Lecture 19

Linear ODE's of higher order

Solutions can be obtained by solving linear system of first order ODE's.
Idea: Replace one equation by many equations, thereby reducing the order of the ODE to just first order.
$n \geq 1$: A n-th order linear ODE is of the form

$$
\begin{equation*}
\frac{d^{n} u}{d x^{n}}+a_{1} \frac{d^{n-1} u}{d x^{n-1}}+a_{2} \frac{d^{n-2} u}{d x^{n-2}}+\cdots+a_{n-1} \frac{d u}{d x}+a_{n} u=f(x) \tag{*}
\end{equation*}
$$

Here the coefficients a_{j} could depend on x. We say that ($*$) has constant coefficients iff each a_{j} is independent of x.
$(*)$ is homogeneous if $f(x)=0$. First, look at the homogeneous case:
Define a vector $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$ in n-space where

$$
y_{1}=u, y_{2}=\frac{d u}{d x}, y_{3}=\frac{d^{2} u}{d x^{2}}, \ldots, y_{n}=\frac{d^{n-1} u}{d x^{n-1}}
$$

Then (*) can be rewritten suggestively as

$$
\begin{array}{rlr}
\frac{d y_{1}}{d x} & = & y_{2} \\
\frac{d y_{2}}{d x^{2}} & = \\
& \vdots \\
\frac{d y_{n-1}}{d x^{n-1}} & = & \\
\frac{d y_{n}}{d x^{n}} & =-a_{n} y_{1}-a_{n-1} y_{2} \ldots & \ldots-a_{1} y_{n}
\end{array}
$$

This can be viewed as a matrix of linear equations, and so gives rise to the
linear system:

$$
\frac{d}{d x} \mathbf{y}=A \mathbf{y}, \quad \text { where } \quad A=\left(\begin{array}{cccccc}
0 & 1 & & & & 0 \tag{**}\\
& 0 & 1 & & & \\
& & \cdot & \cdot & & \\
0 & & & \cdot & . & \\
-a_{n} & \cdot & \cdot & \cdot & 0 & -a_{2} \\
\hline
\end{array}\right)
$$

Whether or not A has constant coefficients, a solution matrix is given by

$$
\Phi(x)=e^{\int_{0}^{x} A(t) d t}
$$

as long as A is integrable as a function of x, which is the case, for example, when A is continuous. (If A is not defined at 0 , then we can take some other lower limit where A is defined; the effect of changing the lower limit is to multiply Φ by a constant.)

Of course, when A is a constant matrix, $\int_{0}^{x} A(t) d t$ is just $A x$, and we get the more familiar expression

$$
\Phi(x)=e^{A x}
$$

If $\Phi(x)=\left(\mathbf{y}^{(1)} \mathbf{y}^{(2)} \ldots \mathbf{y}^{(n)}\right)$, then the $\mathbf{y}^{(j)}$ are the different solution vectors:

$$
\mathbf{y}^{(j)}=\left(\begin{array}{c}
y_{1}^{(j)} \\
y_{1}^{(j)} \\
\vdots \\
y_{n}^{(j)}
\end{array}\right)
$$

What we seek is a set of independent solutions to the original ODE (*).
If A has constant coefficients, then for every $j \leq n, y_{2}^{(j)}=\frac{d y_{j}^{(j)}}{d x}, \ldots, y_{n}^{(j)}=$ $\frac{d y_{n-1}^{(j)}}{d x}$.

Useful fact 1: If A is a constant matrix with n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ with corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{n}$, then a basis of solution for $(* *)$ is given by

$$
\mathbf{y}^{(1)}=\mathbf{v}_{1} e^{\lambda t}, \mathbf{y}^{(2)}=\mathbf{v}_{2} e^{\lambda_{2} t}, \ldots, \mathbf{y}^{(n)}=\mathbf{v}_{n} e^{\lambda t}
$$

If $\mathbf{v}^{(j)}=\left(\begin{array}{c}v_{1}^{(j)} \\ \vdots \\ v_{n}^{(j)}\end{array}\right)$, then a basis of solutions of the n-th order ODE $(*)$ is given by

$$
v_{1}^{(1)} e^{\lambda_{1} t}, v_{1}^{(2)} e^{\lambda_{2} t}, \ldots, v_{1}^{(n)} e^{\lambda_{n} t}
$$

