
Lecture 25

The utility of the Laplace transform in solving ODE’s

Recall that if f is a function on [0,∞) which is piecewise continuous and
is “a-nice,” i.e., |f(t)| ≤ ceat, for large enough t, for a positive constant c,
then its Laplace transform

L(f(t)) = F (s) =

∫ ∞

0

f(t)e−stdt

(
= lim

A→∞

∫ A

0

f(t)e−stdt

)
is well defined. (In fact, F (s) makes sense for any complex number s as long
as Re(s) > a.) Note:

L(1) =

∫ ∞

0

e−stdt = lim
A→∞

∫ A

0

e−stdt = lim
A→∞

(
e−st

−s

) ∣∣∣∣A
0

= lim
A→∞

(
−e−sA

s
+

1

s

)
=

1

s
, since e−sA → 0 as A → ∞, for s > 0.

An oft-used function is the Heaviside function uc attached to any c > 0:

uc(t) =

{
1, if t ≥ c
0, if 0 ≤ t < c

The Laplace transform of tn can be calculated by using induction and
integration by parts (using e−stdt = −1

s
d(e−st)):

L(tn) =
∫ ∞

0

tne−stdt = − lim
A→∞

1

s

(
tne−st

∣∣∣∣A
0

−n

∫ A

0

tn−1e−stdt

)
=

n

s
L(tn−1).
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f(t) F (s) = L(f(t))

1 1
s

(for s > 0)

eat 1
s−a

(s > a)

uc(t)
e−at

s
(for s > 0)

eat cos(bt) s−a
(s−a)2+b2

(for s > 0)

eat sin(bt) b
(s−a)2+b2

(s > 0)

tn (n ≥ 0) n!
sn+1 (n > 0)

Important properties of L

1) L is linear, i.e., L(af + bg) = aL(f) + bL(g), for all constants a, b

2) L(f(t)) = 1
c
F ( s

c
), if c > 0 and F (s) = L(f(t))

3) L(uc(t)f(t− c)) = e−csL(f(t)) (check this!)

4) If f is continuous (not just piecewise continuous) and F (s) = 0 for all
s > M , for some M > 0, then f(t) = 0 for all t.

5) Suppose f is n-times differentiable with f (n) being piecewise continuous
and a-nice, then

L(f (n)(t)) = snL(f(t))− sn−1f(0)− sn−2f ′(0)− . . . − f (n−1)(0).

Consequence of 4) and 1):

Given continuous functions f, g on [0,∞), if F (s) = G(s) for all s > c for
some c > 0, then f(t) = g(t), for all t.
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Reason: By 1),

L(f(t)− g(t)) = L(f(t))− L(g(t)) = F (s)−G(s),

which is 0 by hypothesis. So by 4),

f(t)− g(t) = 0, ∀ t.

Thanks to the consequence above, L is a one-to-one linear transformation
on the vector space of all continuous functions which are a-nice for some
a > 0. Hence, it has an inverse, called the inverse Laplace transformation,
and denoted L−1.

L−1 is also linear.

Example

Consider the 1st order inhomogeneous ODE:

dy

dt
− by = et, y(0) = 0, b ̸= 1 (*)

(i) Recall: Before using L, let us review how we solved this by our earlier
methods. The homogeneous equation

dy

dt
− by = 0

which has eigenvalue λ = b, has the general solution

yc(t) = cebt, with c : a constant.

So the general solution of (∗) is:

y(t) = yc(t) + yp(t)

where yp(t) is a particular solution of (∗). Try

yp(t) = Aet

=⇒ Aet − bAet = et

⇒ A =
1

1− b
, b ̸= 1.

3



So the general solution of (∗) is given by

yp(t) = cebt +
1

1− b
et.

