
Lecture 16

For any m×m-matrix

M = (mij), 1 ≤ i, j ≤ m,

the exponential of M is defined by

exp(M) = eM =
∞∑
n=0

Mn

n!
,

when the right hand side converges, with M0 = I. Notation:

∞∑
n=0

(
an bn
cn dn

)
=

∑∞
n=0 an

∑∞
n=0 bn∑∞

n=0 cn
∑∞

n=0 dn


Why is this relevant for us?

Reason: If we have x′ = Ax, where x =

x1
...
xm

 , x′ = dx
dt

=


dx1

dt
...

dxm

dt

, and

A an m×m-matrix with constant coefficients, a basic set of solutions is given
by the columns of the matrix

Φ(t) = eAt

Note: Φ′(t) = AeAt = AΦ(t). A set of basic solutions are given by the
columns of Φ(t) =

(
x(1) x(2) . . . x(m)

)
, with

x(i)(t) =


x
(i)
1 (t)

x
(i)
2 (t)
...

x
(i)
m (t)

 , ∀ i ≤ m.

We have mostly looked so far at the case where A has distinct eigenvalues.
A modification is necessary for repeated eigenvalues!

Now we will look at the exponential of some simple 2× 2-cases:
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(i) A is diagonal: A =

(
λ1 0
0 λ2

)

A2 =

(
λ2
1 0
0 λ2

1

)
, . . . , An =

(
λn
1 0
0 λn

2

)
So

eA = A0 +
A1

1!
+

A2

2!
+ · · ·+ An

n!
+ . . .

=

(
1 0
0 1

)
+

(
λ1 0
0 λ2

)
+

(
λ2

2!
0

0
λ2
2

2!

)
+ · · ·+

(
λn
1

n!
0

0
λn
2

n!

)
+ . . .

=

(
1 + λ1 +

λ2
1

2!
+ · · ·+ λn

n

n!
0

0 1 + λ2 +
λ2
2

n!
+ · · ·+ λn

2

n!
+ . . .

)

=

(
eλ1 0
0 eλ2

)
Conclusion:

exp

(
λ1 0
0 λ2

)
=

(
eλ1 0
0 eλ2

)
Note:

exp

(
a b
c d

)
̸=
(
ea eb

ec ed

)
!

(ii) A: upper triangular

A =

(
1 α
0 1

)
A2 =

(
1 2α
0 1

)
A3 =

(
1 3α
0 1

)
, . . . , An =

(
1 nα
0 1

)
(by induction)

Thus

eA =
∞∑
n=0

An

n!
=

∞∑
n=0

(
1
n!

nα
n!

0 1
n!

)

=

∑∞
n=0

1
n!

∑∞
n=0

nα
n!

0
∑∞

n=0
1
n!


2



∞∑
n=0

1

n!
= e

α
∞∑
n=1

n

n!
= α

∞∑
n=1

1

(n− 1)!
= α

∞∑
k=0

1

k!
= αe

=⇒ eA =

(
e αe
0 e

)

Check: For A =

(
1 α
0 1

)
,

eAt =

(
et αet

0 et

)
.

(iii)

A =

(
λ 1
0 λ

)
A2 = −

(
λ2 2λ
0 λ2

)
A3 =

(
λ3 3λ2

0 λ3

)
. . . An =

(
λn nλn−1

0 λn

)
Remembering that A0 = I,

eA =

∑∞
n=0

λn

n!

∑∞
n=0

nλn−1

n!

0
∑∞

n=0
λn

n!


Note that for any t,

∞∑
n=0

nλn−1tn

n!
=

∞∑
n=1

λn−1tn

(n− 1)!
= t

∞∑
k=0

λktk

k!
= teλt

Putting t = 1,

eA =

(
eλ eλ

0 eλ

)

Check: For A =

(
λ 1
0 λ

)
,

eAt =

(
eλt teλt

0 eλt

)
.
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It appears hopeless to get a nice expression for eM for an arbitrary m×m
matrix M = (mij), even for m = 2. We tackle this problem by appealing to
similarity of matrices (also called conjugacy).

One says that 2 matrices M,M ′ are similar (or conjugate) iff we can find
an invertible matrix B, meaning a nonsingular matrix, such that

M ′ = B−1MB.

In this case,

det(M ′) = det(B−1) det(M) det(B)︸ ︷︷ ︸
=1

⇒ detM ′ = detM

Powers of M ′ and the exponential:

M ′ = B−1MB

(M ′)2 = (B−1MB)(B−1MB)

= B−1MIMB

= B−1M2B so (B−1MB)2 = B−2M2B

Similarly (B−1MB)3 = B−1M3B
So in general, (B−1MB)n = B−1MnB for any n ≥ 0.

