Lecture 13

Fundamental Matrices

If we have a linear system x’ = Ax, with A an n X n matrix with constant
coefficients a;;, 1 < 14,7 <n, a fundamental set, or basis, of solutions is given
by x1), x® . x( such that every solution is of the form

x = x4 eox@® 4o 4, x ™,

for suitable constants ci, ca, .. ., c,.
We've seen how to get a fundamental set of solutions (xM, x® .. x(™)

when A has n distinct eigenvalues i, Ao, A3 ... A\, wth (column) eigenvectors
v v v £ 0 (e, AvD = \v0)):

x) =yt x0)(0) = v
The associated fundamental matrix is given by
T(t) = (x x@ . x)

What is important here is not that A has distinct eigenvalues, but that there
is a basis of n-space consisting of eigenvectors for A. In general there is no
eigenbasis, and what we do know is that when the eigenvalues are all distinct,
then there is definitely such a basis.

Note: In general, there are many fundamental sets of solutions, and so
W(t) depends on the particular choice of x|, .. x(™ . We have, for all j,

dx ()

— AxW)
a
N dv dx™M dx (™ o« tri
— = - a
p T n X nmatrix
Thus V¥ satisfies the matrix differential equation
dv
— = AVU.
dt

Note:  ¥(0) = (xM(0)...x™(0)) = (v, v® .. v() For example, one
2

2¢!

¢
could have X(l)(t) _ —et) and X(2)(t> = (ZQt) then v = (_21) and
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v = ( 11> A1 = 1 and Ay = 2. In this case,

2et —et D (2 2 -1
Recall:  We say that a fund matrix ¥ is in special form if U(0) is the identity
matrix [,,. In this case, the eigenvectors are

1 0 0
0 1 :

v =1 | = el,v(2) =| . | = GQ,V(n) =] =e,.
0 0 1

When we have a special fundamental matrix, it is customary to denote it by
®(t) instead of W(t).

n=3J4:
1 6 0
Suppose A is a diagonal matrix: [0 —2 0
0 0 3
A—1 0

0
Eigenvalues : det(A3 — A) = det 0 X+2 0
0 0 A=3
=A=1)A+2)(A-3)
= e {l,-2,3}
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For any n, the general solution x is a linear combination of fundamental
ones. We can solve for the constants ¢y, o, c3. .. ¢,, hence obtain a particular

solution, if we are given the initial value x(0) = () Indeed,

erxV(0) + ex?(0) + -+ + x™(0) = x(0)

is a system of n linear equations in n unknowns. We can rewrite this in the
matrix form

(xW(0)x2(0) ... x™(0)) = ¥(0)

&1
c=|:
Cn
v(O) c= x(0) (0)
~—~— ~—
nXxXn matrix column vector of size n

So we can multiply on the left by ¥(0)~* (on both sides) to get
c= U (0)'x(0)
If U were a special (or standard) fundamental matrix z of solutions, i.e., if
U = &, then ®(0) = I,,, so (0)~! = I,,.
Conclusion: If U is in special form then
c=x(0).
Since x = U(t)c, we get

x = U(t)¥(0) z(0).

Example for n = 2: Suppose A = <(1) _02) Then we know that the
eigenvalues are A = 1, —1, with corresponding eigenvectors v = ((1)),

V@ — ((1)) _



Fundamental solutions:

<D =yt —

A

)
x@ — y@e-2t _ ( )
= O(t) = <0 €2t>

t
In this case, At = (é _0215) and ®(t) = (% eOQt), which can be obtained

by “exponentiating” At.

If we have a diagonal n X n-matrix:

A 0

A2
A= ,
0 A
then we write
et 0
e>\2t
oAt —
0 et

In particular, its value at ¢ = 0 is just the identity matrix I,,.

Idea: Try to define e for any A, and put ®(t) = e so that the column
vectors of e give solutions x(V)(¢) ... x(™ () of the linear system of first order
ODE’s. We are justified in writing ® (denoting a special matrix of sultions),
because ®(0) = e = I,,.

Why should such a ®(t), defined as e, give a solution to ®(t) = AD(t)?
The reason is this: Since A is a constant matrix,

d

dt(At) A

d, am oar (dAD)N 4
— dt<e )=e o = Ae



A natural Question: Can we define the exponential matrix in a satisfac-
tory way in general? Yes, at least if A is conjugate to a triangular matrix,
ie., A= (a), with a;; = 0if i < j (upper triangular) or with a;; = 0ifi > j
(lower triangular). When n = 2, A triangular iff we have e.g.,

(5 )

A possible definition of eM:

For M: any n X nm-matrix, put

when the infinite series of matrices converges. Let us check this definition in
a known case (for n = 2):



Lecture 14

Today’s topics:  Repeated eigenvalues (especially for n = 2,3), the expo-
nential of a matrix

Repeated eigenvalues

Start with the following simple example

dX_ [T . 11
E_AX’ X—(@), A—(O 1)

Eigenvalues of A: solve for |\, — A| =0, i.e.,

A—1 -1
det( 0 )\_1):()\—1)2:0

There is only 1 eigenvalue namely A = 1. In this case we say A = 1 appears
11

0 1)
We can find one eigenvector v # 0 for A = 1 easily:

L) G)=(")= ()

This holds iff v = 0. So we may take v = (é) <+, which is a standard unit

as an eigenvalue with multiplicity 2 for A =

vector. So we get a solution to x’ = Ax by setting

Question: Is there a second solution to x’ = Ax? If so, how can we find it?
Will it be linearly independent of x()?

