
Complex numbers, the exponential
function, and factorization over C

1 Complex Numbers

Recall that for every non-zero real number x, its square x2 = x · x is always
positive. Consequently, R does not contain the square roots of any negative
number. This is a serious problem which rears its head all over the place.

It is a non-trivial fact, however, that any positive number has two square
roots in R, one positive and the other negative; the positive one is denoted√
x. One can show that for any x in R,

|x| =
√
x · x.

So if we can somehow have at hand a square root of −1, we can find square
roots of any real number.

This motivates us to declare a new entity, denoted i, to satisfy

i2 = −1.

One defines the set of complex numbers to be

C = {x+ iy |x, y ∈ R}

and defines the basic arithmetical operations in C as follows:

(x+ iy)± (x′ + iy′) = (x± x′) + i(y ± y′),

and
(x+ iy)(x′ + iy′) = (xx′ − yy′) + i(xy′ + x′y).
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There is a natural one-to-one function

R → C, x → x+ i.0,

compatible with the arithmetical operations on both sides.
It is an easy exercise to check all the field axioms, except perhaps for the

existence of multiplicative inverses for non-zero complex numbers. To this
end one defines the complex conjugate of any z = x+ iy in C to be

z = x− iy.

Clearly,
R = {z ∈ C | z = z}.

If z = x+ iy, we have by definition,

zz = x2 + y2.

In particular, zz is either 0 or a positive real number. Hence we can find a
non-negative square root of zz in R. Define the absolute value, sometimes
called modulus or norm, by

|z| =
√
zz =

√
x2 + y2.

If z = x+ iy is not 0, we will put

z−1 =
z

zz
=

x

x2 + y2
− i

y

x2 + y2
.

It is a complex number satisfying

z(z−1) = z
z

zz
= 1.

Done.

It is natural to think of complex numbers z = x + iy as being ordered
pairs (x, y) of real numbers. So one can try to visualize C as a plane with two
perpendicular coordinate directions, namely giving the x and y parts. Note
in particular that 0 corresponds to the origin O = (0, 0), 1 to (1, 0) and i with
(0, 1). Geometrically, one can think of getting from −1 to 1 (and back) by
rotation about an angle π, and similarly, one gets from i to its square −1 by
rotating by half that angle, namely π/2, in the counterclockwise direction.
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To get from the other square root of −1, namely −i, one rotates by π/2 in
the clockwise direction. (Going counterclockwise is considered to be in the
positive direction in Math.)

Addition of complex numbers has then a simple geometric interpretation:
If z = x+iy, z′ = x′+iy′ are two complex numbers, represented by the points
P = (x, y) and Q = (x′, y′) on the plane, then one can join the origin O to P
and Q, and then draw a parallelogram with the line segments OP and OQ
as a pair of adjacent sides. If R is the fourth vertex of this parallelogram, it
corresponds to z + z′. This is called the parallelogram law.

Complex conjugation corresponds to reflection about the x-axis.
The absolute value or modulus |z| of a complex number z = x+ iy is, by

the Pythagorean theorem applied to the triangle with vertices O,P = (x, y)
and R = (x, 0), simply the length, often denoted by r,

√
x2 + y2 of the line

OP .
The angle θ between the line segments OR and OP is called the argument

of z. The pair (r, θ) determines the complex number z. Indeed High school
trigonometry allows us to show that the coordinates of z are given by

x = rcosθ and y = rsinθ,

where cos (or cosine) and sin (or sine) are the familiar trigonometric func-
tions. Consequently,

z = r(cosθ + isinθ).

Those who know about exponentials (to be treated below in section 9.4) will
recognize the identity

eiθ = cosθ + isinθ.

(This can also be taken as a definition of eiθ, for any θ ∈ R.)
Note that eiθ has absolute value 1 and hence lies on the unit circle in the

plane given by the equation |z| = 1.
It is customary for the angle θ to be called the argument of z, denoted

arg(z), taken to lie in [0, 2π).

2 Cardano’s formula

This section is mainly for motivational purposes. Recall the well known
quadratic formula from the days of old, which asserts that the roots of the

3



quadratic equation

ax2 + bx+ c = 0, with a, b, c ∈ R,

are given by

α± =
−b±

√
D

2a
,

where the discriminant D is b2 − 4ac. Note that

D > 0 =⇒ ∃ 2 real roots;

D = 0 =⇒ ∃ a unique real root (with multiplicity 2);

D < 0 =⇒ ̸ ∃ real root.