The initial condition is

y(0) = 0

⇒ 0 = c+
1

1− b

c =
1

b− 1

=⇒ y(t) =
1

1− b
(ebt − et)

(ii) Now let’s see if we get the same result by using L, assuming that y′ is
continuous. (f is continuous since it is differentiable.) Applying L to
both sides of (∗), we get, by the linearity of L,

L(y′)︸ ︷︷ ︸
sY (s)−y(0)

−bL(y)︸︷︷︸
Y (s)

= L(et)︸ ︷︷ ︸
1

s−1
, for s>1

⇒ (s− b)Y (s) =
1

s− 1

⇒ Y (s) =
1

(s− 1)(s− b)

Applying L to both sides, we get

y(t) = L−1(Y (s)) = L−1

(
1

(s− 1)(s− b)

)
Idea: Use partial fractions!

1

(s− 1)(s− b)
=

c1
s− 1

+
c2

s− b

⇒ 1 = c1(s− b) + c2(s− 1)

c2 = −c1 =
1

b− 1
1

(s− 1)(s− b)
=

1

b− 1

(
1

s− b
− 1

s− 1

)
y(t) =

1

b− 1

[
L−1

(
1

s− b

)
− L−1

(
1

s− 1

)]
=⇒ y(t) =

1

b− 1
(ebt − et),
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since L−1
(

1
s−a

)
= e−at.

Post’s formula for L−1

F (s) = L(f(t))

⇒ L−1(F (s)) = lim
n→∞

(−1)n

n!

(n
t

)n+1

F (n)
(n
t

)
Example

Let F (s) = 1
s−a

. Let us make sure that this formula gives us the answer
we know, namely f(t) = eat.

F ′(s) =
1

(s− a)2
, . . . , F (n)(s) =

(−1)nn!

(s− a)n+1

⇒ f(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1 (−1)nn!

(n
t
− a)n+1

= lim
n→∞

1

(1− at
n
)n+1

ln f(t) = at ⇒ f(t) = eat.

5



Lecture 26

We will discuss two more topics related the the Laplace transform method
of solving ODE’s:

(i) Discontinuous forcing: This pertains to inhomogeneous ODE’s of the
form

y′′ + p(x)y′ + q(x) = F (x),

where F is not continuous, but piecewise continuous, for example a
step function;

(ii) Convolution of functions, which allows us to calculate the inverse Laplace
transform of a product of two or more functions of s.

Review of some basic and useful formulae:

L(1) = 1

s

L(uc(t)) =
e−cs

s
L(ucf(t− c)) = e−csL(f(t))

L−1

(
b

(s− a)2 + b2

)
= eat sin(bt) (a)

L−1

(
s− a

(s− a)2 + b2

)
= eat cos(bt) (b)

Example:

u′′ +
1

4
u′ + u = f(t), u(0) = u′(0) = 0, (*)

where
f(t) = u3/2(t)− u5/2(t).

Apply L to both sides of (∗) to get (by the linearity of L):

L(u′′) +
1

4
L(u′) + L(u) = L(f(t))

L(u′) = sL(u)︸︷︷︸
=U(s)

−u(0)︸︷︷︸
=0

L(u′′) = s2L(u)− su′(0)− u(0)︸ ︷︷ ︸
=0
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Get

U(s)

(
s2 +

1

4
s+ 1

)
= F (s),

where

F (s) = L(f(t)) = L(u3/2(t))− L(u5/2(t)) =
e−3s/2 − e−5s/2

s
.

⇒ U(s) =
e−3s/2 − e−5s/2

s(s2 + 1
4
s+ 1)

, if s2 +
1

4
s+ 1 ̸= 0.

The roots of s2 + 1
4
s+ 1 are s = −1

8
± 1

2

√
1
16

− 4, which are not real! Hence

s2 + 1
4
s+ 1 cannot be 0 for any real s.

Use partial fractions:

G(s) :=
1

s(s2 + 1
4
s+ 1)

=
A

s
+

Bs+ C

s2 + 1
4
s+ 1

.

