
Lecture 11

Dinakar Ramakrishnan

(The odd numbered lectures are given by D. Ramakrishnan, and the even
ones by R. Tanner.)

0.1 A quadratic approximation at s = s0

This section is not delicate as the previous ones, since the s-derivatives of v dp
ds

are all well defined and easily calculated at s0 (unlike at s = 0). Nevertheless,
the formulae below are useful in the following section. As before, we will write
s′ for ds

dt
, c′ = dc

dt
, etc.

Lemma t the point s = s0, the following values hold:

(a) s′ = −k2s0e0, c′ = k1s0e0, and e′ = k1s0e0.

(b) dv
ds

= −k3.

(c) d2v
ds2

= − k23
k1s0e0

.

Consequently, the quadratic Taylor approximation to v near s = s0 is given
by

v = −k3(s− s0)−
k2
3

2k1s0e0
(s− s0)

2 +O((s− s0)
3).

Proof. (a): This follows directly from the basic differential equations
by evaluation at s0.

(b): We saw in the proof of Lemma 2.1 that

dc

ds
= −1− k3

c

s′
.

Since v = k3c and c = e0 − e is zero at s0, we get dv
ds

= −k3.
(c): Differentiating relative to t,

d

dt

(
dc

ds

)
= −k3

s′c′ − s′′c

(s′)2
.
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0.2 Approximations to sp

Now that we have expansions for v at 0 and at s0, we can find a series of
approximations sp,n to sp, which will be good for small s0, by equating the
n-th order terms of the respective expansions.

Proposition

(a) sp,1 = k3s0
m+k3

;

(b) sp,2 satisfies a quadratic equation:

AX2 +BX + C = 0,

with

A =

(
k2
3

2k1s0e0
− (k3 +m)k1m

k2
3 + k3 +mk2

)
,

B =

(
k3

2k1e0
−m− k3

)
,

and

C =

(
k2
3

2k1e0
− k3s0

)(
k3

2k1s0e0
− 1

)
.

Note that sp,1 corresponds to the s-coordinate of the point obtained by
intersecting the tangent lines to the (v, s)-curve at s = 0 and s = s0. On
the other hand, sp,2 denotes the s-coordinate of the meeting of the quadratic
approximations to the (v, s)-curve at 0 and s0, which provides a better ap-
proximation.
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