Useful fact 2: Recall that The eigenvalues of A are determined by solving the characteristic equation: $|\lambda-A|=0$.

$$
\begin{array}{r}
n=2: \quad A=\left(\begin{array}{cc}
0 & 1 \\
-a_{2} & -a_{2}
\end{array}\right), \lambda-A=\left(\begin{array}{cc}
\lambda & -t \\
a_{2} & \lambda+a_{1}
\end{array}\right) \\
\Rightarrow|\lambda-A|=\lambda^{2}+a_{1} \lambda+a_{2}
\end{array}
$$

General formula:

$$
|\lambda-A|=\lambda^{2}=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n}
$$

As we started with the nth order linear, homogeneous ODE:

$$
\frac{d^{2} y}{d x}+a_{1} \frac{d^{n-1} u}{d x^{n-1}}+\ldots a_{n-1} \frac{d u}{d x}+a_{n} u=0
$$

we can read off the characteristic equation directly from the ODE.

2nd order linear ODE's

Many ODE's occurring in nature are of second order, and it is essential to understand them thoroughly, at a minimum when they are linear with constant coefficients.

A prime example (which contains all the subtleties) is the base case of a "mass on a spring", where $u=$ displacement, $t=$ time, and $k=$ spring constant:

$$
m \frac{d^{2} u}{d t^{2}}=m g-k(L+u)-\underbrace{\gamma \frac{d u}{d t}}_{\text {damping force }}+\underbrace{F_{\mathrm{e}}(t)}_{\text {external force }}
$$

Dividing by the mass $m>0$, and noting that $m g=k L$ by Hooke's Law, we may rewrite this as

$$
\frac{d^{2} u}{d t^{2}}+\frac{\gamma}{m} \frac{d u}{d t}+\frac{k}{m} u=F_{\mathrm{e}}(t)
$$

which is a linear ODE with constant coefficients. It is homogeneous iff there is no external force, i.e., $F_{\text {ext }}(t)=0$.

This spring vibrates, and we want to find an expression for u as a function of t. If $F_{\mathrm{e}}(t)=0$, we say that we have free vibrations.

One says the vibrations are undamped if $\gamma=0$, i.e., there is no damping force.

Undamped free vibrations:

$$
u^{\prime \prime}(t)+\frac{k}{m} u(t)=0, \quad \omega_{0}=\sqrt{\frac{k}{m}}: \quad \text { frequency }
$$

Characteristic equation: $\lambda^{2}+\frac{k}{m}=0$
We have two distinct eigenvalues

$$
\lambda_{ \pm}= \pm i \omega_{0}, \omega_{0}=\sqrt{\frac{k}{m}}
$$

both of which are non-real. (They are complex conjugates of each other.)
The corresponding linear system is

$$
\frac{d \mathbf{y}}{d t}=A \mathbf{y}, \quad \mathbf{y}=\binom{u}{u^{\prime}},
$$

with

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & 0
\end{array}\right)
$$

Eigenvectors: We want to find $\mathbf{v}^{ \pm} \neq 0$ st

$$
A \mathbf{v}^{ \pm}= \pm i \omega_{0} \mathbf{v}^{ \pm}, \quad \mathbf{v}^{ \pm}\binom{y_{1}}{y_{2}}
$$

So need $\binom{y_{2}}{-\frac{k}{m} y_{1}}=\binom{ \pm i \omega_{0} y_{1}}{ \pm i \omega_{0} y_{2}} \Leftrightarrow y_{2}= \pm i \omega_{0} y_{1}$.
We can take

$$
\mathbf{v}^{+}=\binom{1}{i \omega_{0}}, \quad \mathbf{v}^{-}=\binom{1}{-i \omega_{0}} .
$$

Hence a basis of solutions of the linear system is given by

$$
\binom{1}{i \omega_{0}} e^{i \omega_{0} t},\binom{1}{-i \omega_{0}} e^{-i \omega_{0} t}
$$

implying that a basis of complex solutions of the second order ODE is given by $\binom{1}{-i \omega_{0}} e^{-i \omega_{0} t}$ is

$$
z_{1}=e^{i \omega_{0} t}, \quad z_{2}=e^{-i \omega_{0} t} .
$$

The general complex solution is

$$
C_{1} e^{i \omega_{0} t}+C_{2} e^{-i \omega_{0} t}
$$

for arbitrary (complex) constants C_{1}, C_{2}.
What we want, however, are real solutions!
To get a basis of real solutions, we look at the real and imaginary parts of z_{1}, z_{2}. Since z_{2} is the complex conjugate of z_{1}, we need only look at z_{1}. Thus a basis of real solutions is given by

$$
\cos t, \sin t
$$

Hence the general real solution is

$$
u(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right), \quad A, B \in \mathbb{R}
$$