Hence

exp(B−1MB) =
∞∑
n=0

(B−1MB)n

n!
=

∞∑
n=0

B−1MnB

n!

= B−1

(
∞∑
n=0

Mn

n!

)
︸ ︷︷ ︸

exp(M)

B

In other words,

(∗) eB
−1MB = B−1eMB

A natural question which arises is to know whether everym×m-matrixM
is similar to a matrix M ′ for which we can compute its exponential, thereby
allowing us to know eM as well by the identity (∗). Camille Jordan gave a
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nice positive answer to this, and for m = 2, here is the statement, which can
be checked by hand using matrix multiplication.

Theorem Suppose M =

(
a b
c d

)
, then M is similar, we can find an invert-

ible matrix B st B−1MB is of one of the following form

(i) B−1MB =

(
λ1 0
0 λ2

)

(ii) B−1MB =

(
λ 1
0 λ

)
In particular, if M ′ = B−1MB, then we can explicitly calculate eM

′
, and

hence also determine eM using M = BM ′B−1, because

eM = BeM
′
B−1.

In case (i) of this Theorem, called the Jordan decomposition (for m = 2),
M is called diagonalizable, but the eigenvalues λ1, λ2 may or may not be
distinct.
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Lecture 17

More on repeated eigenvalues and the Jordan decomposition:

Recall that x′ = Ax, x =

(
x1

x2

)
and A =

(
λ 1
0 λ

)
, has two independent

solutions x(1),x(2) given by

x(1) =

(
1
0

)
eλt =

(
eλt

0

)
Check :

dx(1)

dt
=

(
λeλt

0

)
= λ

(
eλt

0

)
=

(
1 1
0 1

)(
eλt

0

)
= Ax(1)

x(2) =

(
teλt

eλt

)
=

(
1
0

)
teλt +

(
0
1

)
eλt

Check :
dx(2)

dt
=

(
eλt + λteλt

λeλt

)
=

(
λ 1
0 λ

)(
teλt

eλt

)
= Ax(2)

The vector

(
1
0

)
is chosen first because it is an eigenvector for A =

(
λ 1
0 λ

)
with eigenvalue λ, i.e., A

(
1
0

)
= λ

(
1
0

)
, or equivalently

(A− λ)

(
1
0

)
= 0.

Here A− λ means A− λI, and 0 is the zero vector

(
0
0

)
.

Note: To get independent solutions, we would need to choose a second vector

v =

(
a
b

)
carefully. Note that

Av =

(
λ 1
0 λ

)(
a
b

)
=

(
λa+ b
λb

)
̸= λv if b ̸= 0.

Of course, b = 0 iff v is proportional to the first eigenvector

(
1
0

)
. In partic-

ular, we cannot choose v to be the other unit vector

(
0
1

)
. Nevertheless, we

6



have

A

(
0
1

)
=

(
1
0

)
+ λ

(
0
1

)
⇒ (A− λ)

(
0
1

)
=

(
1
0

)
⇒ (A− λ)2

(
0
1

)
= (A− λ)((A− λ)

(
0
1

)
)︸ ︷︷ ︸1

0


= 0

Conclusion:

(i)

(
1
0

)
is an eigenvector for A with eigenvalue λ, i.e.,

(A− λ)

(
1
0

)
= 0.

(ii) (A− λ)

(
0
1

)
̸= 0, so

(
0
1

)
is not an eigenvector but (A− λ)2

(
0
1

)
= 0.

We call

(
0
1

)
a generalized eigenvector for A relative to λ.

General definition: For any positive integer n, given an n × n-matrix
A = (aij), a generalized eigenvector for A relative to an eigenvalue λ is a
non-zero vector v such that (A− λ)k = 0, for some k, with 1 ≤ k ≤ n.

Recall that if A has distinct eigenvalues λ1, λ2, . . . λn, then we can find
a basis of the n-space consisting of eigenvectors for A. If this basis is
v(1), v(2), . . . , v(n) with Av(j) = λjv

(j), we can put B = (v(1), v(2) . . . v(n)).

Then B−1AB =


λ1 0

λ2

·
·

0 λn

.

Having distinct eigenvalues implies that the matrix A in question is di-
agonalizable, but the converse is not necessarily true. For example, look at(
1 0
0 1

)
, which is diagonal but has 1 as a repeated eigenvalue.
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Note: There are many matrices with repeated eigenvalues that are not
diagonalizable,

e.g., A =

(
1 1
0 1

)
.

A general fact: (without proof)

For any matrix A, we can find a basis consisting of generalized eigenvec-
tors.

