Lecture 22

Power series solutions for 2nd order linear ODE's

(not necessarily with constant coefficients)
Recall a few facts about power series:

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

This series in z is centered at $z=0$.
Here z can be real or complex. Denote $\mathrm{b}|z|$ its absolute value, which is a non-negative real number.

The following questions arise:
(Q1) When does this converge absolutely, i.e., when does $\sum_{n} a_{n}|z|^{n}$ converge? Moreover, is there a real number $R>0$ such that $\sum a_{n} z^{n}$ converge absolutely $\forall z$ with $|z|<R$, but diverges for $|z|>R$?
(Q2) When can we differentiate $\sum a_{n} z^{n}$ term by term, i.e., when do we have the equality

$$
\left(\sum a_{n} z^{n}\right)^{\prime}=\sum n a_{n} z^{n-1} ?
$$

(Q3) Given a function $f(z)$ when can we express it as a power series $\sum a_{n} b z^{n}$, for z in some region, say for $|z|<R$?

Given $\sum_{n=0}^{\infty} a_{n} z^{n}$, we look at

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left(\frac{\left|a_{n+1}\right| \cdot|z|^{n+1}}{\left|a_{n}\right| \cdot|z|^{n}}\right) \\
& =\left(\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\right)|z|
\end{aligned}
$$

If L makes sense, it will be a non-negative real number.
A basic result (cf. Chapter 2 of the Notes for Ma1a) is the following:
Theorem $1 \sum a_{n} z^{n}$ converges absolutely iff $L<1$.
Definition The radius of convergence $R \geq 0$ is the largest non-negative real number such that
$\star \sum a_{n} z^{n}$ converges absolutely for $|z|<R$, and
$\star \sum a_{n} z^{n}$ diverges for $|z|>R$.
We will allow R to be ∞, in which case $\sum a_{n} z^{n}$ converges $\forall z$.
By this definition,

$$
|z|<R \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{\mid a_{n+1}}{\left|a_{n}\right|}|z|=1 .
$$

So $R=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}$. This answers Q1.
For Q2, here is another basic result (cf. Chap. 2 of the Notes for Ma1a):
Theorem 2 For $|z|<R$, we have

$$
\left(\sum a_{n} z^{n}\right)^{\prime}=\sum a_{n} n z^{n-1}
$$

If $|z|=R$, anything can happen.
To understand Q3 better, recall (from Ma1a) that if f is infinitely differentiable at $z=0$, then we have the associated Taylor series

$$
\sum_{n \geq 0} a_{n} z^{n}, \text { with } a_{n}=\frac{f^{(n)}(0)}{n!}
$$

Examples of infinitely differentiable functions at $z=0$:
$e^{z}, \sin (z), \cos (z)$, polynomials, and rational functions $P(z) / Q(z)$, with P, Q polynomials and $Q(0) \neq 0$.

A Subtle Fact:

The Taylor series of a function f (around $z=0$) may not equal $f(z)$, for f infinitely differentiable.

The simplest example of such a function is $\varphi(x)$ which is $e^{-1 / x}$ if $x>0$ and 0 if $x \leq 0$. You may check that φ is differentiable to any order at $x=0$, but with $\bar{\varphi}^{(n)}(0)=0$ for all $n \geq 0$, making the Taylor expansion around 0 to be identically 0 . But $\varphi(x)$ is >0 for $x>0$, however small, and so cannot be represented by the Taylor expansion.

However, pathology like this does not happen if there is an $R>0$ such that for all z with $|z|<R, f(z)$ has a(n absolutely convergent) power series expansion

$$
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}
$$

In such a case, f is said to be an analytic function at $z=0$, in fact in $|z|<R$. Since we can differentiate under the sum sign for $|z|<R$ (by Theorem 2), it follows (by evaluating each series expression for $f^{(n)}(z)$ at $z=0$) that we must have

$$
f: \text { analytic } \Longrightarrow a_{n}=\frac{f^{(n)}(0)}{n!} .
$$

Examples of analytic functions

(1)

$$
e^{z}=\sum_{n \geq 0} \frac{z^{n}}{n!}
$$

Applying the Ratio test,

$$
\begin{aligned}
& L=\left(\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}\right)|z|<1, \forall z \text { in } \mathbb{C} \\
& \lim _{n \rightarrow \infty}\left(\frac{1}{(n+1)!} \frac{n!}{1}\right)=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0
\end{aligned}
$$

$\Rightarrow R=\infty$, i.e., e^{z} is represented by this power series for all z; so $f(z)=e^{z}$ is analytic $\forall z$, and $\frac{1}{n!}=\frac{f^{(n)}(0)}{n!}$.
(2)

$$
\begin{aligned}
& \sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots+(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}+\cdots \\
& \cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots+(-1)^{n} \frac{z^{2 n}}{(2 n)!+\ldots}
\end{aligned}
$$

(3) $f(z)=\frac{1}{1-z}=\sum^{\infty} z^{n}$, a rational function regular at $z=0$, i.e., the denominator of $f(z)$ is non-zero at $z=0$.

$$
L=\underbrace{\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}}_{1, \text { as } a_{n}=1, \forall n}|z|=|z|,
$$

implying that $L<1$ iff $|z|<1$. So $R=1$, and our function is analytic in $|z|<1$.
(4) $f(z)=\ln (z), \quad z$ real and positive.