It is often convenient to express this as

$$
u(t)=R \cos \left(\omega_{0} t-\delta\right)
$$

with R denoting the amplitude and δ denoting the phase.

Lecture 20

Second Order Linear ODE's with constant coefficients

Typical example: Equation of "mass on a spring"

$$
u^{\prime \prime}(t)+\underbrace{a u^{\prime}(t)}_{\text {dampingforce }}+b u(t)=\underbrace{F_{\mathrm{e}}(t)}_{\text {"external force"' }},
$$

where

$$
a=\frac{\gamma}{m}, \quad b=\frac{k}{m}>0
$$

In the process of analyzing $(*)$, we will introduce some key basic terms which are also used in many other contexts. such as vibrations (free or forced), frequency, period, phase, quasi-frequency, quasi period, damping, amplitude, and resonance.

I Undamped Free Oscillations

"Vibration": trajectory of a solution to (*)
"forced" means $F_{\mathrm{e}} \neq 0$
"free" means $F_{\mathrm{e}}=0 \quad \Leftrightarrow \quad(*)$ is homogeneous
$\gamma=$ damping constant
"undamped" means $\gamma=0$
So the ODE (*) becomes in this case:

$$
u^{\prime \prime}+\frac{k}{m} u=0
$$

with the associated linear system being

$$
\mathbf{y}^{\prime}=A \mathbf{y}, \mathbf{y}=\binom{u}{u^{\prime}}, \quad A=\left(\begin{array}{cc}
0 & -1 \\
-w & 0
\end{array}\right)
$$

The characteristic equation is $\lambda^{2}+\frac{k}{m}=0$, so the eigenvalues are $\lambda_{ \pm}=$ $\pm i \omega_{0}$. This is a case of distinct eigenvalues. It's common to write $\omega_{0}=\sqrt{\frac{k}{m}}$: "frequency of vibrations".

We discussed this case thoroughly last time, and found that a basis of complex solutions of the linear system $(* *)$ is

$$
z^{(1)}=\binom{e^{i \omega_{0} t}}{i \omega_{0} e^{i \omega_{0} t}}, z^{(2)}=\binom{e^{-i \omega_{0} t}}{-i \omega_{0} e^{-i \omega_{0} t}}
$$

Let z_{1}, z_{2} be the first entries of $z^{(1)}, z^{(2)}$ respectively. Since the first coordinate of \mathbf{y} is u, it follows that a basis of (complex) solutions of $(*)$ is given by

$$
z_{1}=\underbrace{e^{i \omega_{0} t}}_{\cos \left(\omega_{0} t\right)+i \sin \left(\omega_{0} t\right)}, \quad z_{2}=\underbrace{e^{-i \omega_{0} t}}_{\cos \left(\omega_{0} t\right)-i \sin \left(\omega_{0} t\right)}=\overline{z_{1}} .
$$

A basis of real solutions to (*) is given by

$$
x_{1}=\cos \left(\omega_{0} t\right), \quad y_{1}=\sin \left(\omega_{0} t\right),
$$

which are the real and imaginary parts of z_{1}.
Hence the general real solution to $(*)$ is

$$
u(t)=b_{1} \cos \left(\omega_{0} t\right)+b_{2} \sin \left(\omega_{0} t\right)
$$

A better (more geometric) way to write the general real solution can be expressed as

$$
u(t)=R \cos \left(\omega_{0} t-\delta\right)
$$

where R is the amplitude, and δ the "phase" of the vibration.
Recall from Trigonometry:

$$
\cos \left(\theta_{1}-\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2},
$$

so that

$$
R \cos \left(\omega_{0} t-\delta\right)=R \cos (\delta) \cos \left(\omega_{0} t\right)+R \sin (\delta) \sin \left(\omega_{0} t\right)
$$

This allows us to go back and forth between the two expressions for the general real solution $u(t)$.