Example 1:

n = 2, A =

(
λ 1
0 λ

)
, Basis:

(
1
0

)
,

(
0
1

)
︸ ︷︷ ︸

generalizedeigenvectors

Example 2:

A =

(
3 −1
1 1

)
Compute eigenvalues

det(A− λ) = det

(
3− λ −1
1 1− λ

)
= (3− x)(1− λ) + 1

= 4− 4λ+ λ2

= (λ− 2)2 = 0

So λ = 2 is the unique eigenvalue with multiplicity 2. There is only one
eigenvector up to scaling. To see this, we solve:

(A− λ)

(
x1

x2

)
= 0(

1 −1
1 −1

)(
x1

x2

)
=

(
0
0

)
x1 − x2 = 0

x1 − x2 = 0

x1 = x2

So every eigenvector is a multiple of v =

(
1
1

)
. To get the second independent
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vector, which can only be a generalized eigenvector, not a true one, we solve:

(A− λ)

(
y1
y2

)
= v =

(
1
1

)
(
1 −1
1 −1

)(
y1
y2

)
︸ ︷︷ ︸

w

=

(
3
1

)

y1 − y2 = 1

y1 − y2 = 1

So we may choosew =

(
1
0

)
as our generalized eigenvector, since (A−λ)2w =

0, and w is linearly independent from v.
Thus we have found a basis of R2 made up of generalized eigenvectors for

A =

(
3 −1
1 1

)
, namely v =

(
1
1

)
and w =

(
1
0

)
. Put

B =

(
1 1
1 0

)
, det(B) = −1

B−1 =
1

det(B)

(
0 −1
−1 1

)
=

(
0 1
1 −1

)
B−1AB =

(
0 1
1 −1

)(
3 −1
1 1

)(
1 1
1 0

)
=

(
1 1
2 −2

)(
1 1
1 0

)
=

(
2 1
0 2

)
=

(
λ 1
0 λ

)
, with λ = 2.

This is a special case of the decomposition asserted by Jordan for 2 × 2-
matrices.

Jordan decomposition for (n× n)-matrices:

Given any A = (aij)1 ≤ i, j ≤ n, with eigenvalues λ1 . . . λk having mul-
tiplicities m1,m2, . . .mk respectively, we can find an invertible n× n-matrix
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B, and positive integers n1, n2, . . . , nr with
∑r

j=1 nj = n, such that

B−1AB =


M1 0

M2

·
·

0 M2

 ,

which is a block diagonal matrix, with each block Mj being an (nj×nj)-matrix
of the form

Mj =


λj 1 0

λj 1
· ·

· 1
0 λj

 ,

where the only non-zero entries are either those on the diagonal, which are
all λj, an eigenvalue of A, and those on the super-diagonal, i.e., the line
parallel to the diagonal and just above it, which are all 1’s. Moreover, every
eigenvalue is some λj, but the λj’s may not all be distinct.

Note that B−1AB is block diagonal, but is not diagonal unless all the
nj’s are 1. Furthermore, if λ is an eigenvalue of A, then its multiplicity mλ

is given by

mλ =
∑
j∈Jλ

nj,

where Jλ is the set of j ≤ r such that λj = λ.

Recall (from the previous lecture) that for n = 2, there are two Jordan
forms, namely (

λ1 0
0 λ2

)
, and

(
λ 1
0 λ

)
.

For n = 3, there are four Jordan forms:λ1 0 0
0 λ2 0
0 0 λ3

 ,

λ1 1 0
0 λ1 0
0 0 λ2

 ,

λ1 0 0
0 λ2 1
0 0 λ2

 ,

and λ 1 0
0 λ 1
0 0 λ

 .
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Lecture 18

Consider the linear system of first order ODE’s with constant coefficients:

x′ = Ax, x =

x1
...
xn

 (*)

Suppose we have found an invertible matrix B such that B−1AB is a diagonal

matrix D =

λ1 0
λ2

0 λn

. To get a solution to (∗), define a new (vector)

variable y = B−1x, which implies x = By. Then y′ = B−1x′ = B−1Ax =
B−1ABy, and so y satisfies the simpler ODE::

(∗∗) y′ = Dy.

A Special solution matrix for (∗∗) is obtained by exponentiating Dt:

Φ = eDt = exp

λ1t 0
λ2t

0 λnt


=

eλ1t 0
eλ2t

0 eλnt


The special set of independent solutions are

y(1) =


eλ1t

0
...
0

 , y(2) =


0

eλ2t

...
0

 , . . . ,y(n) =


0
...
0

eλnt

 .

The corresponding solutions for x satisfying (∗) are

x(j) = By(j), ∀ j = 1, 2, . . . n.

