
Lecture 7

Dinakar Ramakrishnan

(The odd numbered lectures are given by D. Ramakrishnan, and the even
ones by R. Tanner.)

0.1 A new approach

As S approaches 0 (corresponding to t → ∞), so does v = dp
dt

as long as there
is no backward reaction between P + E and C, which we will assume to be
the case. Thanks to equation (4), c goes to zero as well.

Here we present a recursive approach to understanding the situation near
the point s = 0, which also works at the other boundary point s = s0. It
does not make use of any steady state hypothesis, and so is independent of
the Briggs-Haldane approach.

For simplicity, we will assume from here on that the initial values (ES)∗

and P ∗ of c and p, respectively, are zero.

Step 1: Start with c = 0, which happens at s = 0. (It also happens at
s = s0 since c0 = 0.)

Then the basic differential equation for ds/dt becomes

s′ = −k1e0s,

resulting in the unique solution

(5.1) s = s0e
−k1e0t.

Moreover, the equation p + s + e = s0 (from earlier) then yields p = s0 − s,
i.e.,

p = s0(1− e−k1e0t).

Hence v = p′ equals k1e0s0e
−k1e0t. Combining this with (5.1), we get

(5.2) v =
V

k3/k1
s,

where V = k3e0. This is a different starting point than what one gets in the
Briggs-Haldane or the Michaelis-Menton models. In all three cases (including
our own, the general form is v = V

K
s, for suitable K.
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Of course c will soon become non-zero as we go away from s = 0, and the
idea is to feed the information we have obtained at the end of this step back
into the differential system.

Step 2: At the end of Step 1, we had

v = m1s, with m1 := k1e0,

where := means definition. (We will denote this value of v at the first stage
as v1.) Since v = k3c, this gives us the starting point of this step, namely

(5.3a) c =
k1e0
k3

s.

Differentiating this with respect to t, we get

(5.3b) c′ =
k1e0
k3

s′.

To make use of this equation, we have to first calculate s′. Using equation
(1)), we obtain

(5.4) s′ = −k1e0
k3

(k3 − k2)s+
k2
1e0
k3

s2.

Recall that

(5.5) v + s′ + c′ = 0.

Hence by (5.3b),

v = −(1 +
k1
k3

e0)s
′.

Substituting for s′ from (5.4) yields

(5.6) v = (1 +
k1
k3

e0)

(
k1e0
k3

(k3 − k2)s−
k2
1e0
k3

s2
)
.

If we put

m2 = (1 +
k1
k3

e0)

(
k1e0
k3

(k3 − k2)

)
,

then we have, in particular,

v = m2s+O(s2).
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In other words, when s is small enough so that s2 is negligible, v is like m2s
at the end of Step 2. So m2 gives an approximation, finer than m1, to the
slope of the tangent to the curve v as a function of s at s = 0.

Of course, (5.6) gives a more precise formula at this stage, and also allows
us to keep track of the quadratic term.

Step n+ 1: After the n-th step, we get an analogue of (5.6):

(5.7) v = vn =
n∑

j=1

cj(n)s
j,

for suitable constants cj(n), with c1(n) = mn. This gives an expression for c
(via (4)), and also one for s′ by using (1). Then we find c′ by differentiating,
and using the expression for s′. Now, equation (5.5) gives a new expression
for v as a polynomial of degree n in s with new coefficients cj(n+ 1).

Continue this way ad infinitum, and take the limit as n → ∞.

Theorem For every positive integer n, let vn denote the expression on the
right of (5.7), i.e., the value of v at the end of Step n. Then there exists a
positive real number R > 0 such that the sequence vn converges for s < R.
Moreover, the limit is v near s = 0.

We will not prove this result here.

0.2 The slope at s = 0

Put

bj =
kj
k3

, for j = 1, 2.

Let V = k3e0 as before. In our recursive method, c, and hence v, is zero at
the zeroth stage; we put v0 = 0 = m0. After the n-th stage, v is given by vn
as in (5.7), with v1 = b1V s. So c is given by cn := vn/k3, and this leads to
expressions for s′n and also c′n.Then our procedure gives

(5.8) vn+1 = −s′n − c′n,

which is the key recursive formula.

If we now use the fact that vn = mns+O(s2), we get by (5.8),

(5.9) mn+1 = −
(
1 +

mn

k3

)
(b1V − b2mn).
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Put (formally)

(5.10) m : = lim
n→∞

mn.

Then (5.9) implies, by taking limits of both sides,

m =

(
1 +

m

k3

)
(b1V − b2m).

In other words, m satisfies the quadratic equation

(5.11). b2m
2 − (b1V − (b2 + 1)k3)m− b1V = 0.

This equation has real solutions, incidentally showing that the limit exists.
Indeed, if we look at the discriminant of this quadratic, namely

(5.12a) D = (b1V − (b2 + 1)k3)
2 + 4b1b2V,

then
D > (b1V − (b2 + 1)k3)

2 ≥ 0.

There is a unique positive solution, given by

(5.12b) m =
b1V − (k2 + k3)

2b2
+

√
D

2b2
.

The positivity of the slope is forced by the convexity (proved in section 2) of
v as a function of s.

Let us state the final result for later use:

Proposition The convex curve describing the graph of v = dP
dt

as a function
of s, has the following slope at s = 0:

m =
1

2k2

(
k1V − (k2 + k3)k3 +

√
(k1V − (k2 + k3)k3)2 + 4k1k2V

)
.
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