II Damped free oscillations

$$
\begin{equation*}
u^{\prime \prime}+\frac{\gamma}{m} u^{\prime}+\frac{k}{m} u=0 \tag{}
\end{equation*}
$$

Characteristic equation: $\quad \lambda^{2}+\frac{\gamma}{m} \lambda+\frac{k}{m}=0$
Eigenvalues: $\quad \lambda_{ \pm}=-\frac{\gamma}{2 m} \pm \frac{1}{2} \sqrt{\frac{\gamma^{2}}{m^{2}}-\frac{4 k}{m}}$
There three cases, depending on whether the eigenvalues are real and distinct, or non-real (and complex conjugates of each other), or real and repeated.

Case (i): $\quad \gamma^{2}>4 \mathrm{~km}$
Here $\lambda \pm \in \mathbb{R}$ with $\lambda_{+} \neq \lambda_{-}$.
General solution:

$$
u(t)=b_{1} e^{\lambda+t}+b_{2} e^{\lambda-t}
$$

where b_{1}, b_{2} are arbitrary real numbers.
Note: $1-\frac{4 k m}{\gamma^{2}}<1$, so λ_{+}and λ_{-}are both negative, so $e^{\lambda_{-} t} \rightarrow 0$ and $e^{\lambda-t} \rightarrow 0$ as $t \rightarrow \infty$.

Case (ii): $\quad \gamma^{2}<4 \mathrm{~km}$
Here $\lambda_{ \pm}$: not real, with λ_{-}the complex conj of λ_{+}(since characteristic equation has real coefficients).
General solution:

$$
u(t)=e^{-\gamma t / 2 m}\left(b_{1} \cos (\nu t)+b_{2} \sin (\nu t)\right),
$$

where

$$
\nu=\frac{\sqrt{4 k m-\gamma^{2}}}{2 m}>0
$$

If $\gamma=0$, as if there is no damping, this is like \mathbf{I} considered earlier.
We call ν the quasi-frequency of vibration, and $\frac{2 \pi}{u}$ the quasi-period.
We can rewrite the general solution in the better form

$$
u(t)=R e^{-\gamma t / 2 m} \cos (\nu t-\delta)
$$

Even though R is supposed to be the amplitude, it becomes evident by drawing the trajectory of $u(t)$ that the quantity $R e^{-\gamma t / 2 m}$ is the true amplitude (as it includes the effect of damping); it is sometimes called the "quasi-amplitude."

Case (iii): $\gamma^{2}=4 \mathrm{~km} \quad$ (critically damped)
There is a unique eigenvalue $\lambda=-\frac{\gamma}{2 m}$ with multiplicity of 2 . Recall from the earlier lectures that the fundamental solutions of the associated linear system for $\mathbf{y}=\binom{u}{u^{\prime}}$ are given by

$$
\binom{e^{\lambda t}}{0},\binom{t e^{\lambda t}}{e^{\lambda t}} .
$$

Hence a basis of solutions of the second order $\operatorname{ODE}(*)$ for u is given by

$$
e^{-\gamma t / 2 m}, t e^{-\gamma t / 2 m}
$$

The general solution is

$$
u(t)=\left(b_{1}+t b_{2}\right) e^{-\frac{\gamma t}{2 m}}
$$

III Forced Vibrations

Here the external force $F_{\mathrm{e}}(t)$ is non-zero, so the $\operatorname{ODE}(*)$ is inhomogeneous:

$$
u^{\prime \prime}+a u^{\prime}+b u=F_{\mathrm{e}}(t), a=\frac{\gamma}{m}, b=\frac{k}{m} .
$$

Important special case: $\quad F_{\mathrm{e}}(t)$ is periodic
Example: $\quad F_{\mathrm{e}}(t)=F_{0} \cos (w t), \quad w \neq \omega_{0}$
(Recall that $\omega_{0}=\sqrt{\frac{k}{m}}$.)
Idea: First find the general solution $u_{c}(t)$ of the homogeneous equation $u^{\prime \prime}+a u^{\prime}+b u=0$, and then add to it any (one) particular solution $U(t)$ of the inhomogeneous equation.
This procedure in fact gives us all the solutions of the inhomogeneous equation, and this idea is useful even when F_{e} is not periodic.