As $z \rightarrow 0, \ln (z) \rightarrow-\infty$. This is nevertheless analytic near $z=1$, since we can write

$$
f(z)=\sum_{n} a_{n}(z-1)^{n}
$$

which is a convergent power series around $z=1$. In fact we claim that that $R=1$ in this case. In particular, the series expansion is valid for any small z, as long as it is non-zero.
To check the Claim, write $\log (z)=f(z)$ as $\ln (1+(z-1))$. Then, with $u=z-1$, we have

$$
\begin{aligned}
& f^{\prime}(z)=\frac{1}{z}=\frac{1}{1+(z-1)}=\frac{1}{1+u}, \text { and } \\
& \frac{1}{1+u}=1-u+u^{2}-u^{3}+u^{4}-\ldots
\end{aligned}
$$

which is valid, by (3), for $|u|<1$ (as $R=1$). The series expression for $\frac{1}{1+u}$ can, by Theorem 2, be integrated term by term for $|u|<1$. This way we get a power series for $\ln (1+u)$, namely

$$
\ln (1+u)=u-\frac{u^{2}}{2}+\frac{u^{3}}{3}-\frac{u^{4}}{4}+\ldots
$$

valid in $|u|<1$. Since $f(z)=-\ln (1+u)$, we get

$$
\ln z=\sum_{n=1}^{\infty}(-1)^{n} \frac{(z-1)^{n}}{n}
$$

which holds for all z with $|z-1|<1$. Hence the Claim.

Ordinary points and Singular points

Suppose we have a linear ODE of 2nd order:

$$
\begin{equation*}
c_{1}(x) \frac{d^{2} u}{d x^{2}}+c_{2}(x) \frac{d u}{d x}+c_{3}(x) u=0 \tag{*}
\end{equation*}
$$

where the coefficients are not (necessarily) constant! The fact that (*) has second order means $c_{1}(x)$ is not identically zero. However, it could be zero for special values of x, where we need to exercise some care.

The values of x where $c_{1}(x)=0$ are called the singular points of the ODE, while those x where $c_{1}(x) \neq 0$ are called the ordinary points.

Often there are only a finite number of singular points, but this is not always the case, as seen by looking at the example $c_{1}(x)=\sin x$, which vanishes at $n \pi$ for any integer n.

At the ordinary points, one can divide $(*)$ by $c_{1}(u)$ to get a "monic" ODE:

$$
\frac{d^{2} u}{d x^{2}}+p(x) \frac{d u}{d x}+q(x) u=0
$$

with

$$
p(x)=\frac{c_{2}(x)}{c_{1}(x)}, \text { and } q(x)=\frac{c_{3}(x)}{c_{1}(x)} .
$$

We will look for power series solutions!

Lecture 23

Last time we ended by looking at the general 2nd order linear homogeneous ODE

$$
\begin{equation*}
c_{1}(x) \frac{d^{2} y}{d x^{2}}+c_{2}(x) \frac{d y}{d x}+c_{3}(x) y=0 \tag{*}
\end{equation*}
$$

with $c_{1}(x)$ not identically zero. We are interested in the case when $c_{1}(x), c_{2}(x), c_{3}(x)$ are not constants.

Definition. A point x_{0} is an ordinary point for $(*)$ iff $c_{1}(x) \neq 0$. Otherwise x_{0} is called a singular point.

More precisely, when $c_{1}(x) \neq 0$ we can divide by it, so $(*)$ becomes

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=0, \quad p(x)=\frac{c_{2}(x)}{c_{1}(x)}, q(x)=\frac{c_{3}(x)}{c_{1}(x)} .
$$

To say x_{0} is an ordinary point means p, q are analytic at x_{0}, i.e.,

$$
p(x)=\sum_{n=0}^{\infty} \alpha_{n}\left(x-x_{0}\right)^{n}, \quad q(x)=\sum_{n=0}^{\infty} \beta_{n}\left(x-x_{0}\right)^{n},
$$

valid in an interval around x_{0}.
Recall the following key examples of analytic functions at x_{0} :

1) Polynomials in x
2) Rational functions $\frac{f(x)}{g(x)}, f, g$ polynomials, with $g\left(x_{0}\right) \neq 0$
3) Exponential functions $e^{x t}, e^{x^{2}+2}, \ldots$
4) $\sin x, \cos x$
(5) $\tan x$, if $x_{0} \neq(2 n+1) \frac{\pi}{2}$

