Lecture 16

For any $m \times m$-matrix

$$
M=\left(m_{i j}\right), 1 \leq i, j \leq m,
$$

the exponential of M is defined by

$$
\exp (M)=e^{M}=\sum_{n=0}^{\infty} \frac{M^{n}}{n!},
$$

when the right hand side converges, with $M^{0}=I$. Notation:

$$
\sum_{n=0}^{\infty}\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)=\left(\begin{array}{cc}
\sum_{n=0}^{\infty} a_{n} & \sum_{n=0}^{\infty} b_{n} \\
\sum_{n=0}^{\infty} c_{n} & \sum_{n=0}^{\infty} d_{n}
\end{array}\right)
$$

Why is this relevant for us?

Reason: If we have $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{m}\end{array}\right), \mathbf{x}^{\prime}=\frac{d \mathbf{x}}{d t}=\left(\begin{array}{c}\frac{d x_{1}}{d t} \\ \vdots \\ \frac{d x_{m}}{d t}\end{array}\right)$, and A an $m \times m$-matrix with constant coefficients, a basic set of solutions is given by the columns of the matrix

$$
\Phi(t)=e^{A t}
$$

Note: $\quad \Phi^{\prime}(t)=A e^{A t}=A \Phi(t)$. A set of basic solutions are given by the columns of $\Phi(t)=\left(x^{(1)} x^{(2)} \ldots x^{(m)}\right)$, with

$$
x^{(i)}(t)=\left(\begin{array}{c}
x_{1}^{(i)}(t) \\
x_{2}^{(i)}(t) \\
\vdots \\
x_{m}^{(i)}(t)
\end{array}\right), \quad \forall i \leq m
$$

We have mostly looked so far at the case where A has distinct eigenvalues. A modification is necessary for repeated eigenvalues!

Now we will look at the exponential of some simple 2×2-cases:
(i) A is diagonal: $\quad A=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$

$$
A^{2}=\left(\begin{array}{cc}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{1}^{2}
\end{array}\right), \ldots, A^{n}=\left(\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right)
$$

So

$$
\begin{aligned}
e^{A} & =A^{0}+\frac{A^{1}}{1!}+\frac{A^{2}}{2!}+\cdots+\frac{A^{n}}{n!}+\ldots \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)+\left(\begin{array}{cc}
\frac{\lambda^{2}}{2!} & 0 \\
0 & \frac{\lambda_{2}^{2}}{2!}
\end{array}\right)+\cdots+\left(\begin{array}{cc}
\frac{\lambda_{1}^{n}}{n!} & 0 \\
0 & \frac{\lambda_{2}^{n}}{n!}
\end{array}\right)+\ldots \\
& =\left(\begin{array}{cc}
1+\lambda_{1}+\frac{\lambda_{1}^{2}}{2!}+\cdots+\frac{\lambda_{n}^{n}}{n!} & 0 \\
0 & 1+\lambda_{2}+\frac{\lambda_{2}^{2}}{n!}+\cdots+\frac{\lambda_{2}^{n}}{n!}+\ldots
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{\lambda_{1}} & 0 \\
0 & e^{\lambda_{2}}
\end{array}\right)
\end{aligned}
$$

Conclusion:

$$
\exp \left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{cc}
e^{\lambda_{1}} & 0 \\
0 & e^{\lambda_{2}}
\end{array}\right)
$$

Note:

$$
\exp \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \neq\left(\begin{array}{ll}
e^{a} & e^{b} \\
e^{c} & e^{d}
\end{array}\right)!
$$

(ii) A: upper triangular

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right) \\
A^{2} & =\left(\begin{array}{cc}
1 & 2 \alpha \\
0 & 1
\end{array}\right) \quad A^{3}=\left(\begin{array}{cc}
1 & 3 \alpha \\
0 & 1
\end{array}\right), \ldots, A^{n}=\left(\begin{array}{cc}
1 & n \alpha \\
0 & 1
\end{array}\right) \text { (by induction) }
\end{aligned}
$$

