
Lecture 22

Power series solutions for 2nd order linear ODE’s

(not necessarily with constant coefficients)

Recall a few facts about power series:

∞∑
n=0

anz
n

This series in z is centered at z = 0.
Here z can be real or complex. Denote b |z| its absolute value, which is

a non-negative real number.
The following questions arise:

(Q1) When does this converge absolutely, i.e., when does
∑

n an|z|n con-
verge? Moreover, is there a real number R > 0 such that

∑
anz

n

converge absolutely ∀z with |z| < R, but diverges for |z| > R?

(Q2) When can we differentiate
∑

anz
n term by term, i.e., when do we have

the equality (∑
anz

n
)′

=
∑

nanz
n−1 ?

(Q3) Given a function f(z) when can we express it as a power series
∑

anbz
n,

for z in some region, say for |z| < R?

Given
∑∞

n=0 anz
n, we look at

L = lim
n→∞

(
|an+1| · |z|n+1

|an| · |z|n

)
=

(
lim
n→∞

|an+1|
|an|

)
|z|

If L makes sense, it will be a non-negative real number.

A basic result (cf. Chapter 2 of the Notes for Ma1a) is the following:

Theorem 1
∑

anz
n converges absolutely iff L < 1.

Definition The radius of convergence R ≥ 0 is the largest non-negative real
number such that
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⋆
∑

anz
n converges absolutely for |z| < R, and

⋆
∑

anz
n diverges for |z| > R.

We will allow R to be ∞, in which case
∑

anz
n converges ∀z.

By this definition,

|z| < R ⇐⇒ lim
n→∞

|an+1

|an|
|z| = 1.

So R = lim
n→∞

|an|
|an+1| . This answers Q1.

For Q2, here is another basic result (cf. Chap. 2 of the Notes for Ma1a):

Theorem 2 For |z| < R, we have

(
∑

anz
n)′ =

∑
annz

n−1.

If |z| = R, anything can happen.

To understand Q3 better, recall (from Ma1a) that if f is infinitely differ-
entiable at z = 0, then we have the associated Taylor series

∑
n≥0

anz
n, with an =

f (n)(0)

n!
.

Examples of infinitely differentiable functions at z = 0:

ez, sin(z), cos(z), polynomials, and rational functions P (z)/Q(z), with
P,Q polynomials and Q(0) ̸= 0.

A Subtle Fact:
The Taylor series of a function f (around z = 0) may not equal f(z), for

f infinitely differentiable.

The simplest example of such a function is φ(x) which is e−1/x if x > 0
and 0 if x ≤ 0. You may check that φ is differentiable to any order at x = 0,
but with φ(n)(0) = 0 for all n ≥ 0, making the Taylor expansion around 0 to
be identically 0. But φ(x) is > 0 for x > 0, however small, and so cannot be
represented by the Taylor expansion.
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However, pathology like this does not happen if there is an R > 0 such
that for all z with |z| < R, f(z) has a(n absolutely convergent) power series
expansion

f(z) =
∞∑
n=1

anz
n.

In such a case, f is said to be an analytic function at z = 0, in fact in
|z| < R. Since we can differentiate under the sum sign for |z| < R (by
Theorem 2), it follows (by evaluating each series expression for f (n)(z) at
z = 0) that we must have

f : analytic =⇒ an =
f (n)(0)

n!
.

Examples of analytic functions

(1)

ez =
∑
n≥0

zn

n!
.

Applying the Ratio test,

L =

(
lim
n→∞

an+1

an

)
|z| < 1, ∀z in C

lim
n→∞

(
1

(n+ 1)!

n!

1

)
= lim

n→∞

1

n+ 1
= 0

⇒ R = ∞, i.e., ez is represented by this power series for all z; so

f(z) = ez is analytic ∀z, and 1
n!

= f (n)(0)
n!

.

(2)

sin(z) = z − z3

3!
+

z5

5!
− · · ·+ (−1)n

z2n+1

(2n+ 1)!
+ . . .

cos(z) = 1− z2

2!
+

z4

4!
− · · ·+ (−1)n

z2n

(2n)! + . . .

(3) f(z) = 1
1−z

=
∑∞ zn, a rational function regular at z = 0, i.e., the

denominator of f(z) is non-zero at z = 0.

L = lim
n→∞

|an+1|
|an|︸ ︷︷ ︸

1, as an=1, ∀ n

|z| = |z|,
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implying that L < 1 iff |z| < 1. So R = 1, and our function is analytic
in |z| < 1.

(4) f(z) = ln(z), z real and positive.

As z → 0 , ln(z) → −∞. This is nevertheless analytic near z = 1,
since we can write

f(z) =
∑
n

an(z − 1)n,

which is a convergent power series around z = 1. In fact we claim that
that R = 1 in this case. In particular, the series expansion is valid for
any small z, as long as it is non-zero.

