Lecture 22

Power series solutions for 2nd order linear ODE’s

(not necessarily with constant coefficients)

Recall a few facts about power series:
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This series in z is centered at z = 0.

Here z can be real or complex. Denote b |z| its absolute value, which is
a non-negative real number.

The following questions arise:

(Q1l) When does this converge absolutely, i.e., when does ) a,|z|" con-
verge? Moreover, is there a real number R > 0 such that ) a,2"
converge absolutely Vz with |z| < R, but diverges for |z| > R?

(Q2) When can we differentiate ) a, 2" term by term, i.e., when do we have

the equality
/
(Z anzn> = Z na,z"" 17

(Q3) Given a function f(z) when can we express it as a power series »  a,,bz",
for z in some region, say for |z| < R?

Given > a,2z", we look at
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If L makes sense, it will be a non-negative real number.

A basic result (cf. Chapter 2 of the Notes for Mala) is the following:

Theorem 1 > a,z2" converges absolutely iff L < 1.

Definition The radius of convergence R > 0 is the largest non-negative real
number such that



* Y a,z" converges absolutely for |z| < R, and
* Y apz" diverges for |z| > R.

We will allow R to be oo, in which case Y a,z" converges Vz.

By this definition,

2| < R <= lim |a”+1| =1
n—oo |a,|

So R = lim |a—"|1 This answers Q1.
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For Q2, here is another basic result (cf. Chap. 2 of the Notes for Mala):

Theorem 2 For |z| < R, we have

(Z a,2") = Zannznfl.

If |z| = R, anything can happen.

To understand Q3 better, recall (from Mala) that if f is infinitely differ-
entiable at z = 0, then we have the associated Taylor series

(n)
Zanz", with a,, = f—(O)
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Examples of infinitely differentiable functions at z = 0:

e*, sin(z), cos(z), polynomials, and rational functions P(z)/Q(z), with

P, @ polynomials and Q(0) # 0.

A Subtle Fact:
The Taylor series of a function f (around z = 0) may not equal f(z), for
f infinitely differentiable.

The simplest example of such a function is ¢(x) which is e7'/* if > 0
and 0 if x < 0. You may check that ¢ is differentiable to any order at = = 0,
but with ¢ (0) = 0 for all n > 0, making the Taylor expansion around 0 to
be identically 0. But ¢(x) is > 0 for > 0, however small, and so cannot be
represented by the Taylor expansion.



However, pathology like this does not happen if there is an R > 0 such
that for all z with |z| < R, f(z) has a(n absolutely convergent) power series

expansion
o

f(z) = Z a,z".
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In such a case, f is said to be an analytic function at z = 0, in fact in
|z| < R. Since we can differentiate under the sum sign for |z| < R (by
Theorem 2), it follows (by evaluating each series expression for f((z) at
z = 0) that we must have
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Examples of analytic functions

(1)

Applying the Ratio test,
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= R = oo, i.e., €” is represented by this power series for all z; so

f(z) = e” is analytic Vz, and & = %,
(2)
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(3) f(z) = = = >.> 2", a rational function regular at z = 0, i.e., the

denominator of f(z) is non-zero at z = 0.
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implying that L < 1iff |z] < 1. So R = 1, and our function is analytic
in |z] < 1.
f(z) =1In(z), =z real and positive.

As z — 0, In(z) — —oo. This is nevertheless analytic near z = 1,
since we can write
f(z) =) anlz =1,

which is a convergent power series around z = 1. In fact we claim that
that R = 1 in this case. In particular, the series expansion is valid for
any small z, as long as it is non-zero.

To check the Claim, write log(z) = f(z) as In(1+4 (2 —1)). Then, with
u =z — 1, we have
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which is valid, by (3), for |u| <1 (as R = 1). The series expression for

HLH can, by Theorem 2, be integrated term by term for |u| < 1. This

way we get a power series for In(1 + u), namely
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valid in |u| < 1. Since f(z) = —In(1 + u), we get
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which holds for all z with |z — 1| < 1. Hence the Claim.



Ordinary points and Singular points

Suppose we have a linear ODE of 2nd order:

2
(%) cl(x)% + cZ(x)Z—z + c3(x)u =0,
where the coefficients are not (necessarily) constant! The fact that (%) has
second order means ¢;(x) is not identically zero. However, it could be zero
for special values of x, where we need to exercise some care.

The values of = where ¢;(z) = 0 are called the singular points of the
ODE, while those = where ¢;(x) # 0 are called the ordinary points.

Often there are only a finite number of singular points, but this is not
always the case, as seen by looking at the example ¢;(x) = sinz, which
vanishes at n7 for any integer n.

At the ordinary points, one can divide (x) by ¢1(u) to get a “monic” ODE:

d?u du
T2 +P($>@ +q(z)u = 0,

with
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We will look for power series solutions!



Lecture 23

Last time we ended by looking at the general 2nd order linear homogeneous
ODE

dy “
Cl({L’)E—FCQ([E)@"‘Qg(JI)y :O, ( )
with ¢1 (x) not identically zero. We are interested in the case when ¢ (), co(z), c3(x)
are not constants.