Thus

$$
\begin{aligned}
e^{A} & =\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=\sum_{n=0}^{\infty}\left(\begin{array}{cc}
\frac{1}{n!} & \frac{n \alpha}{n!} \\
0 & \frac{1}{n!}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{1}{n!} & \sum_{n=0}^{\infty} \frac{n \alpha}{n!} \\
0 & \sum_{n=0}^{\infty} \frac{1}{n!}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{n!} & =e \\
\alpha \sum_{n=1}^{\infty} \frac{n}{n!}=\alpha \sum_{n=1}^{\infty} \frac{1}{(n-1)!} & =\alpha \sum_{k=0}^{\infty} \frac{1}{k!}=\alpha e \\
\Longrightarrow e^{A} & =\left(\begin{array}{cc}
e & \alpha e \\
0 & e
\end{array}\right)
\end{aligned}
$$

Check: For $A=\left(\begin{array}{ll}1 & \alpha \\ 0 & 1\end{array}\right)$,

$$
e^{A t}=\left(\begin{array}{cc}
e^{t} & \alpha e^{t} \\
0 & e^{t}
\end{array}\right)
$$

(iii)

$$
\begin{gathered}
A=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \\
A^{2}=-\left(\begin{array}{cc}
\lambda^{2} & 2 \lambda \\
0 & \lambda^{2}
\end{array}\right) \quad A^{3}=\left(\begin{array}{cc}
\lambda^{3} & 3 \lambda^{2} \\
0 & \lambda^{3}
\end{array}\right) \ldots A^{n}=\left(\begin{array}{cc}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right)
\end{gathered}
$$

Remembering that $A^{0}=I$,

$$
e^{A}=\left(\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} & \sum_{n=0}^{\infty} \frac{n \lambda^{n-1}}{n!} \\
0 & \sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}
\end{array}\right)
$$

Note that for any t,

$$
\sum_{n=0}^{\infty} \frac{n \lambda^{n-1} t^{n}}{n!}=\sum_{n=1}^{\infty} \frac{\lambda^{n-1} t^{n}}{(n-1)!}=t \sum_{k=0}^{\infty} \frac{\lambda^{k} t^{k}}{k!}=t e^{\lambda t}
$$

Putting $t=1$,

$$
e^{A}=\left(\begin{array}{cc}
e^{\lambda} & e^{\lambda} \\
0 & e^{\lambda}
\end{array}\right)
$$

Check: For $A=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$,

$$
e^{A t}=\left(\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)
$$

It appears hopeless to get a nice expression for e^{M} for an arbitrary $m \times m$ $\operatorname{matrix} M=\left(m_{i j}\right)$, even for $m=2$. We tackle this problem by appealing to similarity of matrices (also called conjugacy).

One says that 2 matrices M, M^{\prime} are similar (or conjugate) iff we can find an invertible matrix B, meaning a nonsingular matrix, such that

$$
M^{\prime}=B^{-1} M B
$$

In this case,

$$
\begin{aligned}
\operatorname{det}\left(M^{\prime}\right) & =\underbrace{\operatorname{det}\left(B^{-1}\right) \operatorname{det}(M) \operatorname{det}(B)}_{=1} \\
\Rightarrow \operatorname{det} M^{\prime} & =\operatorname{det} M
\end{aligned}
$$

Powers of M^{\prime} and the exponential:

$$
\begin{aligned}
M^{\prime} & =B^{-1} M B \\
\left(M^{\prime}\right)^{2} & =\left(B^{-1} M B\right)\left(B^{-1} M B\right) \\
& =B^{-1} M I M B \\
& =B^{-1} M^{2} B \text { so }\left(B^{-1} M B\right)^{2}=B^{-2} M^{2} B
\end{aligned}
$$