There were several people in the old days (up to the middle of the nine-
teenth century), some of them even quite well educated, who did not believe
in imaginary numbers, such as square-roots of negative numbers. Their re-
action to the quadratic formula was to just ignore the case when D < 0
and thus not deal with the possibility of non-real roots. They said they were
only interested in real roots. Their argument was shattered when one started
looking at the cubic equation

ax3 + bx2 + cx+ d = 0, with a, b, c, d ∈ R.

Thanks to a beautiful formula of the Italian mathematician Cardano, the
roots are given by

α1 = S + T − b

3a
,

α2 = −(S + T )/2− b

3a
+

√
−3

2
(S − T ),

α3 = −(S + T )/2− b

3a
−

√
−3

2
(S − T ),

with
S = (R +

√
D)1/3, T = (R−

√
D)1/3,

where the discriminant D is Q3 +R2, and

R =
9abc− 27a2d− 2b3

54a3
, Q =

3ac− b2

9a2
.

One has
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D > 0 =⇒ ∃ a unique real root;

D = 0 =⇒ ∃ 3 real roots with 2 of them equal;

D < 0 =⇒ ∃ 3 distinct real roots.

This presented a problem for the Naysayers. One is for sure interested in
the case when there are three real roots, but Cardano’s formula for the roots
goes through an auxiliary computation, namely that of the square-root of D,
which involves imaginary numbers!

3 Complex sequences and series

As with real sequences, given a sequence {zn} of complex numbers zn, we
say that it converges to a limit L, say, in C iff we have, for every ε > 0, we
can find an integer N > 0 such that

n ≥ N =⇒ |L− zn| < ε.

Proposition 1 (i) If {an} is a convergent sequence with limit L, then for
any scalar c, the sequence {can} is convergent with limit cL;

(ii) If {an}, {bn} are convergent sequences with respective limits L1, L2,
then their sum {an + bn} and their product {anbn} are convergent with
respective limits L1 + L2 and L1L2.

The proof is again a simple application of the properties of absolute val-
ues. The following Corollary allows the convergence questions for complex
sequences to b reduced to real ones.

Corollary 3.1 Let {zn = xn + iyn} be a sequence of complex numbers, with
xn, yn real for each n. Then {zn} converges iff the real sequences {xn} and
{yn} are both convergent.

Proof. Suppose {xn}, {yn} are both convergent, with respective limits
u, v. We claim that {zn} then converges to w = u + iv. Indeed, by the
Proposition above, {iyn} is convergent with limit iv, and so is {xn+iyn}, with
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limit w. Conversely, suppose that {zn} converges, say to w. We may write w
as u+ iv, with u, v real. For any complex number z = x+ iy, |x| and |y| are
both bounded by ≤

√
x2 + y2, i.e., by |z|. Since w−zn = (u−xn)+i(v−yn),

we get
|u− xn| ≤ |w − zn| and |v − yn| ≤ |w − zn|.

For any ϵ > 0, pick N > 0 such that for all n > N , |w − zn| is < ϵ. Then
we also have |u− xn| < ϵ and |v − yn| is < ϵ for all n > N , establishing the
convergence of {xn} and {yn} with respective limits u and v. 2

One can define Cauchy sequences as in the real case, and it is immediate
that {zn = xn + iyn} is Cauchy iff {xn} and {yn} are Cauchy. We have

Theorem 3.2 A complex sequence {zn} converges iff it is Cauchy.

Hence C is also a complete field like R.

An infinite series
∑∞

n=n0
zn of complex numbers is said to be convergent

iff the sequence of partial sums {
∑n

m=n0
zm} is convergent. (Here n0 is any

integer, usually 0 or 1.)
We will say that

∑
n zn is absolutely convergent iff the series of its

absolute values, namely
∑

n |zn| converges.
Note that the question of absolute convergence of a complex series, one

is reduced to a real series, since |zn| is real, even non-negative.
Check that if a complex series

∑
n zn is absolutely convergent, then it is

convergent.

4 The complex exponential function, and log-

arithm

For any complex number z, we will define its exponential to be given by

ez =
∞∑
n=0

zn

n!
.

This series is absolutely convergent at any z, because the real sequence∑
n

rn

n!
is convergent, with r = |z|.
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The exponential function has some nice properties, which we state with-
out proof:

e0 = 1, ez = exeiy, ez+z′ = ezez
′
,

for all z = x+ iy, z′ ∈ C.

Lemma 4.1 eiθ = cos θ+ i sin θ, for any real number θ. In particular, eiθ is
periodic of period 2π like the trig functions, and moreover,

|eiθ| = 1, eiπ = −1.

