Lecture 16
For any m X m-matrix

M:(mij),lgi,j<m,

the exponential of M is defined by

= M"
eXp(M) = €M = E F,
n=0 ’

when the right hand side converges, with M? = I. Notation:
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Why is this relevant for us?
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Reason: If we have X’ = Ax, where x = | ! |, x' = Cfl—f = , and
$m dxm

dt
A an m x m-matrix with constant coefficients, a basic set of solutions is given

by the columns of the matrix

Note:  ®'(t) = Aet = A®(t). A set of basic solutions are given by the
columns of ®(t) = (zV 2@ ... 2(™), with

We have mostly looked so far at the case where A has distinct eigenvalues.
A modification is necessary for repeated eigenvalues!

Now we will look at the exponential of some simple 2 x 2-cases:



(i) Ais diagonal: A= (O )\2)
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A* = G) 21&) A® = <(1) 31a> s, A= ((1) nloz) (by induction)
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(iii)

Check: For A = (1 Oé),
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Remembering that A% = I,
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Note that for any ¢,
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Putting t =1,
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It appears hopeless to get a nice expression for e for an arbitrary m x m
matrix M = (my;), even for m = 2. We tackle this problem by appealing to
similarity of matrices (also called conjugacy).

One says that 2 matrices M, M’ are similar (or conjugate) iff we can find
an invertible matrix B, meaning a nonsingular matrix, such that

M = B7'MB.
In this case,

det(M") = det(B") det(M) det(B)

N 7

]
= det M’ = det M
Powers of M’ and the exponential:
M =B 'MB
(M')? = (B*MB)(B'MB)
=B 'MIMB

=B 'M?Bso (B"'MB)*= B *M’B
Similarly (B~'MB)* = B"'M*B

So in general, (B~'!MB)" = B"*M"B for any n > 0.
Hence

“ (B*MB)" <~B'M"B
exp(B'MB) =Y B MB)" _ y BB
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In other words,
() ePTIME — prlMp

A natural question which arises is to know whether every m x m-matrix M
is similar to a matrix M’ for which we can compute its exponential, thereby
allowing us to know eM as well by the identity (x). Camille Jordan gave a
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nice positive answer to this, and for m = 2, here is the statement, which can
be checked by hand using matrix multiplication.

Theorem Suppose M = (CCL Z),

ible matriz B st B-*M B is of one of the following form

(i) B"'MB = (Aol AO2>

then M is similar, we can find an invert-

Al
) Rl _
(ii) B-"'MB = (0 /\)
In particular, if M’ = B~'M B, then we can explicitly calculate ', and
hence also determine e using M = BM'B™!, because
eM = BeM' B,
In case (i) of this Theorem, called the Jordan decomposition (for m = 2),

M is called diagonalizable, but the eigenvalues A;, Ay may or may not be
distinct.



Lecture 17

More on repeated eigenvalues and the Jordan decomposition:

Al :
0 A), has two independent

X2

Recall that x' = Ax, x = (xl) and A = (

solutions x), x(?) given by

)
(1) At At At
s 51 () 2(3) - ) (30
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<= () = (o) e+ (3)e

dx® eM + et A1 [teM
i _ _ (2)
Check : T ( JY ) = (0 /\) (e”) = Ax

The vector (8) is chosen first because it is an eigenvector for A = (3 }\)

with eigenvalue A, i.e., A ((1]) =\ (é), or equivalently

(A=) ((1)) 0.

Here A — X\ means A — A\I, and 0 is the zero vector (8)

Note: To get independent solutions, we would need to choose a second vector

v = (Z) carefully. Note that

A1) (a Aa+0b .
AVz(O )\) (b>:( \b )75)\V if b+#0.

: : : : 1 :
Of course, b = 0 iff v is proportional to the first eigenvector (O) In partic-

0) . Nevertheless, we

ular, we cannot choose v to be the other unit vector (1
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have

Conclusion:

(i) <(1)> is an eigenvector for A with eigenvalue A, i.e.,

(A=) <(1)> — 0.

(ii)) (A—=N) ((D # 0, so ((1)) is not an eigenvector but (4 — \)? (2) = 0.

