
Lecture 13

Fundamental Matrices
If we have a linear system x′ = Ax, with A an n×n matrix with constant

coefficients aij, 1 ≤ i, j ≤ n, a fundamental set, or basis, of solutions is given
by x(1),x(2), . . . ,x(n) such that every solution is of the form

x = c1x
(1) + c2x

(2) + · · ·+ cnx
(n),

for suitable constants c1, c2, . . . , cn.
We’ve seen how to get a fundamental set of solutions (x(1),x(2), . . .x(n))

when A has n distinct eigenvalues λ1, λ2, λ3 . . . λn wth (column) eigenvectors
v(1),v(2), . . .v(n) ̸= 0 (i.e., Av(i) = λjv

(j)):

x(j) = v(j)eλit x(j)(0) = v(j)

The associated fundamental matrix is given by

Ψ(t) = (x(1) x(2) . . .x(n))

What is important here is not that A has distinct eigenvalues, but that there
is a basis of n-space consisting of eigenvectors for A. In general there is no
eigenbasis, and what we do know is that when the eigenvalues are all distinct,
then there is definitely such a basis.

Note: In general, there are many fundamental sets of solutions, and so
Ψ(t) depends on the particular choice of x(1), . . .x(n). We have, for all j,

dx(j)

dt
= Ax(j)

⇒ dΨ

dt
=

(
dx(1)

dt
, . . . ,

dx(n)

dt

)
← n× nmatrix

Thus Ψ satisfies the matrix differential equation

dΨ

dt
= AΨ.

Note: Ψ(0) = (x(1)(0) . . .x(n)(0)) = (v(1),v(2), . . .v(n)). For example, one

could have x(1)(t) =

(
2et

−et
)

and x(2)(t) =

(
e2t

e2t

)
then v(1) =

(
2
−1

)
and
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v(2) =

(
−1
1

)
, λ1 = 1 and λ2 = 2. In this case,

Ψ =

(
2et −et
−et et

)
, Ψ(0) =

(
v(1) v(2)

)
=

(
2 −1
−1 1

)
.

Recall: We say that a fund matrix Ψ is in special form if Ψ(0) is the identity
matrix In. In this case, the eigenvectors are

v(1) =


1
0
...
0

 = e1,v
(2) =


0
1
...
0

 = e2,v
(n) =


0
...
0
1

 = en.

When we have a special fundamental matrix, it is customary to denote it by
Φ(t) instead of Ψ(t).

n = 3:

Suppose A is a diagonal matrix:

1 6 0
0 −2 0
0 0 3


Eigenvalues : det(λI3 − A) = det

λ− 1 0 0
0 λ+ 2 0
0 0 λ− 3


= (λ− 1)(λ+ 2)(λ− 3)

=⇒ λ ∈ {1,−2, 3}

For λ1 = 1, A

1
0
0

 =

1
0
0


λ2 = −2: A

0
1
0

 =

 0
−2
0

 = −2

0
1
0


λ3 = 3: A

0
0
1

 = 3

0
0
1


Ψ =

et 0 0
0 e−2t 0
0 0 e3t

 , Ψ(0) = I3
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For any n, the general solution x is a linear combination of fundamental
ones. We can solve for the constants c1, c2, c3 . . . cn, hence obtain a particular

solution, if we are given the initial value x(0) =
(
...

)
. Indeed,

c1x
(1)(0) + c2x

(2)(0) + · · ·+ cnx
(n)(0) = x(0)

is a system of n linear equations in n unknowns. We can rewrite this in the
matrix form

(x(1)(0)x(2)(0) . . . x(n)(0)) = Ψ(0)

c =

c1
...
cn


Ψ(0)︸︷︷︸

n×n matrix

c = x(0)︸︷︷︸
column vector of size n

(0)

So we can multiply on the left by Ψ(0)−1 (on both sides) to get

c = Ψ(0)−1x(0)

If Ψ were a special (or standard) fundamental matrix x of solutions, i.e., if
Ψ = Φ, then Φ(0) = In, so Φ(0)−1 = In.

Conclusion: If Ψ is in special form then

c = x(0).

Since x = Ψ(t)c, we get

x = Ψ(t)Ψ(0)−1x(0).

Example for n = 2: Suppose A =

(
1 0
0 −2

)
. Then we know that the

eigenvalues are λ = 1,−1, with corresponding eigenvectors v(1) =

(
1
0

)
,

v(2) =

(
0
1

)
.
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Fundamental solutions:

x(1) = v(1)et =

(
et
0

)
x(2) = v(2)e−2t =

(
0

e−2t

)
⇒ Φ(t) =

(
et 0
0 e−2t

)

In this case, At =

(
t 0
0 −2t

)
and Φ(t) =

(
et 0
0 e−2t

)
, which can be obtained

by “exponentiating” At.