Similarly $\left(B^{-1} M B\right)^{3}=B^{-1} M^{3} B$
So in general, $\left(B^{-1} M B\right)^{n}=B^{-1} M^{n} B$ for any $n \geq 0$.
Hence

$$
\begin{aligned}
\exp \left(B^{-1} M B\right) & =\sum_{n=0}^{\infty} \frac{\left(B^{-1} M B\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{B^{-1} M^{n} B}{n!} \\
& =B^{-1} \underbrace{\left(\sum_{n=0}^{\infty} \frac{M^{n}}{n!}\right)}_{\exp (M)} B
\end{aligned}
$$

In other words,

$$
\begin{equation*}
e^{B^{-1} M B}=B^{-1} e^{M} B \tag{*}
\end{equation*}
$$

A natural question which arises is to know whether every $m \times m$-matrix M is similar to a matrix M^{\prime} for which we can compute its exponential, thereby allowing us to know e^{M} as well by the identity (*). Camille Jordan gave a
nice positive answer to this, and for $m=2$, here is the statement, which can be checked by hand using matrix multiplication.
Theorem Suppose $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then M is similar, we can find an invertible matrix B st $B^{-1} M B$ is of one of the following form
(i) $B^{-1} M B=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$
(ii) $B^{-1} M B=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$

In particular, if $M^{\prime}=B^{-1} M B$, then we can explicitly calculate $e^{M^{\prime}}$, and hence also determine e^{M} using $M=B M^{\prime} B^{-1}$, because

$$
e^{M}=B e^{M^{\prime}} B^{-1}
$$

In case (i) of this Theorem, called the Jordan decomposition (for $m=2$), M is called diagonalizable, but the eigenvalues λ_{1}, λ_{2} may or may not be distinct.

Lecture 17

More on repeated eigenvalues and the Jordan decomposition:
Recall that $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}=\binom{x_{1}}{x_{2}}$ and $A=\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$, has two independent solutions $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$ given by

$$
\begin{aligned}
\mathbf{x}^{(1)} & =\binom{1}{0} e^{\lambda t}=\binom{e^{\lambda t}}{0} \\
\text { Check : } \frac{d \mathbf{x}^{(1)}}{d t} & =\binom{\lambda e^{\lambda t}}{0}=\lambda\binom{e^{\lambda t}}{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{e^{\lambda t}}{0}=A \mathbf{x}^{(1)} \\
\mathbf{x}^{(2)} & =\binom{t e^{\lambda t}}{e^{\lambda t}}=\binom{1}{0} t e^{\lambda t}+\binom{0}{1} e^{\lambda t} \\
\text { Check : } \frac{d \mathbf{x}^{(2)}}{d t} & =\binom{e^{\lambda t}+\lambda t e^{\lambda t}}{\lambda e^{\lambda t}}=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\binom{t e^{\lambda t}}{e^{\lambda t}}=A \mathbf{x}^{(2)}
\end{aligned}
$$

The vector $\binom{1}{0}$ is chosen first because it is an eigenvector for $A=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ with eigenvalue λ, i.e., $A\binom{1}{0}=\lambda\binom{1}{0}$, or equivalently

$$
(A-\lambda)\binom{1}{0}=\mathbf{0}
$$

Here $A-\lambda$ means $A-\lambda I$, and $\mathbf{0}$ is the zero vector $\binom{0}{0}$.
Note: To get independent solutions, we would need to choose a second vector $\mathbf{v}=\binom{a}{b}$ carefully. Note that

$$
A \mathbf{v}=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\binom{a}{b}=\binom{\lambda a+b}{\lambda b} \neq \lambda \mathbf{v} \text { if } b \neq 0
$$

Of course, $b=0$ iff \mathbf{v} is proportional to the first eigenvector $\binom{1}{0}$. In particular, we cannot choose \mathbf{v} to be the other unit vector $\binom{0}{1}$. Nevertheless, we
have

$$
\begin{aligned}
A\binom{0}{1} & =\binom{1}{0}+\lambda\binom{0}{1} \\
\Rightarrow(A-\lambda)\binom{0}{1} & =\binom{1}{0} \\
\Rightarrow(A-\lambda)^{2}\binom{0}{1} & =(A-\lambda)(\underbrace{(A-\lambda)\binom{0}{1}}_{\binom{1}{0}})=\mathbf{0}
\end{aligned}
$$