Clearing the denominator,

1 = As2 +
1

4
As+ A+Bs2 + Cs

1 = (A+B)s2 + (
1

4
A+ C)s+ A

⇒A = 1, B = −A = −1, C = −1

4
A = −1

4

Hence

G(s) =
1

s
−

s+ 1
4

s2 + 1
4
s+ 1

.

Recall that
L−1(ecsG(s)) = uc(t)g(t− c),

so that

u(t) = L−1(U(s)) = L−1(e−3s/2G(s))− L−1(e−5s/2G(s))

= u3/2(t)f(t−
3

2
)− u5/2(t)f

(
t− 5

2

)
Need to find f , and for this we use formulae (a) and (b) from the previous
page. It is left as an exercise to get the final explicit answer.
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Convolution

Suppose F (s) = L(f(t)) and G(s) = L(g(t)) in s > a ≥ 0. Put

H(s) = F (s)G(s).

Question: Can we find a function h(t) st H(s) = L(h(t)) for s > a? In
other words,

What is L−1(F (s)G(s))?

Answer: Yes. h(t) is the “convolution” of f and g, denoted f ∗ g.
Definition:

h(t) = (f ∗ g)(t) =
∫ t

0

f(t− u)g(u)du

which also equals ∫ t

0

f(u)g(t− u)du.

These two integral expressions are equal because we can use change of
variables: v = t− u, dv = −du, yielding∫ t

0

f(t− u)g(u)du = −
∫ 0

t

f(v)g(t− v)dv =

∫ t

0

f(v)g(t− v)dv

⇒ f ∗ g = g ∗ f (commutativity of convolution)

Examples:

1. (f ∗ 1)(t) =
∫ t

0
f(t− u)du =

∫ t

0
f(u)du.

In particular, (1 ∗ 1)(t) = t ̸= 1

2. f = sin t,

(f ∗ 1)(t) =
∫ t

0
sin udu = − cosu|t0 = 1− cos t

3. f ∗ f need not be ≥ 0. For example, if f = sin(t), then

(f ∗ f)(t) =
∫ t

0

sin(t− u) sin(u)du

=
1

2
(sin t− t cos t),

which is negative at t = 2nπ, for any positive integer n.
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Reason for importance of convolution to the solving of ODE’s

Given
y′′ + ay′ + by = f(x), y(0) = y′(0) = 0,

with a, b constants, apply L to both sides to get

Y (s)(s2 + as+ b) = F (s),

so that for s large enough so that s2 + as+ b ̸= 0,

Y (s) = F (s)G(s), where G(s) =
1

s2 + as+ b
.

By using partial fractions and the formulae from an earlier page, we can find
g(t) such that G(s) is the Laplace transform of g(t). This implies that

y(t) = L−1(F (s)G(s)) = (f ∗ g)(t).

This method is also useful, if applied with care, when a, b are not con-
stants.

Example:
y′′ + 2y′ + 2y = sin(ωt), y(0) = y′(0) = 0,

where ω is called the forcing frequency (or external frequency).
Apply L to both sides, and use the linearity of L, to obtain, with f(t) =

sinωt,

Y (s)(s2 + 2s+ 2) = L(sinωt) = F (s)

s2 + s+ 2 = (s2 + 2s+ 1) + 1

= (s+ 1)2 + 1 ≥ 1

⇒ Y (s) = F (s)G(s), with G(s) =
1

(s+ 1)2 + 1

g(t) = L−1

(
1

(s+ 1)2 + 1

)
= e−t sin t

⇒ y(t) = convolution of f(t) = sinωt and g(t) = e−t sin t

y(t) =

∫ t

0

f(t− u)g(u)du =

∫ t

0

sin(ω(t− u))e−u sin udu.
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The integral on the right can be explicitly calculated using the addition
formula

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] ,

and integration by parts.

Note that we did not use here our prior knowledge that F (s) = ω
s2+ω2 .
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