Lecture 7

Dinakar Ramakrishnan
(The odd numbered lectures are given by D. Ramakrishnan, and the even ones by R. Tanner.)

0.1 A new approach

As S approaches 0 (corresponding to $t \rightarrow \infty$), so does $v=\frac{d p}{d t}$ as long as there is no backward reaction between $P+E$ and C, which we will assume to be the case. Thanks to equation (4), c goes to zero as well.

Here we present a recursive approach to understanding the situation near the point $s=0$, which also works at the other boundary point $s=s_{0}$. It does not make use of any steady state hypothesis, and so is independent of the Briggs-Haldane approach.

For simplicity, we will assume from here on that the initial values $(E S)^{*}$ and P^{*} of c and p, respectively, are zero.
Step 1: Start with $c=0$, which happens at $s=0$. (It also happens at $s=s_{0}$ since $c_{0}=0$.)

Then the basic differential equation for $d s / d t$ becomes

$$
s^{\prime}=-k_{1} e_{0} s
$$

resulting in the unique solution

$$
\begin{equation*}
s=s_{0} e^{-k_{1} e_{0} t} \tag{5.1}
\end{equation*}
$$

Moreover, the equation $p+s+e=s_{0}$ (from earlier) then yields $p=s_{0}-s$, i.e.,

$$
p=s_{0}\left(1-e^{-k_{1} e_{0} t}\right)
$$

Hence $v=p^{\prime}$ equals $k_{1} e_{0} s_{0} e^{-k_{1} e_{0} t}$. Combining this with (5.1), we get

$$
\begin{equation*}
v=\frac{V}{k_{3} / k_{1}} s \tag{5.2}
\end{equation*}
$$

where $V=k_{3} e_{0}$. This is a different starting point than what one gets in the Briggs-Haldane or the Michaelis-Menton models. In all three cases (including our own, the general form is $v=\frac{V}{K} s$, for suitable K.

Of course c will soon become non-zero as we go away from $s=0$, and the idea is to feed the information we have obtained at the end of this step back into the differential system.

Step 2: At the end of Step 1, we had

$$
v=m_{1} s, \text { with } m_{1}:=k_{1} e_{0}
$$

where $:=$ means definition. (We will denote this value of v at the first stage as v_{1}.) Since $v=k_{3} c$, this gives us the starting point of this step, namely

$$
\begin{equation*}
c=\frac{k_{1} e_{0}}{k_{3}} s \tag{5.3a}
\end{equation*}
$$

Differentiating this with respect to t, we get

$$
\begin{equation*}
c^{\prime}=\frac{k_{1} e_{0}}{k_{3}} s^{\prime} \tag{5.3b}
\end{equation*}
$$

To make use of this equation, we have to first calculate s^{\prime}. Using equation (1)), we obtain

$$
\begin{equation*}
s^{\prime}=-\frac{k_{1} e_{0}}{k_{3}}\left(k_{3}-k_{2}\right) s+\frac{k_{1}^{2} e_{0}}{k_{3}} s^{2} . \tag{5.4}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
v+s^{\prime}+c^{\prime}=0 \tag{5.5}
\end{equation*}
$$

Hence by (5.3b),

$$
v=-\left(1+\frac{k_{1}}{k_{3}} e_{0}\right) s^{\prime}
$$

Substituting for s^{\prime} from (5.4) yields

$$
\begin{equation*}
v=\left(1+\frac{k_{1}}{k_{3}} e_{0}\right)\left(\frac{k_{1} e_{0}}{k_{3}}\left(k_{3}-k_{2}\right) s-\frac{k_{1}^{2} e_{0}}{k_{3}} s^{2}\right) . \tag{5.6}
\end{equation*}
$$

If we put

$$
m_{2}=\left(1+\frac{k_{1}}{k_{3}} e_{0}\right)\left(\frac{k_{1} e_{0}}{k_{3}}\left(k_{3}-k_{2}\right)\right),
$$

then we have, in particular,

$$
v=m_{2} s+O\left(s^{2}\right)
$$

In other words, when s is small enough so that s^{2} is negligible, v is like $m_{2} s$ at the end of Step 2. So m_{2} gives an approximation, finer than m_{1}, to the slope of the tangent to the curve v as a function of s at $s=0$.

