Lecture 11

Dinakar Ramakrishnan

(The odd numbered lectures are given by D. Ramakrishnan, and the even
ones by R. Tanner.)

0.1 A quadratic approximation at s = s

This section is not delicate as the previous ones, since the s-derivatives of v%
are all well defined and easily calculated at s (unlike at s = 0). Nevertheless,
the formulae below are useful in the following section. As before, we will write

s for %, d =% ete.
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Lemma t the point s = sq, the following values hold:

(a) s = —kasoeo, ¢ = kisoeq, and €' = kyspeo.
d2v k3
(C) d_sg - _klsgeg'

Consequently, the quadratic Taylor approximation to v near s = sy is given
by
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v = —ks(s —sg) — (5 —30)° + O((s — s0)*).

Proof.  (a): This follows directly from the basic differential equations
by evaluation at sg.

(b):  We saw in the proof of Lemma 2.1 that

dc c
— = —1—k3—.
ds S
Since v = kzc and ¢ = ey — e is zero at sy, we get % = —ks.

(c): Differentiating relative to t,

d (dc _ s'd—s"c
dt \ds) — 7 (&)



0.2 Approximations to s,

Now that we have expansions for v at 0 and at sg, we can find a series of
approximations s, , to s,, which will be good for small sy, by equating the
n-th order terms of the respective expansions.

Proposition

k3so .
(a') szl = mi]g37
(b) spo satisfies a quadratic equation:
AX?*+BX +C =0,

with

A= k% _ (k’g + m)k:lm
N 2k180€0 k% + kg + mkg ’
ks
b= <2k1€0 -me k?,) ’
and

k2 ks
C=|(7"——-k -1).
(2k1€0 380) (lesoeo )

Note that s, corresponds to the s-coordinate of the point obtained by
intersecting the tangent lines to the (v, s)-curve at s = 0 and s = s5. On
the other hand, s, denotes the s-coordinate of the meeting of the quadratic
approximations to the (v, s)-curve at 0 and sq, which provides a better ap-
proximation.