If we have a diagonal n× n-matrix:

A =


λ1 0

λ2

·
·

0 λn

 ,

then we write

eAt =


eλ1t 0

eλ2t

·
·

0 eλnt

 .

In particular, its value at t = 0 is just the identity matrix In.

Idea: Try to define eAt for any A, and put Φ(t) = eAt so that the column
vectors of eAt give solutions x(1)(t) . . .x(n)(t) of the linear system of first order
ODE’s. We are justified in writing Φ (denoting a special matrix of sultions),
because Φ(0) = e0 = In.

Why should such a Φ(t), defined as eAt, give a solution to Φ(t) = AΦ(t)?
The reason is this: Since A is a constant matrix,

d

dt
(At) = A

=⇒ d

dt
(eAt) = eAt

(
d(At)

dt

)
= AeAt
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A natural Question: Can we define the exponential matrix in a satisfac-
tory way in general? Yes, at least if A is conjugate to a triangular matrix,
i.e., A = (aij), with aij = 0 if i < j (upper triangular) or with aij = 0 if i > j
(lower triangular). When n = 2, A triangular iff we have e.g.,

A =

(
a b
0 d

)
or

(
a 0
c d

)
.

A possible definition of eM :

For M : any n× n-matrix, put

eM =
∞∑
n=0

Mn

n!
,

when the infinite series of matrices converges. Let us check this definition in
a known case (for n = 2):

M =

(
1 0
0 −2

)
→ eM =

∞∑
n=0

Mn

n!
=

∞∑
n=0

1

n!

(
1n 0
0 (−2)n

)
=

(
e 0
0 e−2

)
More generally,

M =

(
λ1 0
0 λ2

)
=⇒ eM =

(
eλ1 0
0 eλ2

)
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Lecture 14

Today’s topics: Repeated eigenvalues (especially for n = 2, 3), the expo-
nential of a matrix

Repeated eigenvalues

Start with the following simple example

dx

dt
= Ax, x =

(
x1

x2

)
, A =

(
1 1
0 1

)
Eigenvalues of A: solve for |λI2 − A| = 0, i.e.,

det

(
λ− 1 −1
0 λ− 1

)
= (λ− 1)2 = 0

There is only 1 eigenvalue namely λ = 1. In this case we say λ = 1 appears

as an eigenvalue with multiplicity 2 for A =

(
1 1
0 1

)
.

We can find one eigenvector v ̸= 0 for λ = 1 easily:(
1 1
0 1

)(
v1
v2

)
=

(
v1 + v2

v2

)
=

(
v1
v2

)
This holds iff v2 = 0. So we may take v =

(
1
0

)
←, which is a standard unit

vector. So we get a solution to x′ = Ax by setting

x(1) = vet =

(
1
0

)
et =

(
et

0

)
dx(1)

dt
=

(
et

0

)
= Ax(1)

Question: Is there a second solution to x′ = Ax? If so, how can we find it?
Will it be linearly independent of x(1)?

Note: We cannot write the 2nd solution in the form v(2)et because, for
it to be a solution, v(2) would need to be an eigenvector for λ = 1, and
then v(2) would in this case be a scalar multiple of v(1). Then x(2) would in
turn be proportional to of x(1), which is not what we want. In this case the
Wronskian W (x(1),x(2) is 0.
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Moral: If there’s a 2nd solution x(2) linearly independent from x(1), it
cannot be of the form (

a vector indep
of t

)
et.

Idea: Make the first term vector dependent on t.
Try:

x(2) =

(
t
1

)
et =

(
tet

et

)
⇒ d

dt
x(2) =

(
et + tet

et

)
,

Ax(2) =

(
1 1
0 1

)(
tet

et

)
=

(
tet + et

et

)
So d

dx
x(2) = Ax(2), showing that x(2) is a second solution of x′ = Ax. But we

want to know if x(2) is linearly independent of x(1). The answer is YES for
this choice of x(2), because

W (x(1),x(2)) = det

(
et tet

0 et

)
= e2t ̸= 0,

for any t.

Summary: When A =

(
1 1
0 1

)
, which has λ = 1 as a repeated eigenvalue,

two linearly independent solutions of x′ = Ax are given by

x(1) =

(
1
0

)
et, x(2) =

(
t
1

)
et.

A slight variation of this example:

A =

(
λ 1
0 λ

)
, λany scalar

Eigenvalues: det(vI2 − A) = 0

det

(
r − λ −1
0 r − λ

)
= (r − λ)2 = 0
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⇒ λ is the only eigenvalue (with multiplicity 2).

