)
Sp4n(F ) S̃p2n(F ) : 
= n−1 σψ,n−1(τ)

3. GL2n(F ) L
(
τ,sym2,s

)
SO4n+1(F ) SO2n,α(F ) : 
= n σψ,n,α(τ), ωτ = χα

4. GL2n+1(F ) L
(
τ,sym2,s

)
S̃p4n+2(F ) Sp2n(F ) : 
= n σψ,n(τ), ωτ = 1

Here, ωτ is the central quadratic character of τ . If it corresponds to α ∈ F ∗, we
denote it also by χα, and then we denote by SO2n,α(F ) the corresponding quasi-
split (or split when α is a square) orthogonal group in 2n variables. We can prove
the following theorem.
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THEOREM A2. In all these cases, the descent of τ is a nontrivial, supercus-
pidal, multiplicity free representation of G, all of whose irreducible summands
σ are ψ-generic and are such that γ(σ× τ,s,ψ) has a pole at s = 1. Moreover,
any irreducible, supercuspidal and ψ-generic representation σ of G, such that
γ(σ× τ,s,ψ) has a pole at s=1 is isomorphic to a summand of the descent of τ .

The proof in cases (1), (2) appears in [GRS3, JS1]. The proof in cases (3),
(4) will appear in detail in a forthcoming paper by the authors. It uses the tower
property of local descents (see [GRS3, Section 2]), local gamma factors, the theory
of global descent, summarized in [S2]; it will appear in great detail in [GRS7].
The proof uses also the existence of the weak functorial lift from cuspidal generic
representations of G(A) to GLm(A) (appropriate m), proved in [CKPSS].

Assume that F is completion at a place v of the number field k. Consider a self-
dual, supercuspidal τ , as above, and an irreducible summand σ of its descent to G.
By globalizing σ to an irreducible, automorphic, cuspidal, generic representation
of G(A), and lifting it to GLm(A), we get

THEOREM A3. Let τ be an irreducible, self-dual, supercuspidal representa-
tion of GLm(F ). Assume that L(τ,ρ,s) has a pole at s = 0, where ρ = Λ2, sym2.
Then we can globalize τ to an irreducible, self-dual, automorphic, cuspidal repre-
sentation T of GLm(A), such that L(T,ρ,s) has a pole at s= 1.

The same argument shows

THEOREM A4. Let v1, . . . ,vr be r finite places of the number field k.
Let τ1, . . . , τr be r irreducible, self-dual, supercuspidal representations of
GLm(kv1), . . . ,GLm(kvr ), respectively. Assume that L(τi,ρ,s) has a pole at
s= 0, for all i≤ r, where ρ= Λ2, sym2. Then we can globalize τ1⊗·· ·⊗ τr to an
irreducible, self-dual, automorphic, cuspidal representation T of GLm(A), such
that L(T,ρ,s) has a pole at s= 1.

We simply pick irreducible summands σ1, . . . ,σr in the local descents of
τ1, . . . , τr, respectively, globalize σ1 ⊗ ·· · ⊗ σr to an irreducible, automorphic,
cuspidal, generic representation, and lift it to GLm(A), as before. In case (2) of the
last table, the local descent is irreducible. This is proved in [GRS3]. Using this and
the local theta correspondence, we proved that the descent is irreducible in case
(1), as well. See [JS1]. This means that σ in the last theorem is unique. For a long
time we tried to address the irreducibility question of the descent in cases (3), (4),
without success. Here is our new idea. Let us add two more cases to the last table:

GLm(F ) pole at s= 0 H G descent

5. GL2n(F ) L
(
τ,sym2,s

)
S̃p4n(F ) Sp2n(F ) : 
= n−1 σ′ψ,n−1(τ)

6. GL2n+1(F ) L
(
τ,sym2,s

)
SO4n+3(F ) SO2n+2(F ) : 
= n σ′ψ,n, ωτ = 1
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Here, we denote the descent by σ′ψ,
, in order to distinguish it from the one in cases
(4), (5). We can prove:

THEOREM A5. Let τ be an irreducible, supercuspidal representation of
GLm(F ), such that L(τ,sym2,s) has a pole at s = 0. In case m is odd, assume
that ωτ = 1. Then the descent in cases (5), (6) above is a nonzero irreducible,
supercuspidal, ψ-generic representation σ of G, such that γ(σ×τ,s,ψ) has a pole
at s= 1; these properties determine σ uniquely.

Consider case (5) and denote σ = σ′ψ,n−1(τ). The local lift of σ to GL2n+1(F )

must be τ ×ωτ . We conclude that L(σ×ωτ ,s) has a pole at s= 0. We then prove
that σ is the local ψ-theta lift from an irreducible, supercuspidal, ψ-generic rep-
resentation π of O2n,α(F ), where ωτ = χα. We know that the restriction of π to
SO2n,α(F ) is either irreducible or a direct sum of two irreducible representations
of the form π1⊕πε1, where ε ∈ O2n,α(F ), with det(ε) = −1; πε1 denotes the outer
conjugation of π1 by ε. Thus,

THEOREM A6. Let τ be an irreducible, supercuspidal representation of
GL2n(F ), such that L(τ,sym2,s) has a pole at s = 0. Let ωτ = χα. Then there is
an irreducible, supercuspidal, ψ-generic representation σ of SO2n,α(F ), such that
γ(σ× τ,s,ψ) has a pole at s= 1, and it is unique up to outer conjugation by ε.

Similarly, in case (6), we get:

THEOREM A7. Let τ be an irreducible, supercuspidal, self-dual representa-
tion of GL2n+1(F ), with ωτ = 1. Then there is a unique irreducible, supercuspidal,
ψ-generic representation σ of Sp2n(F ), such that γ(σ×τ,s,ψ) has a pole at s= 1.
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Astérisque (2005), no. 298, 335–390.

[T] J. Tanai, On a correspondence between cuspidal representations of GL(2n) and U(2n), Thesis,
Tel-Aviv University, 2012.