To check the Claim, write log(z) = f(z) as ln(1 + (z− 1)). Then, with
u = z − 1, we have

f ′(z) =
1

z
=

1

1 + (z − 1)
=

1

1 + u
, and

1

1 + u
= 1− u+ u2 − u3 + u4 − . . . ,

which is valid, by (3), for |u| < 1 (as R = 1). The series expression for
1

1+u
can, by Theorem 2, be integrated term by term for |u| < 1. This

way we get a power series for ln(1 + u), namely

ln(1 + u) = u− u2

2
+

u3

3
− u4

4
+ . . . ,

valid in |u| < 1. Since f(z) = − ln(1 + u), we get

ln z =
∞∑
n=1

(−1)n
(z − 1)n

n
,

which holds for all z with |z − 1| < 1. Hence the Claim.
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Ordinary points and Singular points

Suppose we have a linear ODE of 2nd order:

(∗) c1(x)
d2u

dx2
+ c2(x)

du

dx
+ c3(x)u = 0,

where the coefficients are not (necessarily) constant! The fact that (∗) has
second order means c1(x) is not identically zero. However, it could be zero
for special values of x, where we need to exercise some care.

The values of x where c1(x) = 0 are called the singular points of the
ODE, while those x where c1(x) ̸= 0 are called the ordinary points.

Often there are only a finite number of singular points, but this is not
always the case, as seen by looking at the example c1(x) = sinx, which
vanishes at nπ for any integer n.

At the ordinary points, one can divide (∗) by c1(u) to get a “monic” ODE:

d2u

dx2
+ p(x)

du

dx
+ q(x)u = 0,

with

p(x) =
c2(x)

c1(x)
, and q(x) =

c3(x)

c1(x)
.

We will look for power series solutions!
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Lecture 23

Last time we ended by looking at the general 2nd order linear homogeneous
ODE

c1(x)
d2y

dx2
+ c2(x)

dy

dx
+ c3(x)y = 0, (*)

with c1(x) not identically zero. We are interested in the case when c1(x), c2(x), c3(x)
are not constants.

Definition. A point x0 is an ordinary point for (∗) iff c1(x) ̸= 0. Other-
wise x0 is called a singular point.

More precisely, when c1(x) ̸= 0 we can divide by it, so (∗) becomes

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0, p(x) =

c2(x)

c1(x)
, q(x) =

c3(x)

c1(x)
.

To say x0 is an ordinary point means p, q are analytic at x0, i.e.,

p(x) =
∞∑
n=0

αn(x− x0)
n, q(x) =

∞∑
n=0

βn(x− x0)
n,

valid in an interval around x0.

Recall the following key examples of analytic functions at x0:

1) Polynomials in x

2) Rational functions f(x)
g(x)

, f, g polynomials, with g(x0) ̸= 0

3) Exponential functions ext, ex
2+2, . . .

4) sinx, cos x

(5) tanx, if x0 ̸= (2n+ 1)π
2
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The Basic Principle: Suppose x0 is an ordinary point for

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0. (*)

Then it has a basis of (analytic) solutions of the form

y1(x) = 1 + b2(x− x0)
2 + · · · = 1 +

∞∑
n=2

bn(x− x0)
n,

y2(x) = (x− x0) + c2(x− x0)
2 + · · · = (x− x0) +

∞∑
n≥2

cn(x− x0)
n.

Hence the general solution is of the form

y = a0y1 + a1y2 =
∞∑
n=0

an(x− x0)
n,

where a0, a1 are arbitrary constants, and for n ≥ 2, an = a0bn + a1cn.

Examples

(1)
d2y

dx2
+ y = 0

This ODE even has constant coefficients, every point is an ordinary
point for this ODE. We already know that a basis of solutions is given
by {sinx, cosx}, but we want to derive this using power series.

Try a power series solution for y at x0 = 0:

y =
∞∑
n=0

anx
n

If the radius of convergence R > 0, then we can differentiate term by
term, i.e.,

dy

dx
=

∞∑
n=0

d

dx
(anx

n) =
∞∑
n=0

annx
n−1 =

∞∑
m=0

am+1(m+ 1)xm, m = n− 1,

7



d2y

dx2
=

d

dx

(
dy

dx

)
=

∞∑
m=1

m(m+ 1)am+1x
m−1

=
∞∑
k=0

(k + 1)(k + 2)ak+2x
k.

So

d2y

dx2
+ y =

∞∑
n=0

(n+ 1)(n+ 2)an+2x
n +

∞∑
n=0

anx
n

=
∞∑
n=0

((n+ 1)(n+ 2)an+2 + an)x
n

For the above sum to be 0 at all points in an open interval around 0,
we must have

(n+ 1)(n+ 2)an+2 + an = 0, ∀n ≥ 0.

In other words, to have such a power series solution for the ODE, we
must satisfy the recursive formula for all n ≥ 0:

an+2 =
−1

(n+ 1)(n+ 2)
an.

=⇒ a2 = −1

2
a0, a4 = − 1

1 · 2
a2 =

1

2 · 3 · 4
a0,

a6 = − 1

5 · 6
a4 =

1

5 · 6 · 4 · 3
a2 = − 1

6!
a0, . . .

Hence

a2n =
(−1)n

(2n)!
a0, ∀n ≥ 0.