Conclusion:

(i) $\binom{1}{0}$ is an eigenvector for A with eigenvalue λ, i.e.,

$$
(A-\lambda)\binom{1}{0}=0
$$

(ii) $(A-\lambda)\binom{0}{1} \neq 0$, so $\binom{0}{1}$ is not an eigenvector but $(A-\lambda)^{2}\binom{0}{1}=0$.

We call $\binom{0}{1}$ a generalized eigenvector for A relative to λ.
General definition: For any positive integer n, given an $n \times n$-matrix $A=\left(a_{i j}\right)$, a generalized eigenvector for A relative to an eigenvalue λ is a non-zero vector v such that $(A-\lambda)^{k}=0$, for some k, with $1 \leq k \leq n$.

Recall that if A has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$, then we can find a basis of the n-space consisting of eigenvectors for A. If this basis is $v^{(1)}, v^{(2)}, \ldots, v^{(n)}$ with $A v^{(j)}=\lambda_{j} v^{(j)}$, we can put $B=\left(v^{(1)}, v^{(2)} \ldots v^{(n)}\right)$. Then $B^{-1} A B=\left(\begin{array}{lllll}\lambda_{1} & & & & 0 \\ & \lambda_{2} & & & \\ & & \cdot & & \\ & & & & \\ 0 & & & \lambda_{n}\end{array}\right)$.

Having distinct eigenvalues implies that the matrix A in question is diagonalizable, but the converse is not necessarily true. For example, look at $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, which is diagonal but has 1 as a repeated eigenvalue.

Note: There are many matrices with repeated eigenvalues that are not diagonalizable,

$$
\text { e.g., } A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text {. }
$$

A general fact: (without proof)
For any matrix A, we can find a basis consisting of generalized eigenvectors.

Example 1:

$n=2, A=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right), \quad$ Basis: $\underbrace{\binom{1}{0},\binom{0}{1}}_{\text {generalizedeigenvectors }}$

Example 2:

$$
A=\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right)
$$

Compute eigenvalues

$$
\begin{aligned}
\operatorname{det}(A-\lambda) & =\operatorname{det}\left(\begin{array}{cc}
3-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right)=(3-x)(1-\lambda)+1 \\
& =4-4 \lambda+\lambda^{2} \\
& =(\lambda-2)^{2}=0
\end{aligned}
$$

So $\lambda=2$ is the unique eigenvalue with multiplicity 2 . There is only one eigenvector up to scaling. To see this, we solve:

$$
\begin{aligned}
(A-\lambda)\binom{x_{1}}{x_{2}} & =0 \\
\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} & =\binom{0}{0} \\
x_{1}-x_{2} & =0 \\
x_{1}-x_{2} & =0 \\
x_{1} & =x_{2}
\end{aligned}
$$

So every eigenvector is a multiple of $\mathbf{v}=\binom{1}{1}$. To get the second independent
vector, which can only be a generalized eigenvector, not a true one, we solve:

$$
\begin{aligned}
(A-\lambda)
\end{aligned} \begin{aligned}
\binom{y_{1}}{y_{2}} & =\mathbf{v}=\binom{1}{1} \\
\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right) \underbrace{\binom{y_{1}}{y_{2}}}_{\mathbf{w}} & =\binom{3}{1} \\
y_{1}-y_{2} & =1 \\
y_{1}-y_{2} & =1
\end{aligned}
$$

So we may choose $\mathbf{w}=\binom{1}{0}$ as our generalized eigenvector, since $(A-\lambda)^{2} \mathbf{w}=$ 0 , and \mathbf{w} is linearly independent from \mathbf{v}.