General solution:

$$
\underbrace{u(t)}_{\text {forced response" }}=\underbrace{u_{c}(t)}_{\text {transient solution }}+\underbrace{U(t)}_{\text {particular solution }}
$$

When $F_{\mathrm{e}}(t)=F_{0} \cos (w t)$, the choice of $U(t)=A \cos (w t)+B \sin (w t)$ works for suitable A and B. (Check this!)

When there's damping, i.e., $\gamma \neq 0, U_{c}(t) \rightarrow 0$ as $t \rightarrow \infty$.
Key new effect: Resonance when $w \approx \omega_{0}$

Lecture 21

Basic results on linear, homogeneous ODE's of higher order

$$
\begin{equation*}
\frac{d^{n} u}{d t^{n}}+a_{1} \frac{d^{n-1} u}{d t^{n-1}}+\cdots+a_{n-1} \frac{d u}{d t}+a_{n} u=0 \tag{}
\end{equation*}
$$

Eigenvalues: Solutions of the characteristic equation $\lambda^{n}+a_{1} \lambda^{n-1}+\ldots a_{n}=$ 0 . Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ be the distinct roots (in \mathbb{C}). For each x_{j}, we get a set of basic solutions of (*)
(i) λ_{j} real with multiplicity $m_{j} \geq 1$. The corresponding solutions are:

$$
e^{\lambda_{j} t}, t e^{\lambda_{j} t}, \cdots \frac{t^{m_{j}-1}}{\left(m_{j}-1\right)!} e^{\lambda_{j} t}
$$

(ii) λ_{j} : complex (not real), $\lambda_{j}=\alpha_{j}+i \beta_{j}, \alpha_{j}, \beta_{j} \in \mathbb{R}$.

The associated basic real solutions (to $\left(\lambda_{j}, \bar{\lambda}_{j}\right)$ are $e^{\lambda j}=e^{\alpha_{j}}\left(\cos \left(\beta_{j}\right)+\right.$ $1 \sin \left(\beta_{j}\right)$, if $m_{j}=1$. For general m_{j}, a basis of real solutions is given by

$$
e^{\alpha_{j}} \cos \left(\beta_{j}\right), \ldots, \frac{t^{m_{j}}-1}{\left(m_{j}-1\right)!} e^{\alpha_{j}} \cos \left(\beta_{j}\right), e^{\alpha_{j}} \sin \left(\beta_{j}\right), \ldots, \frac{t^{m_{j}}-1}{\left(m_{j}-1\right)!} e^{\alpha_{j}} \sin \left(\beta_{j}\right)
$$

We then put together all these solutions, as j ranges from 1 to k, to get a full basis of real solutions.

Inhomogeneous equation

Example 1:

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}+\frac{d u}{d t}-2 u=e^{5 t} \leftarrow \text { non-zero external force } \tag{*}
\end{equation*}
$$

Look at the associated homogeneous ODE:

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}+\frac{d u}{d t}-2 u=0 \tag{**}
\end{equation*}
$$

Characteristic equation:

$$
\lambda^{2}+\lambda-2=0 \Rightarrow(\lambda+2)(\lambda-1)=0 .
$$

Hence the eigenvalues are

$$
\lambda_{1}=-2, \quad \lambda_{2}=1 .
$$

Note: The general solution of $(*)$ is of form

$$
u(t)=\underbrace{u_{c}(t)}_{\text {gen solution of }(* *)}+\underbrace{U(t)}_{\text {particular solution of }(*)}
$$

Indeed, $\left.u_{c}(t)+U t\right)$ is evidently a solution of $(*)$, and conversely, if we have two solutions $U_{1}(t), U_{2}(t)$ of $(*)$, then their difference $U_{1}(t)-U_{2}(t)$ is a solution of ($* *$).

Since $\lambda_{1}=-2, \lambda_{2}=1$, we have

$$
u_{c}(t)=b_{1} e^{-2 t}+b_{2} e^{t},
$$

with $b_{1}, b_{2} \in \mathbb{R}$.
Try

$$
U(t)=c e^{5 t} .
$$

Then $U^{\prime}=5 c e^{5 t}$ and $U^{\prime \prime}=25 c e^{5 t}$, so that

$$
U^{\prime \prime}+U^{\prime}-2 U=c(25+5-2) e^{5 t}=28 c e^{5 t}
$$

This must equal the right hand side of $(*)$, which is $e^{5 t}$. So $U(t)$ will be a solution of $(*)$ if we take $c=\frac{1}{28}$.

