
Lecture 3

Dinakar Ramakrishnan

(The odd numberred lectures are given by D. Ramakrishnan, and the
even ones by R. Tanner.)

0.1 The basic equations of enzyme kinetics

If X is a substance, we will use x (or [X]) for its molar concentration in gram
moles per liter. It is customary in Chemistry to write (X), but we will not
use it here since we want to be able to write f(X) to mean a function of X.

S: Substrate

E: Enzyme

C: Intermediate complex (denoted by Tanner and others by ES)

P : Product

t: Time

v: dp
dt

e0: Initial concentration of Enzyme (= E∗)

V : k3e0 (= k3E
∗)

s0: Initial concentration of Substrate (= S∗) = value of s at t = 0

The initial concentrations of C and P are zero.

At the end of Lecture 1, we came to the following Reaction Kinetic
Scheme:

S + E
k1−→ C

k3−→ P + E

S + E
k2←− C

Hypothesis: ds
dt

< 0, for all positive t.
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So s is a strictly decreasing function, and it goes from s0 to 0. In partic-
ular, it is one-to-one as a function of t and admits an inverse. (Otherwise,
as Calculus teaches us, s′(t) would become zero at some point in the interval
(0, s0).) Consequently, we may view all the basic quantities, which are a
priori functions of t, as functions of s instead.

Assuming the Law of Mass Action, we obtained at the end of Lecture 1,
the following four inter-related, inhomogeneous differential equations

(1)
ds

dt
= −k1se+ k2c

(2)
dc

dt
= k1se− (k2 + k3)c

(Note that dc
dt

would be > 0 if k3 were zero, since then ds
dt

would equal −ds
dt
.)

(3)
de

dt
= −k1se+ (k2 + k3)c

(4) v =
dp

dt
= k3c

Adding (2) and (3) and integrating, we get, using c0 = 0,

(5) c = e0 − e,

while adding (1), (2) and (4), followed by integration, and using p0 = 0, leads
to

(6) s+ c+ p = s0.

Consequently, given all the initial parameters, the four quantities s, e, c, p are
all determined by just the knowledge of any two of them.
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0.2 The critical points

Thanks to the algebraic equations (4) and (5) above, we see that v is 0 at
the start, i.e., when s = s0, and it is again zero at the end, i.e., when s = 0.
Thus the maximum value of v, written as vpeak, occurs in (0, s0).
Put

speak: the value of s where the absolute maximum value of v occurs.
We will see later (see Lemma 0.3.1) that speak is unique.

Lemma 0.2.1 At any critical point of v as a function of s in (0, s0), we
have

s =

(
k2 + k3

k1

)(
e0 − e

e

)
.

In particular, this happens at speak.

Proof. As v = dp
dt
, we have

dv

ds
=

dt

ds

d

dt

dp

dt
.

Recall that by our hypothesis, ds
dt

is strictly negative, so dt
ds

is well defined and
non-zero (outside the end points). So we see that the critical points occur
exactly when

dv

dt
=

d2p

dt2
= 0.

Applying (4), since k3 > 0, we have to solve

dc

dt
= 0.

Thanks to (2), this condition becomes

k1se− (k2 + k3)c = 0.

Because of (5), the critical point for v occurs at s if and only if we have

k1se− (k2 + k3)(e0 − e) = 0.

The Lemma now follows easily.

We have implicitly assumed that e0−e is positive except at the end points,
where it is zero.
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0.3 Convexity of v = dp
dt as a function of s

Recall that speak is, by definition, where v attains its absolute maximum.
Since v is a differentiable function of s, it attains its maximum at a critical
point. On the other hand, by Lemma 0.2.1, there is a unique critical point
of v.

Proposition 0.3.1 We have

(i) speak is the unique critical point of v = dp
dt

on the open interval (0, s0);

(ii) d2v
ds2

is everywhere non-positive, hence the graph of v as a function of s

is bell-shaped, meaning it is convex downwards. Moreover, d2v
ds2

does not
vanish on any non-zero interval.

We are assuming here that the function v of s is smooth, at least twice
differentiable.

Proof. Since v = dp/dt equals k3c (with k3 > 0), and since c = e0 − e
is always non-negative, the unique critical point is, as observed earlier, the
unique maximum at s = speak. Hence d2v/ds2 is < 0 at speak. Note that v
must increae steadily from 0 to speak and then decrease to 0 at s = s0. (In
terms of time, this is reversed, as t = t0 corresponds to s = s0, and s = 0
at infinite time.) Thus dv/ds is ≥ 0 in the interval [0, speak] and ≤ 0 in
[speak, s0]. Assertion (i) is evident.

Now we prove part (ii). Again, since by our hypothesis, ds/dt is every-
where negative on (0, s0), and as k3 is positive, we are left (by equation (4)
of section 1) to check that

d

dt

(
dc

ds

)
≥ 0.

This is clear from the behavior of dc/ds.
Applying equations (1) and (2) of section 1, we obtain

dc

ds
=

c′

s′
=

k1se− (k2 + k3)c

−k1se+ k2c
,

where s′, resp. c′, denotes ds
dt
, resp. dc

dt
. Comparing (1) and (2), we have

c′ = −s′ − k3c,
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which yields
dc

ds
= −1− k3

c

s′
.

Taking derivatives with respect to t and multiplying both sides by −k−1
3 (s′)2,

we obtain

(∗) −k−1
3 (s′)2

d

dt

(
dc

ds

)
= s′c′ − s′′c.

Now we claim that there is no non-empty interval I (contained in (0, s0))
on which d

dt

(
dc
ds

)
is identically zero. Indeed, by (∗), it can be zero if and only

if we have
s′c′ − s′′c = 0 on I.

In other words,
s′′

s′
=

c′

c
.

which integrates to give
log s′ = log c+ c,

for a real constant c. Exponentiating, we obtain

s′ = ecc.

Since ec > 0 for any real number c, we deduce that, if the claim were false,
s′ and c must, in particular, have the same sign in (0, s0). This is patently
false as s′ is negative and c is ≥ 0. Hence the Claim.

Consequently, to prove the Proposition, we need only show that

s′c′ − s′′c < 0, for some s ∈ I.

This is because the expression on the left is continuous (since c, s are re-
peatedly differentiable) and non-zero (by the claim above), and thanks to
the intermediate value theorem, once it is positive somewhere, it will be so
everywhere.

Since s′ < 0 and c ≥ 0, it suffices to prove that

∃ s such that c′ > 0 and s′′ > 0.

Differentiating (1) (with respect to t) yields

s′′ = −k1s′e− k1se
′ + k2c

′.
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From (2) and (3), we see that e′ = −c′, implying

s′′ = −k1s′e+ (k1s+ k2)c
′,

which is positive when c′ > 0, since s′ < 0, while e, s, k1, k2 are positive.
This finishes the proof of the Proposition.
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