
Lecture 5

Dinakar Ramakrishnan

(The odd numbered lectures are given by D. Ramakrishnan, and the even
ones by R. Tanner.)

0.1 Equilibria, Nullclines

As we saw in Lecture 3, subject to the algebraic relations

c = e0 − e,

v = p′(t) = k3c,

and
s+ c+ p = s0,

the basic enzyme kinetic equations can be reduced to the following of first
order, non-linear equations:

(1) s′(t) = −k1s(e0 − c) + k2c

(2) c′(t) = k1s(e0 − c)− (k2 + k3)c,

which we will write in vector form as

(3)
d

dt

(
s
c

)
=

(
−k1e0s+ (k1s+ k2)c

k1e0s− (k1s+ k2 + k3)c

)
.

The equilibria or stationary points occur at the points where the right hand
side is zero, i.e., where

s′(t) = c′(t) 0.

From the equations (1) and (2) we see that

c′(t) = −s′(t)− k3c.

Hence the only equilibrium points are where c = 0 and s = 0 (by using (1)).
At time t = 0, c = 0 but s = s0 > 0. As the reaction proceeds, c rises to a
maximum bounded above by s0, and then decreases. As t goes to infinity, s
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falls to 0, and so does c. Hence there is a unique equilibrium point, which
happens at (s, c) = (0, 0), which happens at infinite time (in the limit). (This
is another reason why we sometimes prefer to plot v = p′(t) as a function of
s.)

The nullclines are the curves defined by setting just one of the coordinates
on the right of (3) equal to zero. Since we have a 2× 2-system, there are two
nullclines, and the equilibria occur at the intersection of the two.

The s-nullcline is given by the set of solutions of (3) where s′(t) = 0,
i.e., where

c =
k1e0s

k1s+ k2
,

which can be rewritten as

v = k3c =
V s

s+Ke

, where V := k3e0, Ke :=
k2
k1

.

The graph of this is a hyperbola.

The c-nullcline is given by the set of solutions of (3) where c′(t) = 0,
i.e., where

c =
k1e0s

k1s+ k2
,

which can be rewritten as

v = k3c =
V s

s+Km

, where Km :=
k2 + k3

k1
.

The graph of this is also a hyperbola, which meets the other nullcline at
(s, c) = (0, 0).

0.2 Stability, Linearization

Now consider a point close to the stationary point. We are interested in
stable solutions (s, c) to (3), i.e., which approach the limit (0, 0) as t → ∞
(or equivalently, as s → 0). One way to analyze the behavior near the origin
is to linearize the situation. Roughly speaking, we look at only the first
derivative of the vector differential in the expansion at a small (s, c). Write

d

dt

(
s
c

)
=

(
f(s, c)
g(s, c)

)
,
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with
f(s, c) = −k1e0s+ (k1s+ k2)c

and
g(s, c) = k1e0s− (k1s+ k2 + k3)c.

Vector Calculus gives us the approximate expression (for (s, c) close to
(0, 0)

f(s, c) = f(0, 0) +
∂f

∂s
(0, 0)s+

∂f

∂c
(0, 0)c

and

g(s, c) = g(0, 0) +
∂g

∂s
(0, 0)s+

∂g

∂c
(0, 0)c.

Explicitly, (
∂f
ds

∂f
∂c

∂g
ds

∂g
∂c

)
=

(
−k1e0 + k1c k2
k1e0 − k1c −k2 − k3

)
.

Consequently, remembering that f(0, 0) = g(0, 0) = 0, we get the linearized
equations:

f(s, c) = −k1e0s+ k2c,

g(s, c) = k1e0s− (k2 + k3)c.

(Note that the process of linearization has eliminated the non-linear terms
involving sc.)

Indeed, as (s, c) → (0, 0), these linearized solutions tend to the zero
solution, indicating stability.

Try, as an exercise, to see what happens if we use the actual solution,
which cannot be explicitly derived, and tend to the equilibrium point (to be
discussed a bit in class).
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