So the general solution of $(*)$ is

$$
u(t)=u_{c}(t)+U(t)=b_{1} e^{-2 t}+b_{2} e^{t}+\frac{1}{28} e^{5 t}
$$

Remark: What made this idea work is that $e^{5 t}$ is not $e^{-2 t}$ or e^{t}.
Example 2:

$$
\frac{d^{2} u}{d t^{2}}+\frac{d u}{d t}-2 u=t^{2} e^{5 t}
$$

where $u_{c}(t)$ is same as in Example 1. Try

$$
U(t)=\phi(t) e^{5 t}
$$

where $\phi(t)$ is twice differentiable. Then

$$
U^{\prime}=\left(\phi^{\prime}(t)+5 \phi(t)\right) e^{5 t}, U^{\prime \prime}=\left(\phi^{\prime \prime}(t)+5 \phi^{\prime}(t)+5\left(\phi^{\prime}(t)+5 \phi(t)\right)\right) e^{5 t}
$$

so that

$$
\begin{aligned}
U^{\prime \prime}+U^{\prime}-2 U & =\left(\phi^{\prime \prime}(t)+11 \phi^{\prime}(t)+28 \phi(t)\right) e^{5 t} \\
& \stackrel{?}{=} t^{2} e^{5 t}
\end{aligned}
$$

We can get a particular solution U of $(*)$ this way if we can solve the simpler ODE

$$
\phi^{\prime \prime}(t)+11(\phi)^{\prime}(t)+28 \phi(t)=t^{2}
$$

We use the Method of Unknown Coefficients:
Try $\phi(t)=a+b t+c t^{2}$, and solve for a, b, c. (Do the calculation!)
Once we solve for $\phi(t)$, it can be plugged back into the expression for $U(t)$.

Resonance

Consider
(*)

$$
u^{\prime \prime}+w_{0}^{2} u=A \cos (\alpha t)
$$

where ω_{0} is the frequency of the homogeneous system. If α is close to ω_{0}, then the (true) amplitude of the solution rises tremendously.

Characteristic equation: $\lambda^{2}+w_{0}^{2}=0, \omega_{0}>0$
Eigenvalues: $\quad \lambda=i \omega_{0}, \bar{\lambda}=-i \omega_{0}$
The basic real solutions of homogeneous equation

$$
\begin{equation*}
u^{\prime \prime}+w_{0}^{2} u=0 \tag{**}
\end{equation*}
$$

are $\cos \left(\omega_{0} t\right), \sin \left(\omega_{0} t\right)$, so that the general solution of the homogeneous equation is

$$
u_{c}(t)=\underbrace{b_{1} \cos \left(\omega_{0} t\right)+b_{2}\left(\omega_{0} t\right)}_{R_{0} \cos \left(\omega_{0}-\delta\right)}, b_{1}, b_{2} \in \mathbb{R},
$$

where R is the amplitude and δ the phase (when there is no forcing).
Case (i): $\alpha \neq \omega_{0} \quad$ ("bounded response", no "resonance")
General solution of (*) is

$$
u(t)=u_{0}(t)+U(t)
$$

with U a particular solution.
Try

$$
U(t)=C \cos (\alpha t)+D \sin (\alpha t) .
$$

In fact, we do not need the sine term here since the first derivative does not occur in $(*)$, so we may take $D=0$. Then

$$
\begin{aligned}
U^{\prime} & =-C \alpha \sin (\alpha t), U^{\prime \prime}=-C \alpha^{2} \cos (\alpha t) \\
\Rightarrow U^{\prime \prime}+w_{0}^{2} U & =c\left(w^{2}-\alpha^{2}\right) \cos (\alpha t) \stackrel{?}{=} A \cos (\alpha t) \\
\Rightarrow C & =\frac{A}{w^{2}-\alpha^{2}} \\
\Rightarrow U(t) & =\underbrace{R_{0} \cos \left(\omega_{0} t-\delta\right)}_{u_{c}(t)}+\frac{A}{w^{2}-\alpha^{2}} \cos (\alpha t)
\end{aligned}
$$