Any time we are given x′ = Ax with A a constant n × n matrix we can
get a matrix of solutions as:

Φ(t) = eAt
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We can get a basis of solutions if det[Φ(t)] ̸= 0.

Problem: It is hard to compute eAt, when there is no eigenbasis.

A way out is to use the Jordan decomposition for A (discussed last time),
which allows us to find a similar matrix in block diagonal form of a specific
type, allowing us to compute the exponential.

A remark on linear homogeneous systems with nonconstant coeffi-
cients

Suppose we have to solve x′ = A(t)x, with A(t) a non-constant matrix.
A special solution matrix is given by

Φ(t) = e
∫ t
0 A(u)du,

and to make sense of this, we need to know that A(t) is integrable; a suffi-
cient condition, which we will often assume, is to have A(t) be a continuous
(matrix) function of t. We have, by the Fundamental Theorem of calculus,

Φ′(t) =
d

dt

(∫ t

0

A(u)du)Φ(t)

)
= A(t)Φ(t).

Example

n = 2, x =

(
x1

x2

)
, x′ = A(t)x, A(t) =

(
t 0
0 t2

)
Φ(t) = e

∫ t
0 A(u)du∫ t

0

A(u)du =

∫ t

0

(
1
2
t2 0
0 1

3
t3

)

⇒ Φ(t) = e

1
2
t2 0
0 1

3
t3


=

(
e

1
2
t2 0

0 e
1
3
t3

)
Inhomogeneous linear systems with constant coefficients

Homogeneous: x′ = Ax x′ = d
dt
x

Non-homogeneous: x′ = Ax+G(t),
where G(t) purely a vector function of t.

Even the case n = 1 is not trivial for inhomogeneous equation

dx

dt
= ax+ g(t), a ̸= 0
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If g(t) = c, a constant, then x = −c/a is the equilibrium solution, and

for x+ c
a
̸= 0,we have

∫ dx/dt
x+c/a

dt =
∫
adt, yielding ln

∣∣x+ c
a

∣∣ = at
General solution:

x = − c

a
+Beat, B ∈ R,

with B = 0 giving the equilibrium solution.

It is a bit more subtle when g(t) is not a constant. Given

dx

dt
= ax+ g(t), a ̸= 0,

with g(t) integrable, one tries

x = h(t)eat,

where h(t) will be suitably chosen differentiable function. We have

dx

dt
= ax+ h′(t)eat.

So we need to choose h(t) such that

h′(t) = e−atg(t).

Note that this fixes h(t) up to adding an arbitrary constant.
We may choose

h(t) =

∫ t

b

e−aug(u)du,

where b is a real number; a particular solution is obtained by taking b = 0,
for example. Any change of b only adds a constant to h(t), as expected.

So the general solution is obtained as

x(t) = eat
∫ t

b

e−aug(u)du,

for an arbitrary b ∈ R. We can also write this as

x(t) = Beat + eat
∫ t

0

e−aug(u)du,

where B is an arbitrary constant. These two representations are equivalent,
and one can pass from the first to the second, for example, by setting B =
−
∫ b

0
e−aug(u)du.
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For an arbitrary n× n system:
Consider

x′ = Ax+G(t), x =


x1

x2
...
xn

 , G(t) =

g1(t)
...

gn(t)

 .

If A is a diagonal matrix, i.e.,

A =


λ1 0

λ2

· ·
·

0 λn

 ,

then 
x′
1

x′
2
...
x′
n

 =


λ1x1 + g1(t)
λ2x2 + g2(t)

...
λnxn + gn(t)

 ,

which gives n independent linear equations. So we may apply in this case
the solution we obtained above in the n = 1 case to each row, and obtain
the general solution to the linear system of ODE’s as

x =


eλ1t

∫ t

b1
e−λ1ug1(u)du

eλ2t
∫ t

b2
e−λ2ug2(u)du

...

eλnt
∫ t

bn
e−λnugn(u)du

 ,

where b =


b1
b2
...
bn

 is an arbitrary (constant) vector in Rn.

This method can be extended to solve the inhomogeneous system if A
is diagonalizable, i.e., when M−1AM is, for a non-singular matrix M , a
diagonal matrix D.
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Sometimes one can solve the inhomogeneous equations without trying to
diagonalize the matrix:

dx

dt
= Ax+ ertz, z =

z1
...
zn

 ,

where z is a constant vector, i.e., independent of t. Try:

x = ertC,

where C is a constant vector. Then x′ = rertC, which equals AertC + ertz iff
we have

C = (r − A)−1z.

Hence the general solution is

x = ert(r − A)−1z.
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