Proof By definition,

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+ . . . ,

where the even power terms are real and the odd ones are purely imagi-
nary, since i2n = (−1)n and i2n+1 = (−1)ni. Since the series is absolutely
convergent, we may rearrange and express it as a sum of two series as follows:

eiθ =

(
1− θ2

2!
+ . . .

)
+ i

(
θ − θ3

3!
+ . . .

)
.

From the Taylor series expansions for the sine and cosine functions, we then
see that the right hand side is the sum of cos θ and i times sin θ, as asserted.

The periodicity relative to 2π is now clear. Moreover,

|eiθ| =
√
cos2 θ + sin2 θ = 1.

Finally,
cos(π) = −1, sin(π) = 0 =⇒ eiπ = −1.

2

Now let z = x+ iy ∈ C. Note that, since |eiy| = 1,

|ez| = ex.

Here we have used the fact that the real exponential is always positive, so
|ex| = ex.
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Furthermore, by the periodicity of eiy,

ez+2iπ = exei(y+2π) = exeiy = ez.

So, the complex exponential function is not one-to-one, and is in fact
periodic of period 2iπ. This presents a problem for us, since we would like
to define the logarithm as its inverse. However, note that ez is one-to-one if
we restrict z = x + iy to lie in the rectangular strip Φ in the complex plane
defined by 0 ≤ y < 2π.

The complex logarithm is defined, for z ̸= 0, to be

log(z) = log |z|+ i arg(z),

where arg(z) is taken to lie (as usual) in [0, 2π). Note that since |z| > 0 if
z ̸= 0, log |z| makes sense.

Since |ez| = ex (as seen above) and arg(ez) = y if y ∈ [0, 2π), we see that

log(ez) = log(ex) + iy = x+ iy = z, ∀z ∈ Φ,

as desired.

5 Differentiability, Cauchy-Riemann Equations

Let f(z) be a complex valued function of a complex variable z = x+ iy, with
x, y ∈ R. We will say that f is differentiable at a point z0 in C iff the
following limit exists:

lim
z→z0

f(z)− f(z0)

z − z0
.

when this limit exists, we call it f ′(z0).

It is important to note that the existence of this limit is a stringent
condition, because, in the complex plane, one can approach a point z0 =
x0 + iy0 from infinitely many directions. In particular, there are the two
independent directions given, for h ∈ R, by the horizontal one z0 + h →
z0, and the vertical one z0 + ih → z0. The former corresponds to having
x0+h → x0 with the y-coordinate fixed, and the latter y0+h → y0 with the
x-coordinate fixed. So we must have

f ′(z0) = lim
h→0

f(x0 + h+ iy0)− f(x0 + iy0)

h
= lim

h→0

f(x0 + i(y0 + h))− f(x0 + iy0)

ih
.
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The two limits on the right define the partial derivatives of f , denoted re-
spectively by ∂f

∂x
(z0) and −i∂f

∂y
(z0).

Clearly, given any function φ, real or complex, depending on x, y, we can
define the partial derivatives ∂φ/∂x and ∂φ/∂y. In any case, we get the
equation (when f is differentiable at z0)

∂f

∂x
(z0) = −i

∂f

∂y
(z0),

which is sometimes written as(
∂

∂x
+ i

∂

∂y

)
f(z0) = 0.

It is also customary to write

f(z) = u(x, y) + iv(x, y),

where u, v are real-valued functions of x, y, and taking the real and imaginary
parts of the equation above becomes a pair of differential equations, called
the Cauchy-Riemann equations, at z0 = x0 + iy0:

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
.

We will now state the following two (amazing) theorems about complex
functions without proof:

Theorem 5.1 Let f be a differentiable function on an open circular disk
Dc(z0) defined by |z − z0| < c, for some c > 0. Then f is infinitely differen-
tiable on Dc(z0). In fact, it is analytic there, meaning that it is represented
by its Taylor series in z − z0.

This is a tremendous contrast from the real situation.

Theorem 5.2 Let f be a differentiable complex function on all of C. Sup-
pose f is also bounded. Then it must be a constant function.

Note that this is false in the real case. Indeed, the real function f(x) =
1

1+x2 is analytic and bounded, but is not a constant.
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6 Factorization over C

The most important result over C, which is the reason people are so interested
in working with complex numbers, is the following:

Theorem 6.1 (The Fundamental Theorem of Algebra) Every non-
constant polynomial with coefficients in C admits a root in C.

We will not prove this result here. But one should become aware of
its existence if it is not already the case! We will now give an important
consequence.