The Basic Principle: Suppose x_{0} is an ordinary point for

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=0 \tag{}
\end{equation*}
$$

Then it has a basis of (analytic) solutions of the form

$$
\begin{aligned}
& y_{1}(x)=1+b_{2}\left(x-x_{0}\right)^{2}+\cdots=1+\sum_{n=2}^{\infty} b_{n}\left(x-x_{0}\right)^{n} \\
& y_{2}(x)=\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)^{2}+\cdots=\left(x-x_{0}\right)+\sum_{n \geq 2}^{\infty} c_{n}\left(x-x_{0}\right)^{n} .
\end{aligned}
$$

Hence the general solution is of the form

$$
y=a_{0} y_{1}+a_{1} y_{2}=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

where a_{0}, a_{1} are arbitrary constants, and for $n \geq 2, a_{n}=a_{0} b_{n}+a_{1} c_{n}$.

Examples

(1)

$$
\frac{d^{2} y}{d x^{2}}+y=0
$$

This ODE even has constant coefficients, every point is an ordinary point for this ODE. We already know that a basis of solutions is given by $\{\sin x, \cos x\}$, but we want to derive this using power series.
Try a power series solution for y at $x_{0}=0$:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

If the radius of convergence $R>0$, then we can differentiate term by term, i.e.,

$$
\frac{d y}{d x}=\sum_{n=0}^{\infty} \frac{d}{d x}\left(a_{n} x^{n}\right)=\sum_{n=0}^{\infty} a_{n} n x^{n-1}=\sum_{m=0}^{\infty} a_{m+1}(m+1) x^{m}, m=n-1
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\sum_{m=1}^{\infty} m(m+1) a_{m+1} x^{m-1} \\
& =\sum_{k=0}^{\infty}(k+1)(k+2) a_{k+2} x^{k} .
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}+y & =\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left((n+1)(n+2) a_{n+2}+a_{n}\right) x^{n}
\end{aligned}
$$

For the above sum to be 0 at all points in an open interval around 0 , we must have

$$
(n+1)(n+2) a_{n+2}+a_{n}=0, \quad \forall n \geq 0
$$

In other words, to have such a power series solution for the ODE, we must satisfy the recursive formula for all $n \geq 0$:

$$
\begin{gathered}
a_{n+2}=\frac{-1}{(n+1)(n+2)} a_{n} \\
\Longrightarrow a_{2}=-\frac{1}{2} a_{0}, a_{4}=-\frac{1}{1 \cdot 2} a_{2}=\frac{1}{2 \cdot 3 \cdot 4} a_{0}, \\
a_{6}=-\frac{1}{5 \cdot 6} a_{4}=\frac{1}{5 \cdot 6 \cdot 4 \cdot 3} a_{2}=-\frac{1}{6!} a_{0}, \ldots
\end{gathered}
$$

Hence

$$
a_{2 n}=\frac{(-1)^{n}}{(2 n)!} a_{0}, \quad \forall n \geq 0
$$

Similarly, $a_{3}=\frac{-1}{2 \cdot 3} a_{1}, a_{5}=\frac{1}{2 \cdot 3 \cdot 4 \cdot 5} a_{1}, \ldots$, implying

$$
a_{2 n+1}=\frac{(-1)^{n}}{(2 n+1)!} a_{1}, \quad \forall n \geq 0
$$

Thus

$$
\begin{aligned}
y=\sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{n \text { even } \geq 0} a_{n} x^{n}+\sum_{n \text { odd } \geq 0} a_{n} x^{n} \\
& =\sum_{m=0}^{\infty} a_{2 m} x^{2 m}+\sum_{m=0}^{\infty} a_{2 m+1} x^{2 m+1} \\
\Rightarrow y & =a_{0} \underbrace{\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{(2 m)!}}_{=\cos x}+a_{1} \underbrace{\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m+1}}{(2 m+1)!}}_{=\sin x}
\end{aligned}
$$

So the general solution is (as expected) of the form

$$
y=a_{0} \cos x+a_{1} \sin x
$$

where a_{0}, a_{1} are arbitrary constants. In the notation of the Basic Principle, $y_{1}=\cos x$ and $y_{2}=\sin x$. Finally, since we know that the power series expressions are valid for all x (with $R=\infty$), the power series solutions we found are also valid everywhere.
(2)

$$
y^{\prime \prime}+x y^{\prime}+y=0
$$

This is a linear ODE with non-constant coefficients.
Since $p(x)=x, q(x)=1$, they are analytic everywhere, and so any x_{0} is an ordinary point. Let $x_{0}=0$. Try $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ and assume $R>0$. Then

$$
\begin{aligned}
x \frac{d y}{d x} & =x \sum_{n=0}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty} n a_{n} x^{n} \\
\frac{d^{2} y}{d x^{2}} & =\sum_{m=0}^{\infty}(m+1)(m+2) a_{m+2} x^{m}
\end{aligned}
$$