Thus we have found a basis of \mathbb{R}^{2} made up of generalized eigenvectors for $A=\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)$, namely $\mathbf{v}=\binom{1}{1}$ and $\mathbf{w}=\binom{1}{0}$. Put

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \operatorname{det}(B)=-1 \\
B^{-1} & =\frac{1}{\operatorname{det}(B)}\left(\begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \\
B^{-1} A B & =\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \\
& =\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right), \text { with } \lambda=2 .
\end{aligned}
$$

This is a special case of the decomposition asserted by Jordan for 2×2 matrices.

Jordan decomposition for ($\mathbf{n} \times \mathbf{n}$)-matrices:

Given any $A=\left(a_{i j}\right) 1 \leq i, j \leq n$, with eigenvalues $\lambda_{1} \ldots \lambda_{k}$ having multiplicities $m_{1}, m_{2}, \ldots m_{k}$ respectively, we can find an invertible $n \times n$-matrix
B, and positive integers $n_{1}, n_{2}, \ldots, n_{r}$ with $\sum_{j=1}^{r} n_{j}=n$, such that

$$
B^{-1} A B=\left(\begin{array}{ccccc}
M_{1} & & & & 0 \\
& M_{2} & & & \\
& & \cdot & & \\
& & & \\
0 & & & M_{2}
\end{array}\right)
$$

which is a block diagonal matrix, with each block M_{j} being an $\left(n_{j} \times n_{j}\right)$-matrix of the form

$$
M_{j}=\left(\begin{array}{ccccc}
\lambda_{j} & 1 & & & 0 \\
& \lambda_{j} & 1 & & \\
& & \cdot & \cdot & \\
& & & \cdot & 1 \\
0 & & & & \lambda_{j}
\end{array}\right)
$$

where the only non-zero entries are either those on the diagonal, which are all λ_{j}, an eigenvalue of A, and those on the super-diagonal, i.e., the line parallel to the diagonal and just above it, which are all 1's. Moreover, every eigenvalue is some λ_{j}, but the λ_{j} 's may not all be distinct.

Note that $B^{-1} A B$ is block diagonal, but is not diagonal unless all the n_{j} 's are 1 . Furthermore, if λ is an eigenvalue of A, then its multiplicity m_{λ} is given by

$$
m_{\lambda}=\sum_{j \in J_{\lambda}} n_{j},
$$

where J_{λ} is the set of $j \leq r$ such that $\lambda_{j}=\lambda$.
Recall (from the previous lecture) that for $n=2$, there are two Jordan forms, namely

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \text { and }\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right) .
$$

For $n=3$, there are four Jordan forms:

$$
\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right),\left(\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right),\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 1 \\
0 & 0 & \lambda_{2}
\end{array}\right),
$$

and

$$
\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right) .
$$

Lecture 18

Consider the linear system of first order ODE's with constant coefficients:

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \tag{}\\
\vdots \\
x_{n}
\end{array}\right)
$$

Suppose we have found an invertible matrix B such that $B^{-1} A B$ is a diagonal matrix $D=\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \lambda_{2} & \\ 0 & & \lambda_{n}\end{array}\right)$. To get a solution to $(*)$, define a new (vector) variable $\mathbf{y}=B^{-1} \mathbf{x}$, which implies $\mathbf{x}=B \mathbf{y}$. Then $\mathbf{y}^{\prime}=B^{-1} \mathbf{x}^{\prime}=B^{-1} A \mathbf{x}=$ $B^{-1} A B \mathbf{y}$, and so \mathbf{y} satisfies the simpler ODE::

$$
\begin{equation*}
\mathbf{y}^{\prime}=D \mathbf{y} \tag{**}
\end{equation*}
$$

A Special solution matrix for $(* *)$ is obtained by exponentiating $D t$:

$$
\begin{aligned}
\Phi & =e^{D t}=\exp \left(\begin{array}{ccc}
\lambda_{1} t & & 0 \\
& \lambda_{2} t & \\
0 & & \lambda_{n} t
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{\lambda_{1} t} & & 0 \\
& e^{\lambda_{2} t} & \\
0 & & e^{\lambda_{n} t}
\end{array}\right)
\end{aligned}
$$