We call ((1)) a generalized eigenvector for A relative to .

General definition:  For any positive integer n, given an n X n-matric
A = (a;j), a generalized eigenvector for A relative to an eigenvalue \ is a
non-zero vector v such that (A — \)* =0, for some k, with 1 < k < n.

Recall that if A has distinct eigenvalues Ai, o, ... \,, then we can find
a basis of the n-space consisting of eigenvectors for A. If this basis is
v @ o™ with Av0) = /\jv(j), we can put B = (v 0@ M),
A1 0
A2
Then B~'AB =
0 An
Having distinct eigenvalues implies that the matrix A in question is di-
agonalizable, but the converse is not necessarily true. For example, look at

(é (1)>, which is diagonal but has 1 as a repeated eigenvalue.
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Note:  There are many matrices with repeated eigenvalues that are not

diagonalizable,
11
eg., A= <() 1) )

A general fact: (without proof)

For any matriz A, we can find a basis consisting of generalized eigenvec-
tors.

Example 1:
Al : 1 0
n=2 A= (O A), Basis: <O> , (1)
————
generalizedeigenvectors
Example 2:

3 —1
=)
3—\ -1

det(A—A)zdet( ] 1_/\):(3—95)(1—)\)4-1

=4 —4\+ )\
=(A-22=0

Compute eigenvalues

So A = 2 is the unique eigenvalue with multiplicity 2. There is only one
eigenvector up to scaling. To see this, we solve:

(A=) @;) =0
G)E)-0)

Tl — T = 0

T, — 29 =20

1 = T2

. . . 1 :
So every eigenvector is a multiple of v = (1) . To get the second independent



vector, which can only be a generalized eigenvector, not a true one, we solve:

4o (3) v ()
)0

1=y =1

1 —y2 =1

1 o . )

o) asour generalized eigenvector, since (A—\)*w =
0, and w is linearly independent from v.

Thus we have found a basis of R? made up of generalized eigenvectors for

TR I N
B—G (1)) det(B) = —
im0 1) ( 4)
T30 )
(2 ) (0)- ( )
(0 i) with A =

This is a special case of the decomposition asserted by Jordan for 2 x 2-
matrices.

So we may choose w =

Jordan decomposition for (n x n)-matrices:

Given any A = (a;;)1 < 4,5 < n, with eigenvalues \; ...\, having mul-
tiplicities my, ma, ... my respectively, we can find an invertible n x n-matrix



B, and positive integers ni,na, ..., n, with Z;zl n; = n, such that
M, 0
M
B7'AB = : ,
0 M,
which is a block diagonal matriz, with each block M; being an (n; xn;)-matriz
of the form

A1 0
A1
Mj = s
1
0 Aj

where the only non-zero entries are either those on the diagonal, which are
all \j, an eigenvalue of A, and those on the super-diagonal, i.e., the line
parallel to the diagonal and just above it, which are all 1’s. Moreover, every
etgenvalue s some A\j, but the \;’s may not all be distinct.

Note that B~'AB is block diagonal, but is not diagonal unless all the
n;’s are 1. Furthermore, if A is an eigenvalue of A, then its multiplicity m

is given by
my =) n
JEJIA
where Jy is the set of j < r such that A\; = .

Recall (from the previous lecture) that for n = 2, there are two Jordan

forms, namely
A1 0O nd Al
0 ) N0 a)

For n = 3, there are four Jordan forms:

A 00 A 10 A 0 0
0O X O],10 X O)],10 X 11,
0 0 X5 0 0 X 0 0 X
and
A1 O
0 XN 1
0 0 X
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Lecture 18

Consider the linear system of first order ODE’s with constant coefficients:

, x=| (*)

Tn

Suppose we have found an invertible matrix B such that B~ AB is a diagonal
A1 0

matrix D = Ao . To get a solution to (x), define a new (vector)
0 An

variable y = B7'x, which implies x = By. Then y/ = B7'x' = B71Ax =

B~'ABy, and so y satisfies the simpler ODE::

(%) y' = Dy.
A Special solution matriz for (xx) is obtained by exponentiating Dt:
At 0
Dt

d =e"" =exp Aot
0 Ant

et 0
Aot

0 e/\nt

The special set of independent solutions are

et 0 0
0 er2t .
yV=1 . ¥y?=] .| Y=
: : 0
0 0 eAnt

The corresponding solutions for x satisfying (x) are

XD = ByW vi=12 . .n

Any time we are given X' = Ax with A a constant n X n matrix we can
get a matrix of solutions as:



We can get a basis of solutions if det[®(t)] # 0.
Problem: It is hard to compute et, when there is no eigenbasis.

