Lecture 7

Dinakar Ramakrishnan

(The odd numbered lectures are given by D. Ramakrishnan, and the even
ones by R. Tanner.)

0.1 A new approach

As S approaches 0 (corresponding to t — c0), so does v = fl—f as long as there
is no backward reaction between P + E and C, which we will assume to be
the case. Thanks to equation (4), ¢ goes to zero as well.

Here we present a recursive approach to understanding the situation near
the point s = 0, which also works at the other boundary point s = so. It
does not make use of any steady state hypothesis, and so is independent of
the Briggs-Haldane approach.

For simplicity, we will assume from here on that the initial values (ES)*
and P* of ¢ and p, respectively, are zero.

Step 1: Start with ¢ = 0, which happens at s = 0. (It also happens at
s = sg since ¢y = 0.)
Then the basic differential equation for ds/dt becomes

s’ = —kieps,
resulting in the unique solution

(5.1) s = soe Fieot,

Moreover, the equation p + s + e = 5o (from earlier) then yields p = sy — s,
ie.,

p = so(1 — e Freoty,
Hence v = p’ equals kiegspe 1! Combining this with (5.1), we get
%4
5.2 v o= S,
(5.2) Tl

where V' = ksep. This is a different starting point than what one gets in the
Briggs-Haldane or the Michaelis-Menton models. In all three cases (including
our own, the general form is v = %s, for suitable K.
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Of course ¢ will soon become non-zero as we go away from s = 0, and the
idea is to feed the information we have obtained at the end of this step back
into the differential system.

Step 2: At the end of Step 1, we had
v =mys, with my := ke,

where := means definition. (We will denote this value of v at the first stage
as vy.) Since v = ksc, this gives us the starting point of this step, namely

kie
(5.3a) ¢ = 2.

ks
Differentiating this with respect to t, we get

k
(5.3b) ¢ = 1Oy

ks

To make use of this equation, we have to first calculate s’. Using equation
(1)), we obtain

k 2
(5.4) s = Ok fy)s 4 102,
s ks

Recall that

(5.5) v+s+d =0.
Hence by (5.3b),
k
v=—(1+ k—;eo)s’

Substituting for s’ from (5.4) yields

k k k2
(5.6) v = (14 Zeg) [ B9 (ky — ky)s — L2

ks ks ks

If we put

k kie
my = (1+ k—;eo) (%(1@, — 1@)) ,

then we have, in particular,

v = mays + O(s?).
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In other words, when s is small enough so that s? is negligible, v is like mos
at the end of Step 2. So msy gives an approximation, finer than mq, to the
slope of the tangent to the curve v as a function of s at s = 0.

Of course, (5.6) gives a more precise formula at this stage, and also allows
us to keep track of the quadratic term.

Step n+ 1: After the n-th step, we get an analogue of (5.6):

(5.7) V=0, = Z cj(n)s?,

J=1

for suitable constants ¢;(n), with ¢;(n) = m,,. This gives an expression for ¢

(via (4)), and also one for s’ by using (1). Then we find ¢’ by differentiating,

and using the expression for s’. Now, equation (5.5) gives a new expression

for v as a polynomial of degree n in s with new coefficients ¢;(n + 1).
Continue this way ad infinitum, and take the limit as n — co.

Theorem For every positive integer n, let v, denote the expression on the
right of (5.7), i.e., the value of v at the end of Step n. Then there ezists a
positive real number R > 0 such that the sequence v, converges for s < R.
Moreover, the limit is v near s = 0.

We will not prove this result here.

0.2 The slope at s =0

Put

k; .

b = —, for j=1,2.

ks
Let V' = kseq as before. In our recursive method, ¢, and hence v, is zero at
the zeroth stage; we put vg = 0 = myg. After the n-th stage, v is given by v,
as in (5.7), with v; = b1V's. So ¢ is given by ¢, := v, /ks, and this leads to
expressions for s/, and also ¢,.Then our procedure gives

(58) Upn+1 = _S;L - C;p
which is the key recursive formula.

If we now use the fact that v, = m,s + O(s*), we get by (5.8),

(5.9) O (1 + %) (0 V — bym,y).



Put (formally)

(5.10) m:= lim m,.

n—oo

Then (5.9) implies, by taking limits of both sides,

ks

In other words, m satisfies the quadratic equation

This equation has real solutions, incidentally showing that the limit exists.
Indeed, if we look at the discriminant of this quadratic, namely

(5120,) D = (blV - (bg + ].)kg)Q + 4b1b2V,

then
D > (bﬂ/ — (bz + 1)]{33)2 > 0.

There is a unique positive solution, given by

bV — (ks + ks) N VD
N 2by 2by

(5.12b)

The positivity of the slope is forced by the convexity (proved in section 2) of
v as a function of s.

Let us state the final result for later use:

Proposition The convexr curve describing the graph of v = % as a function
of s, has the following slope at s = 0:
1
m= - <k1V (ke + Ey)ks + /(1 V — (Ko + Ka)ks)? + 4k1k2v) .
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