Lecture 7

Dinakar Ramakrishnan

(The odd numbered lectures are given by D. Ramakrishnan, and the even ones by R. Tanner.)

0.1 A new approach

As S approaches 0 (corresponding to $t \to \infty$), so does $v = \frac{dp}{dt}$ as long as there is no backward reaction between P + E and C, which we will assume to be the case. Thanks to equation (4), c goes to zero as well.

Here we present a recursive approach to understanding the situation near the point s = 0, which also works at the other boundary point $s = s_0$. It does not make use of any steady state hypothesis, and so is independent of the Briggs-Haldane approach.

For simplicity, we will assume from here on that the initial values $(ES)^*$ and P^* of c and p, respectively, are zero.

Step 1: Start with c = 0, which happens at s = 0. (It also happens at $s = s_0$ since $c_0 = 0$.)

Then the basic differential equation for ds/dt becomes

$$s' = -k_1 e_0 s,$$

resulting in the unique solution

(5.1)
$$s = s_0 e^{-k_1 e_0 t}.$$

Moreover, the equation $p + s + e = s_0$ (from earlier) then yields $p = s_0 - s$, i.e.,

$$p = s_0(1 - e^{-k_1 e_0 t}).$$

Hence v = p' equals $k_1 e_0 s_0 e^{-k_1 e_0 t}$. Combining this with (5.1), we get

(5.2)
$$v = \frac{V}{k_3/k_1}s,$$

where $V = k_3 e_0$. This is a different starting point than what one gets in the Briggs-Haldane or the Michaelis-Menton models. In all three cases (including our own, the general form is $v = \frac{V}{K}s$, for suitable K.

Of course c will soon become non-zero as we go away from s = 0, and the idea is to feed the information we have obtained at the end of this step back into the differential system.

Step 2: At the end of Step 1, we had

 $v = m_1 s$, with $m_1 := k_1 e_0$,

where := means definition. (We will denote this value of v at the first stage as v_1 .) Since $v = k_3 c$, this gives us the starting point of this step, namely

$$(5.3a) c = \frac{k_1 e_0}{k_3} s.$$

Differentiating this with respect to t, we get

(5.3b)
$$c' = \frac{k_1 e_0}{k_3} s'.$$

To make use of this equation, we have to first calculate s'. Using equation (1)), we obtain

(5.4)
$$s' = -\frac{k_1 e_0}{k_3} (k_3 - k_2) s + \frac{k_1^2 e_0}{k_3} s^2.$$

Recall that

(5.5)
$$v + s' + c' = 0.$$

Hence by (5.3b),

$$v = -(1 + \frac{k_1}{k_3}e_0)s'.$$

Substituting for s' from (5.4) yields

(5.6)
$$v = \left(1 + \frac{k_1}{k_3}e_0\right) \left(\frac{k_1e_0}{k_3}(k_3 - k_2)s - \frac{k_1^2e_0}{k_3}s^2\right).$$

If we put

$$m_2 = (1 + \frac{k_1}{k_3}e_0)\left(\frac{k_1e_0}{k_3}(k_3 - k_2)\right),$$

then we have, in particular,

$$v = m_2 s + O(s^2).$$

In other words, when s is small enough so that s^2 is negligible, v is like m_2s at the end of Step 2. So m_2 gives an approximation, finer than m_1 , to the slope of the tangent to the curve v as a function of s at s = 0.

Of course, (5.6) gives a more precise formula at this stage, and also allows us to keep track of the quadratic term.

Step n + 1: After the *n*-th step, we get an analogue of (5.6):

(5.7)
$$v = v_n = \sum_{j=1}^n c_j(n) s^j,$$

for suitable constants $c_j(n)$, with $c_1(n) = m_n$. This gives an expression for c (via (4)), and also one for s' by using (1). Then we find c' by differentiating, and using the expression for s'. Now, equation (5.5) gives a new expression for v as a polynomial of degree n in s with new coefficients $c_j(n+1)$.

Continue this way ad infinitum, and take the limit as $n \to \infty$.

Theorem For every positive integer n, let v_n denote the expression on the right of (5.7), i.e., the value of v at the end of Step n. Then there exists a positive real number R > 0 such that the sequence v_n converges for s < R. Moreover, the limit is v near s = 0.

We will not prove this result here.

0.2 The slope at s = 0

Put

$$b_j = \frac{k_j}{k_3}$$
, for $j = 1, 2$

Let $V = k_3 e_0$ as before. In our recursive method, c, and hence v, is zero at the zeroth stage; we put $v_0 = 0 = m_0$. After the *n*-th stage, v is given by v_n as in (5.7), with $v_1 = b_1 V s$. So c is given by $c_n := v_n/k_3$, and this leads to expressions for s'_n and also c'_n . Then our procedure gives

(5.8)
$$v_{n+1} = -s'_n - c'_n$$

which is the key recursive formula.

If we now use the fact that $v_n = m_n s + O(s^2)$, we get by (5.8),

(5.9)
$$m_{n+1} = -\left(1 + \frac{m_n}{k_3}\right)(b_1V - b_2m_n).$$

Put (formally)

(5.10)
$$m := \lim_{n \to \infty} m_n.$$

Then (5.9) implies, by taking limits of both sides,

$$m = \left(1 + \frac{m}{k_3}\right)(b_1V - b_2m).$$

In other words, m satisfies the quadratic equation

(5.11).
$$b_2m^2 - (b_1V - (b_2 + 1)k_3)m - b_1V = 0.$$

This equation has real solutions, incidentally showing that the limit exists. Indeed, if we look at the discriminant of this quadratic, namely

(5.12a)
$$D = (b_1 V - (b_2 + 1)k_3)^2 + 4b_1 b_2 V,$$

then

$$D > (b_1 V - (b_2 + 1)k_3)^2 \ge 0.$$

There is a unique positive solution, given by

(5.12b)
$$m = \frac{b_1 V - (k_2 + k_3)}{2b_2} + \frac{\sqrt{D}}{2b_2}.$$

The positivity of the slope is forced by the convexity (proved in section 2) of v as a function of s.

Let us state the final result for later use:

Proposition The convex curve describing the graph of $v = \frac{dP}{dt}$ as a function of s, has the following slope at s = 0:

$$m = \frac{1}{2k_2} \left(k_1 V - (k_2 + k_3)k_3 + \sqrt{(k_1 V - (k_2 + k_3)k_3)^2 + 4k_1 k_2 V} \right).$$