A way out is to use the Jordan decomposition for A (discussed last time),
which allows us to find a similar matrix in block diagonal form of a specific
type, allowing us to compute the exponential.

A remark on linear homogeneous systems with nonconstant coeffi-
cients

Suppose we have to solve x' = A(t)x, with A(¢) a non-constant matrix.
A special solution matrix is given by

cb(t) _ efot A(u)du7

and to make sense of this, we need to know that A(t) is integrable; a suffi-
cient condition, which we will often assume, is to have A(t) be a continuous
(matrix) function of ¢t. We have, by the Fundamental Theorem of calculus,

o'(t) = %( /0 tA(u)du)CD(t)) = A(D)D().

(%t2 0 ) o
143 3t
= o) = e\ 0 3t (D
0 es
Inhomogeneous linear systems with constant coefficients
Homogeneous: x' = Ax x' = %x

Non-homogeneous: x' = Ax + G(t),
where G(t) purely a vector function of ¢.

FEven the case n =1 is not trivial for inhomogeneous equation

LIy

12



If g(t) = ¢, a constant, then x = —c¢/a is the equilibrium solution, and
for z + £ # 0,we have | j_f/c%dt = [ adt, yielding In |z + £| = at
General solution:

c
r=——+ Be™, BeER,
a
with B = 0 giving the equilibrium solution.
It is a bit more subtle when ¢(t) is not a constant. Given

5 ar e at), a0,

with ¢(t) integrable, one tries
xr = h(t)e™,
where h(t) will be suitably chosen differentiable function. We have

Cji—f = az + I (t)e™.

So we need to choose h(t) such that

B'(t) = e g(t).

Note that this fixes h(t) up to adding an arbitrary constant.
We may choose

o) = [ gt

where 0 is a real number; a particular solution is obtained by taking b = 0,
for example. Any change of b only adds a constant to h(t), as expected.
So the general solution is obtained as

t
z(t) = eat/ e “g(u)du,
b
for an arbitrary b € R. We can also write this as
t
x(t) = Be™ —1—6‘”/ e "g(u)du,
0

where B is an arbitrary constant. These two representations are equivalent,
and one can pass from the first to the second, for example, by setting B =

— fob e~ %g(u)du.
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For an arbitrary n x n system:

Consider
x
x; 9:(1)
X' =Ax+Gt), x=| |, Gl = :
, In(1)
If A is a diagonal matrix, i.e.,
A1 0
Ao
A= ,
0 An
then
iL"l )\1331 + g1 (t)
58/2 B )\25132 + 92 (t)
x AnZn + gn(t)

which gives n independent linear equations. So we may apply in this case
the solution we obtained above in the n = 1 case to each row, and obtain
the general solution to the linear system of ODE’s as

e’\ltfb; e Mg (u)du
et [ e gy (u)du

X = )
Mt J1 e Ng, ()
by
by | . . :
where b = | | is an arbitrary (constant) vector in R™.
bn

This method can be extended to solve the inhomogeneous system if A
is diagonalizable, i.e., when M~YAM is, for a non-singular matrix M, a
diagonal matrix D.

14



Sometimes one can solve the inhomogeneous equations without trying to
diagonalize the matrix:

21
=Ax+e'z, z=| : |,

Zn

dx

dt

where z is a constant vector, i.e., independent of t. Try:
x = e"C,

where C is a constant vector. Then x’ = re™C, which equals Ae™C + e"'z iff
we have

C=(r—A"z

Hence the general solution is

x = e(r—A) 'z
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