Of course, (5.6) gives a more precise formula at this stage, and also allows us to keep track of the quadratic term.

Step $\mathbf{n}+\mathbf{1}: \quad$ After the n-th step, we get an analogue of (5.6):

$$
\begin{equation*}
v=v_{n}=\sum_{j=1}^{n} c_{j}(n) s^{j}, \tag{5.7}
\end{equation*}
$$

for suitable constants $c_{j}(n)$, with $c_{1}(n)=m_{n}$. This gives an expression for c (via (4)), and also one for s^{\prime} by using (1). Then we find c^{\prime} by differentiating, and using the expression for s^{\prime}. Now, equation (5.5) gives a new expression for v as a polynomial of degree n in s with new coefficients $c_{j}(n+1)$.

Continue this way ad infinitum, and take the limit as $n \rightarrow \infty$.
Theorem For every positive integer n, let v_{n} denote the expression on the right of (5.7), i.e., the value of v at the end of Step n. Then there exists a positive real number $R>0$ such that the sequence v_{n} converges for $s<R$. Moreover, the limit is v near $s=0$.

We will not prove this result here.

0.2 The slope at $s=0$

Put

$$
b_{j}=\frac{k_{j}}{k_{3}}, \text { for } j=1,2
$$

Let $V=k_{3} e_{0}$ as before. In our recursive method, c, and hence v, is zero at the zeroth stage; we put $v_{0}=0=m_{0}$. After the n-th stage, v is given by v_{n} as in (5.7), with $v_{1}=b_{1} V s$. So c is given by $c_{n}:=v_{n} / k_{3}$, and this leads to expressions for s_{n}^{\prime} and also c_{n}^{\prime}. Then our procedure gives

$$
\begin{equation*}
v_{n+1}=-s_{n}^{\prime}-c_{n}^{\prime} \tag{5.8}
\end{equation*}
$$

which is the key recursive formula.
If we now use the fact that $v_{n}=m_{n} s+O\left(s^{2}\right)$, we get by (5.8),

$$
\begin{equation*}
m_{n+1}=-\left(1+\frac{m_{n}}{k_{3}}\right)\left(b_{1} V-b_{2} m_{n}\right) \tag{5.9}
\end{equation*}
$$

Put (formally)

$$
\begin{equation*}
m:=\lim _{n \rightarrow \infty} m_{n} \tag{5.10}
\end{equation*}
$$

Then (5.9) implies, by taking limits of both sides,

$$
m=\left(1+\frac{m}{k_{3}}\right)\left(b_{1} V-b_{2} m\right)
$$

In other words, m satisfies the quadratic equation

$$
\begin{equation*}
b_{2} m^{2}-\left(b_{1} V-\left(b_{2}+1\right) k_{3}\right) m-b_{1} V=0 \tag{5.11}
\end{equation*}
$$

This equation has real solutions, incidentally showing that the limit exists. Indeed, if we look at the discriminant of this quadratic, namely

$$
\begin{equation*}
D=\left(b_{1} V-\left(b_{2}+1\right) k_{3}\right)^{2}+4 b_{1} b_{2} V \tag{5.12a}
\end{equation*}
$$

then

$$
D>\left(b_{1} V-\left(b_{2}+1\right) k_{3}\right)^{2} \geq 0
$$

There is a unique positive solution, given by

$$
\begin{equation*}
m=\frac{b_{1} V-\left(k_{2}+k_{3}\right)}{2 b_{2}}+\frac{\sqrt{D}}{2 b_{2}} . \tag{5.12b}
\end{equation*}
$$

The positivity of the slope is forced by the convexity (proved in section 2) of v as a function of s.

Let us state the final result for later use:
Proposition The convex curve describing the graph of $v=\frac{d P}{d t}$ as a function of s, has the following slope at $s=0$:

$$
m=\frac{1}{2 k_{2}}\left(k_{1} V-\left(k_{2}+k_{3}\right) k_{3}+\sqrt{\left(k_{1} V-\left(k_{2}+k_{3}\right) k_{3}\right)^{2}+4 k_{1} k_{2} V}\right) .
$$