Corollary 6.2 Let f be a polynomial of degree n ≥ 1 with C-coefficients.
Then there exist complex numbers α1, . . . , αr, with αi ̸= αj if i ̸= j, positive
integers m1, . . . ,mr, and a scalar c, such that

f(x) = c
r∏

j=1

(x− αj)
mj ,

and
r∑

j=1

mj = n.

In other words, any non-constant polynomial f with C-coefficients fac-
torizes completely into a product of linear factors. For each j ≤ r,
the associated positive integer mj is called the multiplicity of αj as a root of
f , which means concretely that mj is the highest power of (x− αj) dividing
f(x).

Proof of Corollary. Let n ≥ 1 be the degree of f and let an be the
non-zero leading coefficient, i.e, the coefficient of xn. Let us set

(6.1) c = an.

If n = 1,

f(x) = a1x+ a0 = c(x− α1) with α1 = −a0
a1

.
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So we are done in this case by taking r = 1 and m1 = 1.
Now let n > 1 and assume by induction that we have proved the assertion

for all m < n, in particular for m = n − 1. By Theorem 9.6, we can find a
root, call it β, of f . We may then write

(6.2) f(x) = (x− β)h(x),

for some polynomial h(x) necessarily of degree n−1. The leading coefficients
of f are evidently the same. By induction we may write

h(x) = c
s∏

i=1

(x− αi)
ki ,

for some roots α1, . . . , αs of h with respective multiplicities n1, . . . , ns, so that

s∑
i=1

ki = n− 1.

But by (6.2), every root of h is also a root of f , and the assertion of the
Corollary follows.

2

7 Factorization over R

The best way to understand polynomials f with real coefficients is to first
look at their complex roots and then determine which ones of them could be
real. To this end recall first the baby fact that a complex number z = u+ iv
is real iff z equals its complex conjugate z = u− iv, where i =

√
−1.

Proposition 2 Let

f(x) = a0 + a1x+ . . .+ anx
n with aj ∈ R, ∀j ≤ n, and an ̸= 0,

for some n ≥ 1. Suppose α is a complex root of f . Then α is also a root of
f . In particular, if r denotes the number of real roots of f and s the non-real
(complex) roots of f , then we must have

n = r + 2s.
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We get the following consequence, which we proved earlier using the In-
termediate value theorem.

Corollary 7.1 Let f be a real polynomial of odd degree. Then f must have
a real root.

Proof of Proposition. Let α be a complex root of f . Recall that for
all complex numbers z, w,

(7.1) zw = zw and z + w = z + w.

Hence for any j ≤ n,
(α)j = αj.

Moreover, since aj ∈ R (∀j), aj = aj, and therefore

aj(α)
j = ajαj.

Consequently, using (7.1) again, we get

(7.2) f(α) =
n∑

j=0

aj(α)
j = f(α).

But α is a root of f (which we have not used so far), f(α) vanishes, as does
its complex conjugate f(α). So by (7.2), f(α) is zero, showing that α is a
root of f .

So the non-real roots come in conjugate pairs, and this shows that n
minus the number r, say, of the real roots is even. Done.

2

Given any complex number z, we have

(7.3) z + z, zz ∈ R.

This is clear because both the norm zz and the trace z + z are unchanged
under complex conjugation.
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Proposition 3 Let f be a real polynomial of degree n ≥ 1 with real roots
α1, . . . , αk with multiplicities n1, . . . , nk, and non-real roots β1, β1, . . . , βℓ, βℓ

with multiplicities m1, . . . ,mℓ in C. Then we have the factorization

(∗) f(x) = c

k∏
i=1

(x− αi)
ni ·

ℓ∏
j=1

(x2 + bjx+ cj)
mj ,

where for each j ≤ ℓ,

bj = −(βj + βj) and cj = βjβj,

Each of the factors occurring in (∗) is a real polynomial, and the polynomials
x− αi and x2 + bjx+ cj are all irreducible over R.

Proof. In view of Corollary 9.7 and Proposition 2, the only thing we
need to prove is that for each j ≤ ℓ, the polynomial

hj(x) = x2 + bjx+ cj

is real and irreducible over R. The reality of the coefficients bj = −(βj + βj)

and cj = βjβj follows from (7.3). Suppose it is reducible over R. Then we
can write

hj(x) = (x− tj)(x− t′j)

for some real numbers tj, t
′
j. On the other hand βj, βj are roots of hj. This

forces the equality of the sets {tj, t′j} and {βj, βj}, contradicting the fact that
βj is non-real. So hj must be irreducible over R.

2
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