Lecture 11

Dinakar Ramakrishnan
(The odd numbered lectures are given by D. Ramakrishnan, and the even ones by R. Tanner.)

0.1 A quadratic approximation at $s=s_{0}$

This section is not delicate as the previous ones, since the s-derivatives of $v \frac{d p}{d s}$ are all well defined and easily calculated at s_{0} (unlike at $s=0$). Nevertheless, the formulae below are useful in the following section. As before, we will write s^{\prime} for $\frac{d s}{d t}, c^{\prime}=\frac{d c}{d t}$, etc.
Lemma t the point $s=s_{0}$, the following values hold:
(a) $s^{\prime}=-k_{2} s_{0} e_{0}, \quad c^{\prime}=k_{1} s_{0} e_{0}$, and $e^{\prime}=k_{1} s_{0} e_{0}$.
(b) $\frac{d v}{d s}=-k_{3}$.
(c) $\frac{d^{2} v}{d s^{2}}=-\frac{k_{3}^{2}}{k_{1} s_{0} e_{0}}$.

Consequently, the quadratic Taylor approximation to v near $s=s_{0}$ is given by

$$
v=-k_{3}\left(s-s_{0}\right)-\frac{k_{3}^{2}}{2 k_{1} s_{0} e_{0}}\left(s-s_{0}\right)^{2}+O\left(\left(s-s_{0}\right)^{3}\right) .
$$

Proof. (a): This follows directly from the basic differential equations by evaluation at s_{0}.
(b): We saw in the proof of Lemma 2.1 that

$$
\frac{d c}{d s}=-1-k_{3} \frac{c}{s^{\prime}}
$$

Since $v=k_{3} c$ and $c=e_{0}-e$ is zero at s_{0}, we get $\frac{d v}{d s}=-k_{3}$.
(c): Differentiating relative to t,

$$
\frac{d}{d t}\left(\frac{d c}{d s}\right)=-k_{3} \frac{s^{\prime} c^{\prime}-s^{\prime \prime} c}{\left(s^{\prime}\right)^{2}}
$$

0.2 Approximations to s_{p}

Now that we have expansions for v at 0 and at s_{0}, we can find a series of approximations $s_{p, n}$ to s_{p}, which will be good for small s_{0}, by equating the n-th order terms of the respective expansions.

Proposition

(a) $s_{p, 1}=\frac{k_{3} s_{0}}{m+k_{3}}$;
(b) $s_{p, 2}$ satisfies a quadratic equation:

$$
A X^{2}+B X+C=0
$$

with

$$
\begin{gathered}
A=\left(\frac{k_{3}^{2}}{2 k_{1} s_{0} e_{0}}-\frac{\left(k_{3}+m\right) k_{1} m}{k_{3}^{2}+k_{3}+m k_{2}}\right), \\
B=\left(\frac{k_{3}}{2 k_{1} e_{0}}-m-k_{3}\right),
\end{gathered}
$$

and

$$
C=\left(\frac{k_{3}^{2}}{2 k_{1} e_{0}}-k_{3} s_{0}\right)\left(\frac{k_{3}}{2 k_{1} s_{0} e_{0}}-1\right) .
$$

Note that $s_{p, 1}$ corresponds to the s-coordinate of the point obtained by intersecting the tangent lines to the (v, s)-curve at $s=0$ and $s=s_{0}$. On the other hand, $s_{p, 2}$ denotes the s-coordinate of the meeting of the quadratic approximations to the (v, s)-curve at 0 and s_{0}, which provides a better approximation.