Note: We cannot write the 2nd solution in the form v®e? because, for
it to be a solution, v(® would need to be an eigenvector for A = 1, and
then v(® would in this case be a scalar multiple of v(V. Then x(® would in
turn be proportional to of x™", which is not what we want. In this case the
Wronskian W (x"), x(?) is 0.



Moral: If there’s a 2nd solution x® linearly independent from x| it

cannot be of the form
a vector indep ot
of t ’

Idea: Make the first term vector dependent on t.

Try:
t te'
-()e-()
d e + te!
(2 =
7 at ( et ) ’
1 1\ [te! te' + e
(2) — —
=0 1) () = (5
So £x?) = Ax® showing that x? is a second solution of x' = Ax. But we

want to know if x(® is linearly independent of x(). The answer is YES for
this choice of x®, because

t t
W (xM, x®) = det (% t;) = #£0,

for any t.

Summary: When A = (1 1) , which has A\ =1 as a repeated eigenvalue,

01
two linearly independent solutions of X' = Ax are given by

1 t
1 — b (2) — t
b'e —(O>e,x —(1)6.

A slight variation of this example:

Al
A= (0 )\) , Aany scalar

Eigenvalues: det(vly — A) =0

r—Xx —1
det( 0 T_)\>:(r—)\)2:0



= \ is the only eigenvalue (with multiplicity 2).

Let v = (é) Then,

AT (1) /A
1 _ _ (M) 2 e
w0 (53 (o) = () =

= vl is an eigenvector
. .. 1 At
So one solution to x’ = Ax is just x(M) = ( ) eM = (6 )

Second solution?
A

Try x?) = <t:t/\> again. Then

dx? et + eth
dt _( et )

A1) [teM Atert + et
(2 — _
= (5 3) () = ("34)
So it works!

What about the Wronskian?

Mo
W(xW, x®) = det (60 t:At) =M £ 0,

1 2)

for any ¢. Thus x™") and x® are linearly independent solutions (for all ).

Another example:

X 1 10
xX =Ax, x=|x2], A=|011
x3 001
Key fact:  The eigenvalues of a triangular matriz are just the diagonal

entries.
So in this case, A = 1 is the only eigenvalue, so with multiplicity 3 (as A
is a 3 X 3-matrix.

1
Check: v®Y = [ 0| is an eigenvector with eigenvalue 1
0
1 10 1 A 1
011 Ol=(0]=10
001 0 0 0



So one solution to the ODE is

1 e
xW=10]e=1[0
0 0
By analogy with the n = 2 case, try
te' + et
x2) = et
0
Then
110 tel + et
1 1] x®% = et ,
1 0
and
d te' + e
“x@ = et — Ax®
dt 0

Try
%tQQt
xB®) = | tet
ot
Then
%tht + tet
dx(® t t
T = te +6 s
ol
nd
110 st%e’ + te
1 1]x® = tel + et
1 et

So x® is also a solution. To check linear independence of these three solu-
tions, we need to evaluate the Wronskian and check that it is non-zero:
et teh JtPe! + tef
W=det|0 ¢ te! =3 £ 0, Vit
0 O et
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The associated (special) fundamental matrix is

1
el te! St
=10 e te' |, with ®(0) = Is.
0 0 et

Back to the exponential of a matrix

Why do we need it?
Reason: Given X' = Ax for any n X n matrix A, we can find a “canonical”
or “special” set of solutions as the column vectors of ®(t) = e4* (when it

makes sense), with
P0)=eO =0 =1

One defines the exponential of any n x n matrix B by the infinite series
[e.e]
Bn
B __ . 0 _
e’ = E T B =1
n=0

Does this make sense?

Example: n =2, x' = Ax, A = (1 1)

0 1
1 2 1 3
At _o A2 _ 3 _
A r A (01), A (01)
. . 1 n
By induction, A" = 01 , for any n > 0. Hence
" nt"
n: >
= (5 W) oz

and



Check the following for any n x n-matrix B, and any invertible n x n-matrix
M:
MM — MteB M,

(Hint: What is (M~'BM)"?)
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Lecture 15

Review of some earlier topics for the midterm:

First order ODE:
dy
29 (¢ *

t: independent variable (typically, ¢ > 0)
y: dependent variable = y(t)

Note: An equation like (%)% = ¢ + y is also a first order ODE but it is
not linear.

x is linear iff f(t,y) = a(t)y + b(t), i.e., the ODE is linear iff f is linear
in y. A linear ODE (%) has constant coefficients iff a(t), b(t) are independent
of t.