Definition. A point zq is an ordinary point for (x) iff ¢;(x) # 0. Other-
wise xg 15 called o singular point.

More precisely, when ¢;(z) # 0 we can divide by it, so (%) becomes

d2y
dx?

dy

+p(r)== +q(r)y = 0, p(r) =

To say x( is an ordinary point means p, ¢ are analytic at zg, i.e.,
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valid in an interval around x,.

Recall the following key examples of analytic functions at z:
1) Polynomials in x
2) Rational functlons f, g polynomials, with g(xq) # 0

. . 2
3) Exponential functions e*t, e 2 ...

4) sinz, cosx

(5) tanz, if 29 # (2n +1)5



The Basic Principle: Suppose x( is an ordinary point for

d?y
da?

Then it has a basis of (analytic) solutions of the form

yi(z) =1+ by(x —20)° + -+ = 1+Z by (z — )",
Ya(z) = (. — x0) + o — 30)* + - - = (v — ) + Z Cn(z — o)™,

Hence the general solution is of the form

o0

Y= a1+ aryz = Z an(x — 20)",
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where ag, a; are arbitrary constants, and for n > 2, a,, = agb, + a1¢,.

Examples

(1) p
)
— + — O
dz? Y
This ODE even has constant coefficients, every point is an ordinary
point for this ODE. We already know that a basis of solutions is given

by {sinz, cosz}, but we want to derive this using power series.
Try a power series solution for y at xg = 0:

o0

Yy = Zanx”

n=0

If the radius of convergence R > 0, then we can differentiate term by

term, i.e.,

dy - d n - n—1 = m

%:Z%(anx):z:annx :Zam+1(m—|—1)x ,m:n—l,
n= n=0 m=0
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For the above sum to be 0 at all points in an open interval around 0,
we must have

(n+1)(n+2)ayi2 +a, = 0, Yn > 0.

In other words, to have such a power series solution for the ODE, we
must satisfy the recursive formula for all n > 0:
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Hence (1)
oy, = @n)] ag, Yn > 0.
Similarly, as = %al, as = ﬁal, ..., implying
(=1)"
1l = ————a1, vn > 0.
A2n+1 (2n + 1>!a1 nz



Thus

Yy = g anpx” = 5 anx” + g anx"
n=0 n even >0 n odd >0
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So the general solution is (as expected) of the form
Yy =apcosx + apsinz,

where ag, a; are arbitrary constants. In the notation of the Basic Prin-
ciple, y, = cosx and y = sinx. Finally, since we know that the power
series expressions are valid for all z (with R = o0), the power series
solutions we found are also valid everywhere.

y' tay' +y =0
This is a linear ODE with non-constant coefficients.
Since p(z) = z, q(z) = 1, they are analytic everywhere, and so any

To is an ordinary point. Let zg = 0. Try y = Y~ a,z" and assume
R > 0. Then

d 0o [e's)

y _ n—1 __ n

r— =2 na,x = na,x
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d? =
d_:(,z = Z (m+1)(m + 2)ap422™
m=0
So
Y +ay +y = ) ((n+1)(n+2)ans + na, +a,)z",

n=0



which will be 0 iff all the coefficients are 0, giving rise to the recursive
formula:

(n+1)(n+2)an2 =—(n+1ay,
—a,
n+2
(We are able to cancel n + 1 from both sides because it is non-zero for
n > 0.) Explicitly,

—ao — a2 Qo —ao
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yielding

(=1)™ao _ (=1)"ag
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The odd coefficients all depend on a;. If we put a; = 0,09 = 1, we

get one fundamental solution, and if we put ag = 0,a; = 1, we get the
other fundamental solution

Let a; =0,a9 = 1. Then
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Note that when a linear ODE has constant coefficients, the fundamental
solutions involve terms like e**, but here we have a quadratic exponent
of the exponential, caused by the ODE having non-constant coefficients.
It could even be more complicated in that a fundamental solution may
not be simply expressible - at all (as with the case of y5 below) in terms
of an exponential function.

Let a1 = 1,a9 = 0. We get
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Thus
(=1)™(2m)(2m — 2)...4(2) B (—2)™m!

G2m1 = 2m + 1) T 2m 1)
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It will be left as an exercise to check, as we did in Example 1, that the power
series representing y; and y, have positive radii of convergence. (Is R = oo
in each case?)

Regular Singular Points
Definition: A singular point xy for an ODE
y" +p(@)y +q(x) =0
is called a regular singular point iff (x — zo)p(z) and (z — x0)?q(x) are
both analytic at x = xg.

Example:

22y" +sinzy +y = 0,

which obviously has x = 0 as the unique singular point. Now

sin x 1
p(ﬂf):77 (1(35):37
3 5
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Since z%q(x) = 1, it is obviously analytic (everywhere). We need to check
that the power series for zp(x) converges around x = 0. For this we apply
the Ratio test:

(=) ) /(2(n 4 1) + 1) , —a?
lim = lim
n—00 (—1)”x2”/(2n + 1)! n—00 (Qn + 3)(2n + 2)

= 0,

for any . So R = oo, and z*p(z) is analytic everywhere, not just around
xz =0.

So x = 0 is a regular singular point of this ODE, and every other point
is ordinary!
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