Let v(1) =

(
1
0

)
. Then,

Av(1) =

(
λ 1
0 λ

)(
1
0

)
=

(
λ
0

)
= λv(1)

⇒ v(1) is an eigenvector

So one solution to x′ = Ax is just x(1) =

(
1
0

)
eλt =

(
eλt

0

)
.

Second solution?

Try x(2) =

(
tetλ

etλ

)
again. Then

dx(2)

dt
=

(
λtetλ + etλ

λetλ

)
Ax(2) =

(
λ 1
0 λ

)(
teλt

eλt

)
=

(
λteλt + eλt

λeλt

)
So it works!

What about the Wronskian?

W (x(1),x(2)) = det

(
eλt teλt

0 eλt

)
= e2λt ̸= 0,

for any t. Thus x(1) and x(2) are linearly independent solutions (for all t).

Another example:

x′ = Ax, x =

x1

x2

x3

 , A =

1 1 0
0 1 1
0 0 1


Key fact: The eigenvalues of a triangular matrix are just the diagonal
entries.

So in this case, λ = 1 is the only eigenvalue, so with multiplicity 3 (as A
is a 3× 3-matrix.

Check: v(1) =

1
0
0

 is an eigenvector with eigenvalue 1

1 1 0
0 1 1
0 0 1

1
0
0

 =

λ1

0
0

 =

1
0
0


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So one solution to the ODE is

x(1) =

1
0
0

 et =

et

0
0

 .

By analogy with the n = 2 case, try

x(2) =

tet + et

et

0

 .

Then 1 1 0
1 1

1

x(2) =

tet + et

et

0

 ,

and

d

dt
x(2) =

tet + et

et

0

 = Ax(2).

What about a third independent solution?

Try

x(3) =

1
3
t2et

tet

et

 .

Then

dx(3)

dt
=

1
2
t2et + tet

tet + et

et

 ,

and 1 1 0
1 1

1

x(3) =

1
2
t2et + tet

tet + et

et

 .

So x(3) is also a solution. To check linear independence of these three solu-
tions, we need to evaluate the Wronskian and check that it is non-zero:

W = det

et tet 1
2
t2et + tet

0 et tet

0 0 et

 = e3t ̸= 0, ∀t.
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The associated (special) fundamental matrix is

Φ =

et tet 1
2
t2et

0 et tet

0 0 et

 , with Φ(0) = I3.

Back to the exponential of a matrix

Why do we need it?
Reason: Given x′ = Ax for any n× n matrix A, we can find a “canonical”
or “special” set of solutions as the column vectors of Φ(t) = eAt (when it
makes sense), with

Φ(0) = eA(0) = e0 = I

One defines the exponential of any n× n matrix B by the infinite series

eB =
∞∑
n=0

Bn

n!
; B0 = I

Does this make sense?

Example: n = 2, x′ = Ax, A =

(
1 1
0 1

)
eAt =? A2 =

(
1 2
0 1

)
, A3 =

(
1 3
0 1

)
By induction, An =

(
1 n
0 1

)
, for any n ≥ 0. Hence

(At)n =

(
tn ntn

0 tn

)
, ∀ n ≥ 0,

and

eA =
∞∑
n=0

An

n!
=

∞∑
n=0

1

n!

(
tn ntn

0 tn

)
=

∞∑
n=0

(
tn

n!
ntn

n!

0 tn

n!

)
=

(∑∞
n=0

tn

n!

∑∞
n=1

tn

(n−1)!

0
∑∞

n=0
tn

n!

)

⇒ eAt =

 et tet

0︸︷︷︸
x(1)

et︸︷︷︸
x(2)


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Check the following for any n×n-matrix B, and any invertible n×n-matrix
M :

eM
−1BM = M−1eBM.

(Hint: What is (M−1BM)n?)
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Lecture 15

Review of some earlier topics for the midterm:

First order ODE:

dy

dt
= f(t, y) (*)

t: independent variable (typically, t ≥ 0)
y: dependent variable = y(t)

Note: An equation like (dy
dt
)2 = t + y is also a first order ODE but it is

not linear.
x is linear iff f(t, y) = a(t)y + b(t), i.e., the ODE is linear iff f is linear

in y. A linear ODE (∗) has constant coefficients iff a(t), b(t) are independent
of t.

Typically we work with (∗) where f is at least continuous. If f is contin-
uously diffferentiable, then we can find a solution by a limiting process (of
Picard), but not necessarily in closed form.

Example 1

dy

dt
= g(t), g(t) integrable

y(t) =

∫
g(t)dt+ c

For example, if dy
dt

= 2t, the function 2t is continuous, so integrable, and
y = t2 + C.