So

$$
y^{\prime \prime}+x y^{\prime}+y=\sum_{n=0}\left((n+1)(n+2) a_{n+2}+n a_{n}+a_{n}\right) x^{n}
$$

which will be 0 iff all the coefficients are 0 , giving rise to the recursive formula:

$$
\begin{aligned}
(n+1)(n+2) a_{n+2} & =-(n+1) a_{n} \\
\Longrightarrow a_{n+2} & =\frac{-a_{n}}{n+2} \text { for all } n \geq 0
\end{aligned}
$$

(We are able to cancel $n+1$ from both sides because it is non-zero for $n \geq 0$.) Explicitly,

$$
a_{2}=\frac{-a_{0}}{2}, a_{4}=\frac{-a_{2}}{4}=\frac{a_{0}}{4 \cdot 2}, a_{6}=\frac{-a_{0}}{6 \cdot 4 \cdot 2}, \ldots
$$

yielding

$$
a_{2 m}=\frac{(-1)^{m} a_{0}}{(2 m)(2 m-2)(2 m-4) \ldots 4(2)}=\frac{(-1)^{m} a_{0}}{2^{m} m!} .
$$

The odd coefficients all depend on a_{1}. If we put $a_{1}=0, a_{0}=1$, we get one fundamental solution, and if we put $a_{0}=0, a_{1}=1$, we get the other fundamental solution

Let $a_{1}=0, a_{0}=1$. Then

$$
\begin{aligned}
y_{1}=\sum_{m=0}^{\infty} a_{2 m} x^{2 m} & =\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{m} m!} \\
& =\sum_{m=0}^{\infty}\left(\frac{-x^{2}}{2}\right)^{m} \frac{1}{m!}
\end{aligned}
$$

So

$$
y_{1}=e^{-x^{2} / 2}
$$

Note that when a linear ODE has constant coefficients, the fundamental solutions involve terms like $e^{\lambda x}$, but here we have a quadratic exponent of the exponential, caused by the ODE having non-constant coefficients. It could even be more complicated in that a fundamental solution may not be simply expressible - at all (as with the case of y_{2} below) in terms of an exponential function.

Let $a_{1}=1, a_{0}=0$. We get

$$
\begin{aligned}
y_{2} & =\sum_{m=0}^{\infty} a_{2 m+1} x^{2 m+1}, \text { with } \\
a_{3}=\frac{-a_{1}}{3}, a_{5} & =\frac{-a_{3}}{5}=\frac{-a_{1}}{5 \cdot 3}, \ldots, a_{2 m+1}=\frac{(-1)^{m}}{(2 m+1)(2 m-1)(2 m-3) \ldots(3)}, \ldots
\end{aligned}
$$

Thus

$$
a_{2 m+1}=\frac{(-1)^{m}(2 m)(2 m-2) \ldots 4(2)}{(2 m+1)!}=\frac{(-2)^{m} m!}{(2 m+1)!},
$$

and

$$
y_{2}=\sum_{m=0}^{\infty} \frac{(-2)^{m} m!x^{2 m+1}}{(2 m+1)!}
$$

It will be left as an exercise to check, as we did in Example 1, that the power series representing y_{1} and y_{2} have positive radii of convergence. (Is $R=\infty$ in each case?)

Regular Singular Points

Definition: A singular point x_{0} for an $O D E$

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0
$$

is called a regular singular point iff $\left(x-x_{0}\right) p(x)$ and $\left(x-x_{0}\right)^{2} q(x)$ are both analytic at $x=x_{0}$.

Example:

$$
x^{2} y^{\prime \prime}+\sin x y^{\prime}+y=0,
$$

which obviously has $x=0$ as the unique singular point. Now

$$
\begin{aligned}
p(x) & =\frac{\sin x}{x^{2}}, q(x)=\frac{1}{x^{2}} \\
x p(x) & =\frac{\sin x}{x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots}{x} \\
& =1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{2 n+1)!}
\end{aligned}
$$

Since $x^{2} q(x)=1$, it is obviously analytic (everywhere). We need to check that the power series for $x p(x)$ converges around $x=0$. For this we apply the Ratio test:

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n+1} x^{2(n+1)} /(2(n+1)+1)!}{(-1)^{n} x^{2 n} /(2 n+1)!}=\lim _{n \rightarrow \infty} \frac{-x^{2}}{(2 n+3)(2 n+2)}=0
$$

for any x. So $R=\infty$, and $x^{2} p(x)$ is analytic everywhere, not just around $x=0$.

So $x=0$ is a regular singular point of this ODE, and every other point is ordinary!