The special set of independent solutions are

$$
\mathbf{y}^{(1)}=\left(\begin{array}{c}
e^{\lambda_{1} t} \\
0 \\
\vdots \\
0
\end{array}\right), \quad \mathbf{y}^{(2)}=\left(\begin{array}{c}
0 \\
e^{\lambda_{2} t} \\
\vdots \\
0
\end{array}\right), \ldots \quad, \mathbf{y}^{(n)}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
e^{\lambda_{n} t}
\end{array}\right) .
$$

The corresponding solutions for \mathbf{x} satisfying $(*)$ are

$$
\mathbf{x}^{(j)}=B \mathbf{y}^{(j)}, \forall j=1,2, \ldots n
$$

Any time we are given $\mathbf{x}^{\prime}=A \mathbf{x}$ with A a constant $n \times n$ matrix we can get a matrix of solutions as:

$$
\Phi(t)=e^{A t}
$$

We can get a basis of solutions if $\operatorname{det}[\Phi(t)] \neq 0$.
Problem: It is hard to compute $e^{A t}$, when there is no eigenbasis.
A way out is to use the Jordan decomposition for A (discussed last time), which allows us to find a similar matrix in block diagonal form of a specific type, allowing us to compute the exponential.

A remark on linear homogeneous systems with nonconstant coefficients

Suppose we have to solve $\mathbf{x}^{\prime}=A(t) \mathbf{x}$, with $A(t)$ a non-constant matrix. A special solution matrix is given by

$$
\Phi(t)=e^{\int_{0}^{t} A(u) d u}
$$

and to make sense of this, we need to know that $A(t)$ is integrable; a sufficient condition, which we will often assume, is to have $A(t)$ be a continuous (matrix) function of t. We have, by the Fundamental Theorem of calculus,

$$
\left.\Phi^{\prime}(t)=\frac{d}{d t}\left(\int_{0}^{t} A(u) d u\right) \Phi(t)\right)=A(t) \Phi(t)
$$

Example

$$
\begin{aligned}
n=2, \mathbf{x}=\binom{x_{1}}{x_{2}}, \mathbf{x}^{\prime} & =A(t) \mathbf{x}, A(t)=\left(\begin{array}{cc}
t & 0 \\
0 & t^{2}
\end{array}\right) \\
\Phi(t) & =e^{\int_{0}^{t} A(u) d u} \\
\int_{0}^{t} A(u) d u & =\int_{0}^{t}\left(\begin{array}{cc}
\frac{1}{2} t^{2} & 0 \\
0 & \frac{1}{3} t^{3}
\end{array}\right) \\
\Rightarrow \Phi(t) & =e^{\left(\begin{array}{cc}
\frac{1}{2} t^{2} & 0 \\
0 & \frac{1}{3} t^{3}
\end{array}\right)}=\left(\begin{array}{cc}
e^{\frac{1}{2} t^{2}} & 0 \\
0 & e^{\frac{1}{3} t^{3}}
\end{array}\right)
\end{aligned}
$$

Inhomogeneous linear systems with constant coefficients
Homogeneous: $\quad \mathrm{x}^{\prime}=A \mathrm{x} \quad \mathrm{x}^{\prime}=\frac{d}{d t} \mathrm{x}$
Non-homogeneous: $\quad \mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{G}(t)$,
where $\mathbf{G}(t)$ purely a vector function of t.
Even the case $\mathbf{n}=\mathbf{1}$ is not trivial for inhomogeneous equation

$$
\frac{d x}{d t}=a x+g(t), \quad a \neq 0
$$

If $g(t)=c$, a constant, then $x=-c / a$ is the equilibrium solution, and for $x+\frac{c}{a} \neq 0$, we have $\int \frac{d x / d t}{x+c / a} d t=\int a d t$, yielding $\ln \left|x+\frac{c}{a}\right|=a t$