Typically we work with (%) where f is at least continuous. If f is contin-
uously diffferentiable, then we can find a solution by a limiting process (of
Picard), but not necessarily in closed form.

Example 1

— =g(t), g(t) integrable
o) = [ ooyt + o

dy _

0 2t, the function 2t is continuous, so integrable, and

For example, if
y=1t>+C.
Can evaluate C' if given an initial condition. In this example C' = y(0).

Example 2 (separation of variables)

dy y—1
dt  x2+1

Note that x? +1 # 0 in R.
Equilibrium solution occurs when y = 1, but how do we solve the ODE
for y # 17 The equation is rewritten as

dy

1
yd_xlzx2+lwheny7é1.
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Integrating both sides with respect to z, we get

dy dx
dx — C
/y—l /X2+1+

In|y — 1| = arctanz + C

arctan x+C'

ly—1] =e

y = 1+ ecearctanx'

General solution: y = 1 + Be®** % for any constant B, with B = 0 corre-
sponding to the equilibrium solution.

Example 3 (change of variables)

=u—t

dt

Equilibrium solution is by definition a solution u where Cfl—”j = 0. It’s a bit

subtle here, as u’ is zero when u = ¢, but u = t is not a solution of the ODE!
Indeed, v’ would be 1 if u = t. not a solution! = %‘ =1.
We solve this ODE by changing variables. Put y = v — ¢t. Then

dy du
Yo -t
ar — dt <

So we have converted to a new differential equation

As in example 2, we can write, for y # 1,

dy
/Ldt:/mt
y—1
Injly—1=t+c
y—1=¢cle
y=1%+c¢ee"
=y=1+£Be", B#0
su=y+t=1+t+ Be,
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where B is any constant, with B = 0 corresponding to the equilibrium so-
lution y = 1 (for the ODE in y). Suppose u(0) = 0. Then we can evaluate
B:

1+4B=0 = B=-1

Final solution:
u=1+t—¢" if u(0)=0.

Stability

Note that in Example 2, the general solution to % = )32111 was y =
1+ Be?ane for any constant B, with B = 0 corresponding to the equilibrium
solution y = 1. It is of interest to know the asymptotic behavior of such a

solution as = goes to infinity. We have

lim 1+ Be¥n® — | 4 Be™/?

T—>00
If y; is a particular solution of % = f(t,y), then we say that y; is stable
if for any other solution y, which starts out being close to ; at t = 0, we will
have y(t) close to y;(t) for all ¢t > 0.

More precisely, for all € > 0, 3§ > 0 such that if |y = (0) — y1(0)| < 0,
then |ya(t) — y1(t)] < e.

We are specifically interested in the stability of equilibrium solutions.

An important variant: An equilibrium solution y.,(t) is asymptoti-
cally stable if for any y, starting out near y., at ¢t =0,

thm |y2<t) - yeq(t)| =0
—00

When f is continuous, then asymptotic stability implies stability.
Example

dy y—1

dr ~ x2+1
Equilibrium solution: y =1

General solution: yp = 1 + Bexetan(®) 2% | 4 Be2. 1f B # 0, then

1 —|—Be% # 1. So if B # 0, then lim, ,, |1 —yg| = Be? #0. Soy =11is not
asymptotically stable.

On the other hand, If B is close to 0, then this limit is close to y = 1,
but the limit is not exactly 1 for B # 0, however small. Thus the (unique)

14



equilibrium solution y = 1 in this example is stable, but not asymptotically
stable.

A useful criterion for asymptotic stability

Suppose we have % = f(t,y), with f(¢,y) depending on only y. So we

may write f(t,y) = ¢(y) which does not depend on t. Suppose in addition
that ¢ is a differentiable function of y. Let y; be any equilibrium solution
(y1), so that ¢(y;) = 0. Then

(i) If ¢'(y1) < 0, then y; is asymptotically stable;
(i) If ¢'(y1) > 0 then y; not asymptotically stable .

If ¢'(y1) = 0, then nothing can be said.

Note that this criterion works only if we can check two things, namely
that f(t,y)e(y) is independent of ¢, and that p(y) is a differentiable function
of y.

Example: The Logistic equation:

P P
— =rP(1l - — K
g rP( K),r, >0,

whose right hand side ¢(P), say, is differentiable bing a polynomial; it is also
independent of t. So we may apply the criterion. Note that

"(P) —r(1—-—=).
P(P) = r(1— =)
Equilibrium Points: P =0and P=K

¢'(P)<0at P=K
p(P)>0at P=0

So P = K is asymptotically stable, while P = 0 is not, by the stability
criterion.
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