Similarly, a3 =
−1
2·3a1, a5 =

1
2·3·4·5a1, . . . , implying

a2n+1 =
(−1)n

(2n+ 1)!
a1, ∀n ≥ 0.
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Thus

y =
∞∑
n=0

anx
n =

∑
n even ≥0

anx
n +

∑
n odd ≥0

anx
n

=
∞∑

m=0

a2mx
2m +

∞∑
m=0

a2m+1x
2m+1

⇒ y = a0

∞∑
m=0

(−1)mx2m

(2m)!︸ ︷︷ ︸
=cosx

+a1

∞∑
m=0

(−1)mx2m+1

(2m+ 1)!︸ ︷︷ ︸
=sinx

So the general solution is (as expected) of the form

y = a0 cosx+ a1 sin x,

where a0, a1 are arbitrary constants. In the notation of the Basic Prin-
ciple, y1 = cosx and y2 = sin x. Finally, since we know that the power
series expressions are valid for all x (with R = ∞), the power series
solutions we found are also valid everywhere.

(2)
y′′ + xy′ + y = 0

This is a linear ODE with non-constant coefficients.

Since p(x) = x, q(x) = 1, they are analytic everywhere, and so any
x0 is an ordinary point. Let x0 = 0. Try y =

∑∞
n=0 anx

n and assume
R > 0. Then

x
dy

dx
= x

∞∑
n=0

nanx
n−1 =

∞∑
n=0

nanx
n

d2y

dx2
=

∞∑
m=0

(m+ 1)(m+ 2)am+2x
m

So
y′′ + xy′ + y =

∑
n=0

((n+ 1)(n+ 2)an+2 + nan + an)x
n,
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which will be 0 iff all the coefficients are 0, giving rise to the recursive
formula:

(n+ 1)(n+ 2)an+2 = −(n+ 1)an

=⇒ an+2 =
−an
n+ 2

for all n ≥ 0

(We are able to cancel n+ 1 from both sides because it is non-zero for
n ≥ 0.) Explicitly,

a2 =
−a0
2

, a4 =
−a2
4

=
a0
4 · 2

, a6 =
−a0

6 · 4 · 2
, . . . ,

yielding

a2m =
(−1)ma0

(2m)(2m− 2)(2m− 4) . . . 4(2)
=

(−1)ma0
2mm!

.

The odd coefficients all depend on a1. If we put a1 = 0, a0 = 1, we
get one fundamental solution, and if we put a0 = 0, a1 = 1, we get the
other fundamental solution

Let a1 = 0, a0 = 1. Then

y1 =
∞∑

m=0

a2mx
2m =

∞∑
m=0

(−1)mx2m

2mm!

=
∞∑

m=0

(
−x2

2

)m
1

m!

So
y1 = e−x2/2.

Note that when a linear ODE has constant coefficients, the fundamental
solutions involve terms like eλx, but here we have a quadratic exponent
of the exponential, caused by the ODE having non-constant coefficients.
It could even be more complicated in that a fundamental solution may
not be simply expressible - at all (as with the case of y2 below) in terms
of an exponential function.

Let a1 = 1, a0 = 0. We get

y2 =
∞∑

m=0

a2m+1x
2m+1, with

a3 =
−a1
3

, a5 =
−a3

5

=
−a1
5 · 3

, . . . , a2m+1 =
(−1)m

(2m+ 1)(2m− 1)(2m− 3) . . . (3)
, . . .
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Thus

a2m+1 =
(−1)m(2m)(2m− 2) . . . 4(2)

(2m+ 1)!
=

(−2)mm!

(2m+ 1)!
,

and

y2 =
∞∑

m=0

(−2)mm!x2m+1

(2m+ 1)!
.

It will be left as an exercise to check, as we did in Example 1, that the power
series representing y1 and y2 have positive radii of convergence. (Is R = ∞
in each case?)

Regular Singular Points

Definition: A singular point x0 for an ODE

y′′ + p(x)y′ + q(x) = 0

is called a regular singular point iff (x − x0)p(x) and (x − x0)
2q(x) are

both analytic at x = x0.

Example:
x2y′′ + sin xy′ + y = 0,

which obviously has x = 0 as the unique singular point. Now

p(x) =
sin x

x2
, q(x) =

1

x2

xp(x) =
sin x

x
=

x− x3

3!
+ x5

5!
. . .

x

= 1− x2

3!
+

x4

5!
− . . . =

∞∑
n=0

(−1)n
x2n

2n+ 1)!

Since x2q(x) = 1, it is obviously analytic (everywhere). We need to check
that the power series for xp(x) converges around x = 0. For this we apply
the Ratio test:

lim
n→∞

(−1)n+1x2(n+1)/(2(n+ 1) + 1)!

(−1)nx2n/(2n+ 1)!
= lim

n→∞

−x2

(2n+ 3)(2n+ 2)
= 0,

for any x. So R = ∞, and x2p(x) is analytic everywhere, not just around
x = 0.

So x = 0 is a regular singular point of this ODE, and every other point
is ordinary!
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