Can evaluate C if given an initial condition. In this example C = y(0).

Example 2 (separation of variables)

dy

dt
=

y − 1

x2 + 1

Note that x2 + 1 ̸= 0 in R.
Equilibrium solution occurs when y = 1, but how do we solve the ODE

for y ̸= 1? The equation is rewritten as

dy
dx

y − 1
=

1

x2 + 1
when y ̸= 1.
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Integrating both sides with respect to x, we get∫ dy
dx

y − 1
=

∫
dx

x2 + 1
+ C

ln |y − 1| = arctanx+ C

|y − 1| = earctan x+C

y = 1± eCearctanx.

General solution: y = 1 + Bearctan x, for any constant B, with B = 0 corre-
sponding to the equilibrium solution.

Example 3 (change of variables)

du

dt
= u− t

Equilibrium solution is by definition a solution u where du
dt

= 0. It’s a bit
subtle here, as u′ is zero when u = t, but u = t is not a solution of the ODE!
Indeed, u′ would be 1 if u = t. not a solution! ⇒ du

dt
= 1.

We solve this ODE by changing variables. Put y = u− t. Then

dy

dt
=

du

dt
− 1 = u− t︸ ︷︷ ︸

y

−1.

So we have converted to a new differential equation

dy

dt
= y − 1.

As in example 2, we can write, for y ̸= 1,∫ dy
dt

y − 1
dt =

∫
1dt

ln |y − 1| = t+ c

y − 1 = etec

y = 1± etec

⇒ y = 1±Bet, B ̸= 0

⇒ u = y + t = 1 + t+Bet,
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where B is any constant, with B = 0 corresponding to the equilibrium so-
lution y = 1 (for the ODE in y). Suppose u(0) = 0. Then we can evaluate
B:

1 +B = 0 =⇒ B = −1

Final solution:
u = 1 + t− et, if u(0) = 0.

Stability
Note that in Example 2, the general solution to dy

dt
= y−1

x2+1
was y =

1+Bearctanx, for any constantB, withB = 0 corresponding to the equilibrium
solution y = 1. It is of interest to know the asymptotic behavior of such a
solution as x goes to infinity. We have

lim
x→∞

1 +Bearctan x = 1 +Beπ/2

If y1 is a particular solution of dy
dt

= f(t, y), then we say that y1 is stable
if for any other solution y2 which starts out being close to 1 at t = 0, we will
have y(t) close to y1(t) for all t > 0.

More precisely, for all ϵ > 0, ∃ δ > 0 such that if |y = (0) − y1(0)| < δ,
then |y2(t)− y1(t)| < ϵ.

We are specifically interested in the stability of equilibrium solutions.
An important variant: An equilibrium solution yeq(t) is asymptoti-

cally stable if for any y2 starting out near yeq at t = 0,

lim
t→∞
|y2(t)− yeq(t)| = 0

When f is continuous, then asymptotic stability implies stability.

Example
dy

dx
=

y − 1

x2 + 1

Equilibrium solution: y = 1

General solution: yB = 1 + Bearctan(x)
x→∞−→ 1 + Be

π
2 . If B ̸= 0, then

1 +Be
π
2 ̸= 1. So if B ̸= 0, then limx→∞ |1− yB| = Be

π
2 ̸= 0. So y = 1 is not

asymptotically stable.
On the other hand, If B is close to 0, then this limit is close to y = 1,

but the limit is not exactly 1 for B ̸= 0, however small. Thus the (unique)
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equilibrium solution y = 1 in this example is stable, but not asymptotically
stable.

A useful criterion for asymptotic stability
Suppose we have dy

dt
= f(t, y), with f(t, y) depending on only y. So we

may write f(t, y) = φ(y) which does not depend on t. Suppose in addition
that φ is a differentiable function of y. Let y1 be any equilibrium solution
(y1), so that φ(y1) = 0. Then

(i) If φ′(y1) < 0, then y1 is asymptotically stable;

(ii) If φ′(y1) > 0 then y1 not asymptotically stable .

If φ′(y1) = 0, then nothing can be said.

Note that this criterion works only if we can check two things, namely
that f(t, y)φ(y) is independent of t, and that φ(y) is a differentiable function
of y.

Example: The Logistic equation:

dP

dt
= rP (1− P

K
), r,K > 0,

whose right hand side φ(P ), say, is differentiable bing a polynomial; it is also
independent of t. So we may apply the criterion. Note that

φ′(P ) − r(1− 2P

K
).

Equilibrium Points: P = 0 and P = K

φ′(P ) < 0 at P = K

φ(P ) > 0 at P = 0

So P = K is asymptotically stable, while P = 0 is not, by the stability
criterion.
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