General solution:

$$
x=-\frac{c}{a}+B e^{a t}, \quad B \in \mathbb{R}
$$

with $B=0$ giving the equilibrium solution.
It is a bit more subtle when $g(t)$ is not a constant. Given

$$
\frac{d x}{d t}=a x+g(t), a \neq 0
$$

with $g(t)$ integrable, one tries

$$
x=h(t) e^{a t}
$$

where $h(t)$ will be suitably chosen differentiable function. We have

$$
\frac{d x}{d t}=a x+h^{\prime}(t) e^{a t}
$$

So we need to choose $h(t)$ such that

$$
h^{\prime}(t)=e^{-a t} g(t) .
$$

Note that this fixes $h(t)$ up to adding an arbitrary constant.
We may choose

$$
h(t)=\int_{b}^{t} e^{-a u} g(u) d u
$$

where b is a real number; a particular solution is obtained by taking $b=0$, for example. Any change of b only adds a constant to $h(t)$, as expected.

So the general solution is obtained as

$$
x(t)=e^{a t} \int_{b}^{t} e^{-a u} g(u) d u
$$

for an arbitrary $b \in \mathbb{R}$. We can also write this as

$$
x(t)=B e^{a t}+e^{a t} \int_{0}^{t} e^{-a u} g(u) d u
$$

where B is an arbitrary constant. These two representations are equivalent, and one can pass from the first to the second, for example, by setting $B=$ $-\int_{0}^{b} e^{-a u} g(u) d u$.

For an arbitrary $n \times n$ system:

Consider

$$
\mathbf{x}^{\prime}=A \mathbf{x}+G(t), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad G(t)=\left(\begin{array}{c}
g_{1}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right)
$$

If A is a diagonal matrix, i.e.,

$$
A=\left(\begin{array}{lllll}
\lambda_{1} & & & & 0 \\
& \lambda_{2} & & & \\
& & \cdot & \cdot & \\
& & & \cdot & \\
0 & & & \lambda_{n}
\end{array}\right)
$$

then

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} x_{1}+g_{1}(t) \\
\lambda_{2} x_{2}+g_{2}(t) \\
\vdots \\
\lambda_{n} x_{n}+g_{n}(t)
\end{array}\right),
$$

which gives n independent linear equations. So we may apply in this case the solution we obtained above in the $n=1$ case to each row, and obtain the general solution to the linear system of ODE's as

$$
\mathbf{x}=\left(\begin{array}{c}
e^{\lambda_{1} t} \int_{b_{1}}^{t} e^{-\lambda_{1} u} g_{1}(u) d u \\
e^{\lambda_{2} t} \int_{b_{2}}^{t} e^{-\lambda_{2} u} g_{2}(u) d u \\
\vdots \\
e^{\lambda_{n} t} \int_{b_{n}}^{t} e^{-\lambda_{n} u} g_{n}(u) d u
\end{array}\right)
$$

where $\mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$ is an arbitrary (constant) vector in \mathbb{R}^{n}.
This method can be extended to solve the inhomogeneous system if A is diagonalizable, i.e., when $M^{-1} A M$ is, for a non-singular matrix M, a diagonal matrix D.

Sometimes one can solve the inhomogeneous equations without trying to diagonalize the matrix:

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}+e^{r t} \mathbf{z}, \quad \mathbf{z}=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right),
$$

where z is a constant vector, i.e., independent of t. Try:

$$
\mathbf{x}=e^{r t} C,
$$

where C is a constant vector. Then $\mathbf{x}^{\prime}=r e^{r t} C$, which equals $A e^{r t} C+e^{r t} \mathbf{z}$ iff we have

$$
C=(r-A)^{-1} \mathbf{z} .
$$

Hence the general solution is

$$
\mathbf{x}=e^{r t}(r-A)^{-1} \mathbf{z} .
$$