The second term gets larger as α gets closer to ω_{0}.
Case (ii): $\alpha=\omega_{0} \quad$ ("unbounded response", ideal resonance)

$$
u^{\prime \prime}+w_{0}^{2} u=A \cos \left(\omega_{0} t\right), \omega_{0}>0 .
$$

The basic real solutions of the homogeneous equation

$$
\begin{equation*}
u^{\prime \prime}+w_{0}^{2} u=0 \tag{**}
\end{equation*}
$$

are $\cos \left(\omega_{0} t\right), \sin \left(\omega_{0} t\right)$, so that the general solution of $(* *)$ is

$$
u_{c}(t)=b_{1} \cos \left(\omega_{0} t\right)+b_{2} \sin \left(\omega_{0} t\right), \text { with } b_{1}, b_{2} \in \mathbb{R}
$$

Try

$$
U(t)=c t \sin (w t) .
$$

Then

$$
\begin{aligned}
U^{\prime} & =c \sin \left(\omega_{0} t\right)+c \omega_{0} t \cos \left(\omega_{0} t\right) \\
U^{\prime \prime} & =2 c \omega_{0} \cos \left(\omega_{0} t\right)-c w_{0}^{2} t \sin \left(\omega_{0} t\right) \\
\Rightarrow U^{\prime \prime}+w_{0}^{2} U & =2 c \omega_{0} \cos \left(\omega_{0} t\right) \stackrel{?}{=} A \cos \left(\omega_{0} t\right)
\end{aligned}
$$

We need: $C=\frac{A}{2 \omega_{0}}$ to get a particular solution of (*). Thus the general solution of $(*)$ is

$$
\Rightarrow u(t)=\underbrace{R_{0} \cos (w t-\delta)}_{\text {stable }}+\underbrace{\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)}_{\text {unstable }}
$$

Quasi-Resonance (under-damping)
For simplicity, let us assume $m=1$, and consider

$$
u^{\prime \prime}+\gamma u^{\prime}+w_{0}^{2} u=A \cos (\alpha t),
$$

with $\gamma>0$ the damping constant. Assume

$$
\gamma^{2}<4 w_{0}^{2}
$$

which is the interesting case.
Characteristic equation: $\quad \lambda^{2}+\gamma \lambda+\omega_{0}^{2}=0$
Eigenvalues:

$$
\begin{aligned}
\lambda_{1} & =-\frac{\gamma}{2} \pm \underbrace{\sqrt{\frac{\gamma^{2}}{2}-4 \omega_{0}^{2}}}_{\substack{\text { imaginary since } \\
\gamma^{2}<4 w_{0}^{2}}} \\
\Rightarrow \lambda_{ \pm} & =-\frac{\gamma}{2}+i \sigma .
\end{aligned}
$$

Now

$$
u_{c}(t)=e^{-\gamma t / 2}\left(b_{1} \cos (\sigma t)+b_{2} \sin (\sigma t)\right), \quad b_{1}, b_{2} \in \mathbb{R}
$$

σ is called the quasi-frequency of the system.
Since $u(t)=u_{c}(t)+U(t)$, we need to find one particular solution $U(t)$.
Suppose we are in the case $\alpha \neq \omega_{0}$. Try

$$
U(t)=C \cos (\alpha t)+D \sin (\alpha t) .
$$

Check that we need

$$
\begin{aligned}
C & =\frac{A\left(\omega_{0}^{2}-\alpha^{2}\right)}{\left(\omega_{0}^{2}-\alpha^{2}\right)+(\gamma \alpha)^{2}} \\
D & =\frac{A \gamma \alpha}{\left(\omega_{0}^{2}-\alpha^{2}\right)+(\gamma \alpha)^{2}}
\end{aligned}
$$

Amplitude: $\frac{A}{\sqrt{\left(\omega_{0}^{2}-\alpha^{2}\right)}+\gamma^{2} \alpha^{2}}$
Since we are assuming that the damping constant γ is non-zero, we may also look at when $\alpha=\omega_{0}$, in which case

$$
C=0, \quad \text { and } D=\frac{A}{\gamma \alpha}
$$

so that

$$
U(t)=\frac{A}{\gamma \alpha} \sin (\alpha t)
$$

If we plot this for different values of $\gamma>0$, then we see a narrowing and simultaneous spiking of the trajectory as γ gets closer and closer to 0 , whence the name "quasi-resonance".

